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Abstract— Inspired by the locomotor nervous system of
vertebrates, central pattern generator (CPG) models can be
used to design gaits for articulated robots, such as crawling,
swimming or legged robots. Incorporating sensory feedback
for gait adaptation in these models can improve the locomotive
performance of such robots in challenging terrain. However,
many CPG models to date have been developed exclusively
for open-loop gait generation for traversing level terrain. In
this paper, we present a novel approach for incorporating
inertial feedback into the CPG framework for the control of
body posture during legged locomotion on steep, unstructured
terrain. That is, we adapt the limit cycle of each leg of the
robot with time to simultaneously produce locomotion and body
posture control. We experimentally validate our approach on
a hexapod robot, locomoting in a variety of steep, challenging
terrains (grass, rocky slide, stairs). We show how our approach
can be used to level the robot’s body, allowing it to locomote
at a relatively constant speed, even as terrain steepness and
complexity prevents the use of an open-loop control strategy.

I. INTRODUCTION

In this work, we focus on the problem of controlling the

body posture of legged robots, extending their locomotive

ability to steep, unstructured terrain (shown in Fig. 1). Pre-

vious works have looked at legged locomotion on complex

terrain, but have generally focused on more engineered so-

lutions, such as precise foothold planning [1] when a terrain

map is available, or reactive posture correction separately

from locomotion [2], [3], [4]. In this work, we present a

new method to directly incorporate inertial feedback into the

bio-inspired central pattern generator (CPG) framework, in

order to implement reactive posture correction directly as

part of the locomotion.

Nature provides an effective solution to the complex

problem of coordinated control in legged locomotion. Legged

animals of varying sophistication subconsciously navigate

extreme terrain with ease. In animals, CPGs are neural

networks located in the spinal cord that produce signals to

drive the rhythmic motions required for locomotion [5], [6].

Although CPGs do not rely on sensory inputs to produce

locomotive outputs, these outputs are adapted based on

proprioceptively-sensed environmental information [7], [8].

That is, sensory input is used to adapt the gait produced by

the CPG in real time by inhibiting or extenuating certain gait

characteristics.
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Fig. 1: Hexapod robot climbing down a rocky slope. The mounted
camera is only used for point-of-view video recording.

In the context of robotics, CPGs are modeled as a system

of coupled oscillators that controls joint motion. Such models

have been widely used as a tool for gait generation and

decentralized control of legged robots. For legged robots

on level ground, CPGs have been used for open-loop gait

generation to great success [9]. A handful of recent works

have implemented closed-loop CPG implementations based

on various sensory feedback [10], [11], [12], [13], [14].

However, CPG-based modelling still generally lacks generic

methodologies for integrating sensory feedback to adapt the

locomotion [13], [15].

In this paper, we present a method for adapting CPG

parameters based on inertial feedback to obtain stable lo-

comotion in unstructured terrain. Specifically, based on the

robot’s body position, orientation and height, our approach

adapts the limit cycles of the coupled oscillators in the joint

space to ensure stable locomotion. We demonstrate how, by

levelling its body using inertial feedback as described, a

legged robot’s center of gravity (COG) is positioned more

centrally within its support polygon, allowing a legged robot

to traverse unstructured environments and climb up or down

steep terrain without any a priori knowledge or other types

of sensory feedback, such as vision. Additionally, in cases

where a robot is equipped with a vision system, levelled-

body locomotion can help gather clear visual feedback for

autonomous operations or for user controlling the robot via

remote camera feed. By relying on the CPG framework, our

approach can be easily adapted to different legged robots and





III. INERTIAL POSTURE CONTROL

In this section, we present our approach to body posture

control, which adapts the limit cycle of each leg at each

time step, based on inertial feedback. We first present our

method for computing the end-effector error, such that when

corrected the body will have achieved a desired orientation.

We then detail our approach to adapting the vertical CPG

offsets from the end-effector error.

A. Computing CPG Offsets Using end-effector Error

Let P ∈ SO(3) be the orientation of the body in the

world frame, which can be obtained from inertial sensors

on the robot. Let R ∈ SO(3), the world-frame rotation

which positions the robot’s body to a desired target roll-

pitch orientation given by T ∈ SO(3) in its body frame (in

order to preserve its current heading).

Without limiting the generality of this derivation, we

assume that the robot’s heading is collinear with the y-

axis of its body frame. We first need to align T with the

current heading of the robot. To this end, we first look for

the normalized, planar heading vector of the robot in the

world’s XY plane, which reads:
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From the yaw angle θz of zy in the world frame, we can

finally express the SO(3) transformation, R, which brings

the robot’s body from its current pose, P , to its target pose

in the world frame, as

R =

target pose in world frame
︷ ︸︸ ︷

Rz(θz) · T ·P−1 = Rz(θz) · T · PT . (7)

with Rz(θz) =





cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1



 ∈ SO(3). In

particular, we are interested in keeping the robot’s body level,

i.e., T = I3 ∈ SO(3) (the identity matrix), we finally simply

obtain R = Rz(θz) · P
T .

Relying on the robot’s forward kinematics, we obtain the

end-effector positions r ∈ R
3×n in the robot’s body frame:

r =





x1 · · · xn

y1 · · · yn
z1 · · · zn



 . (8)

The corrected end-effector positions in the body frame, r̃,

are then obtained by applying the rotation R to their value

in the world frame, to achieve the desired body orientation

(see Figure 3), before translating back into the body frame:

r̃ = PT
·R · P · r. (9)

The z-components of r̃ are then adjusted to ensure that

the body height, defined as the vertical distance between the

geometric center of the body and the estimated ground plane,

remains constant. We define e to be the error in end-effector

position of each leg in the body frame, which reads

e = r̃ − r. (10)

Using the well-known kinematics equation,
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Fig. 3: Illustration of the body/end-effector rotations happening
during stabilization. Resting on an inclined ground, the robot is
shown in black, with its body as the black rectangle. The rotation
R ∈ SO(3), applied around the rotation point O (ground projection
of the robot’s center of gravity), enables the body to reach the
correct orientation T = I3 and body height Bd (green rectangle).
To achieve this rotation, the end effector positions ri (1 ≤ i ≤ 6),
calculated in the body frame, need to be corrected to r̃i.

ṙ = Jθ̇, (11)
expanded as follows,
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where ṙ is the end-effector velocity in cartesian space, J

the linear Jacobian, θ̇ the angular speed of the joints, n the

number of legs present on the robot, and m the number of

joints composing each leg. Approximating Eq.(12) for small

∆t, we can estimate the error in joint angles ∆θe ∈ R
m×n:

e

∆t
≈ J ·

∆θe

∆t
⇐⇒ ∆θe ≈ J†e (13)

where e is the error in end-effector position given by Eq.(10),

and J† is the Moore-Penrose pseudoinverse.

Note that, in Eq.(10), the end-effector positions are rotated

in the body frame. Therefore, the body’s position in the world

frame will be translated, as the legs are re-arranged. This

correction is truly beneficial: on steep terrain, as the body

is levelled, it will also be translated closer to the slope, and

naturally be re-positioned over the support polygon created

by the legs. This posture control mechanism, crucial when

climbing steep terrain, helps stabilize the robot’s locomotion

(as demonstrated in Section V).

B. Adaptation of CPG Parameters for Body Posture Control

Eq.(13) allows us to translate the current end-effector error

e(t) into instantaneous joint offsets ∆θe(t). In particular,

the first two rows of ∆θe(t) are of interest, as they directly

influence cx and cy respectively.



Fig. 4: Hexapod leg joint configuration.

Since the proposed body control aims at keeping the

robot’s heading constant in the world frame, it follows that

the first row of ∆θe(t) is composed of zeros (no change in

cx). That is, the body rotation R in Eq.(7) is in the null-

space of the most proximal joints of each leg. However, by

integrating the second component of ∆θe(t) with time, we

can adapt cy(t) with time from its initial value cy0
:

cy(t) = cy0
+

∫ t

0

∆θe(t) dt. (14)

We additionally incorporate ∆θe2,i(t) (the second row of

∆θe from Eq.(13)), the instantaneous vertical increment in

cy,i, into the CPG Eq.(5), which finally reads:






ẋi(t) = −ω · ∂Hyi
+ γ

(

1−Hci(t)(xi(t), yi(t))
)

· ∂Hxi

ẏi(t) = +ω · ∂Hxi
+ γ

(

1−Hci(t)(xi(t), yi(t))
)

· ∂Hyi

+(λ
∑

j Kij(yj(t)− cy,j) + ∆θe2,i(t).
(15)

with ∂Hζ =
∂Hci(t)

∂ζ
(xi(t), yi(t)).

IV. HARDWARE EXPERIMENTS

In this section, we begin by describing the specifications

of the hexapod robot used for our experimental validation.

Then, we detail how we initialize the CPG parameters, and

how we define joint angles for each leg based on the output

of the CPG model. Finally, we present experimental results

that compare open-loop to stabilized locomotion.

A. Robot Specifications

We use a modular hexapod robot as our experimental

platform [19]. Each leg of the hexapod, shown in Fig. 5,

consists of three modular joints: a proximal joint aligned

with the yaw axis, and intermediate and distal joints aligned

with the roll axis. The two most proximal joints act as the

shoulder of the robot.

The robot’s body is a rectangular prism with length,

width, and height dimensions of 27cm, 17cm, and 7cm,

respectively. Legs may extend from the body approximately

44cm horizontally or 32cm vertically.

Fig. 5: Hexapod leg numbering convention.

The robot is blind, meaning that no on-board vision system

is used to close the loop; on-board sensing is provided by

the joint modules themselves, each containing an inertial

measurement unit (IMU) and encoders [20].

B. CPG Implementation

Since a hexapod robot is used, an alternating tripod gait is

chosen for its prevalence as a locomotive gait in insects, and

for its static stability [21]; three legs always remain on the

ground, forming a constant, large support polygon. In this

sense, the stability of the robot in unstructured terrain relies

only on the integrity of environment footholds. To implement

this gait within the CPG framework, we use the following

coupling matrix in Eq.(15)

K =











0 −1 −1 1 1 −1
−1 0 1 −1 −1 1
−1 1 0 −1 −1 1
1 −1 −1 0 1 −1
1 −1 −1 1 0 −1
−1 1 1 −1 −1 0











. (16)

Given the selected tripod gait, we define the estimated

ground plane based on the positions of the lowest tripod,

which is given by either r3,(1,4,5) or r3,(2,3,6) in Eq.(8).

This allows us to measure the body height of the robot and

calculate e in Eq.(10).

We initialize constant offsets, cx0
and cy0

on the center of

the CPG limit cycle on a leg-by-leg basis:

cx0 =
[
π
4

π
4 0 0 −

π
4 −

π
4

]

cy0
=

[
π
16

π
16

π
16

π
16

π
16

π
16

] . (17)

It should be noted in the proposed approach, cx(t) = cx0

throughout the run. That is, since cx defines the spread of the

legs, adapting it with time would decouple the legs’ phases

and may destabilize the gait.

The remaining CPG parameters are initialized as follows:

γ = 40, λ = 1
4 , a = π

18 , b = π
6 . (18)





Fig. 8: Sequence of frames of the hexapod robot locomoting through various environments. Using our approach, the robot is able to climb
steep grass (around 20 degrees), climb down a similarly-steep rocky slope, and climb up stairs. Full video: https://goo.gl/awwYfT

environments, we employ a limit cycle with d = 4 (Fig. 6);

on planar terrains, we use a limit cycle with d = 2 (Fig. 7).

Videos of the trials, as well as additional videos of stabilized

climbing in outdoor environments (rock slides, stairs, and

sloped grass) are available online at https://goo.gl/

w9JybR. Fig. 8 presents a series of frames showing the

progression of the robot through such environments.

V. DISCUSSION

Inertial-based body control for levelling the robot’s body

improves locomotive performance in two ways. First, as

shown by Fig. 6, for a given navigable terrain, locomotive

speed greatly increases compared to that produced by an

open-loop gait. Additionally, as shown by Fig. 7 inertial-

based body control for stabilization enables locomotion

on significantly more extreme slopes, which an open-loop

locomotive model would be unable to navigate – either due

to end-effector slippage or tipping.

It is important to point out the obvious trade-off between

locomotion speed and stability; as speed increases, stability

inherently diminishes. Locomotion speed is directly propor-

tional to the angular speed parameter ω in the CPG Eq.(15).

The speed at which significant degradation in stability occurs

largely depends both on the roughness and integrity of the

terrain. In the trials shown by Fig. 6, we prioritized stability

over climbing speed (small ω).

Locomotive performance increases for several reasons

when a body stabilization strategy is employed. First, lev-

elling the body of the robot reduces load on the lateral,

proximal joints that are responsible for propelling the body

forward. Specifically, levelling the robot’s body places the

axes of rotation of these joints in parallel with the grav-

itational force, meaning that they need not overcome a

component of the gravitational force. This allows the robot

to maintain a relatively constant locomotive speed regardless

of the slope or complexity of the terrain presented.

Second, levelling the body naturally positions the body’s

COG more centrally within the support polygon formed by

grounded legs as shown in Fig. 9. In addition to preventing

the robot from tipping over, this positioning of the COG

distributes the weight of the body evenly between the legs.

An even weight distribution ensures that the normal force

exerted on the end-effector of each grounded leg remains

significant, minimizing end-effector slip. End-effector slip

is problematic for a variety of reasons, mainly because

it introduces rapid changes in body position which can

drastically disrupt stable locomotion. In particular, uneven

Fig. 9: Comparison of the robot’s COG position relative to its
support polygon in cases where the body is levelled via body control
(right) and no body control is applied (left). Note how, when no
body control is applied, the robot’s COG is outside its support
polygon and, thus preventing it from climbing by tipping backwards.

end-effector slip – when the end-effectors on one side of the

robot have better ground contact – can reorient the robot. In

this case, redirecting the robot can prove difficult, especially

if slippage persists.

Third, this body orientation prevents the robot from tipping

while stepping onto or off of an obstacle; with a body

stabilization strategy, if the robot is able to step onto an

object, it will be able to stabilize. This is especially important

when the terrain is unstructured. While the slope may appear

navigable, the local slope in cases where the terrain is

unstructured can greatly exceed the general trend, due to

crevices or holes as well as other vertical obstacles.

Finally, it is crucial to realize that with stabilization the

hexapod traversed unstructured terrain of up to 30 degrees

(locally sometimes much steeper) in field testing – greatly

out-performing what is achievable with an open-loop control

strategy. The trials presented in Fig. 7 provide a comparison

between the open-loop and stabilized control strategies for a

given planar surface, and in no way indicate the maximum

slopes navigable. When using the open-loop controller, the

robot’s front end-effectors do not support weights great

enough to produce a frictional force necessary for locomotion

once the slope exceeds 12.5◦, while the robot even begins

to tip at approximately 15◦. In contrast, controlling the

body posture ensures that the body’s weight remains well

distributed across all the legs. On slopes greater than 20.0◦

slipping still occurs under the stabilized controller, given the

end-effector and planar-surface materials used in the trials.

However, provided that the requested body orientation can

be achieved within the workspace of the legs, the robot will

never tip when using the stabilized controller.

We believe that a planar surface provides a relatively-

consistent test environment, which ensures a fair comparison



between the open-loop and stabilized trials. However, the

shortcoming of a planar surface is that it lacks the footholds

present in unstructured terrain that can eliminate end-effector

slip. Therefore, even though the COG may remain well

within the support polygon on an extreme slope, the frictional

force between the end-effector and planar surface is often not

sufficient for locomotion. Nevertheless, the results in Fig. 7

demonstrate that keeping the COG well within the support

polygon is vital for navigating steep terrain.

VI. CONCLUSION

In this paper, we present a method for stable locomotion

in unstructured terrain that integrates inertial feedback for

body posture control directly within the CPG framework.

We show that by extending the limit cycle of the CPG to

the superellipse family, we can generate different limit cycle

shapes solely by selecting a single parameter, to produce

a variety of end-effector trajectories that are suitable for

various environmental conditions. In this CPG model, we

detail how to devise joint offsets from inertial feedback and

highlight the beneficial adaptability of the resulting inertial-

based CPG controller for stable locomotion and climbing in

steep, unstructured terrain.

We implement our approach on a high-DOF hexapod

robot. Experimental results demonstrate how body posture

control improves locomotion by centering the robot’s body

inside its support polygon, and by smoothing out sudden

perturbations (e.g., end-effector slips). In trials on steep,

rocky slopes, we show how the proposed body posture

control beneficially impacts locomotive speed and allows a

robot to traverse steeper and more challenging terrain, where

open-loop locomotion otherwise fails.

In order to improve locomotive ability, future work will

explore the addition of an onboard vision system attached

to the body, and the use of visual feedback directly into the

CPG model. Doing so would allow some of the remaining

CPG parameters (e.g., limit cycle dimensions) to be adapted

directly through recognizing the size and orientation of

obstacles in the path of the robot. Additionally, future work

will present a comparison between the presented approach

and other state-of-the-art methods for stabilized locomotion

in complex terrains, such as precise foothold planning and

reactive posture correction approaches.
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