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ABSTRACT
During recent years there have been several efforts from city and
transportation planners, as well as, port authorities, to design mul-
timodal transport systems, covering the needs of the population to
be served. However, before designing such a system, the first step
is to understand the current gaps. Does the current system meet the
transit demand of the geographic area covered? If not, where are
the gaps between supply and demand? To answer this question, the
notion of transit desert has been introduced. A transit desert is an
area where the supply of transit service does not meet the demand
for it. While there is little ambiguity on what constitutes transit
demand, things are more vague when it comes to transit supply. Ex-
isting efforts often define transit supply using volume metrics (e.g.,
number of bus stops within a pre-defined distance). However, this
does not necessarily capture the quality of the transit service. In this
study, we introduce a network-based transit desert index (which we
call TDI) that captures not only the quantity of transit supply in
an area, but also the connectivity that the transit system provides
for an area within the region of interest. In particular, we define a
network between areas based on the transit travel time, distance, and
overall quantity of connections. We use these measures to exam-
ine two notions of transit quality: connectivity and availability. To
quantify the connectivity of an area i we utilize the change observed
in the second smallest eigenvalue of the Laplacian when we remove
node i from the network. To quantify availability of an area i, we
examine the number of routes which pass through this area as given
by an underlying transit network. We further apply and showcase
our approach with data from Allegheny County, Pennsylvania, USA.
Finally, we discuss current limitations of TDI and how we can tackle
them as part of our future research.
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1 INTRODUCTION
“A developed country is not one where the poor have cars, but one
where the rich use public transit”. This is what Enrique Peñalosa,
the celebrated mayor of Bogota, once said. A good public transit
system is needed to provide equitable access to job opportunities
and upward mobility. Extensive research has shown low-income
residents typically live in areas with limited transportation options,
which constrains their job opportunities, upward mobility, and even
access to health care services [2, 4, 8, 14, 17].

In order to be able to identify solutions to these problems, we
must first have a way to quantify the extent of the transit accessibility
problem. Towards this objective, the notion of “transit desert” has
been defined after that of “food deserts”. In particular, a transit desert
is an area with low accessibility to transit and high dependence on
transit. This definition is fairly vague, since it does not define what
is low, what is high and what is considered to be close with regards
to transit access. During the last years there have been efforts to
measure and quantify transit deserts using information from US
Census and public transit agencies.

As we will elaborate later, the majority of these efforts quantify
transportation access through the number of transit stops and routes
nearby. While this is intuitive and can potentially capture the reality
to a large extent from a quantity point of view, pure access to public
transit as represented through the number of transit points and routes
nearby does not quantify the full image of the quality of the accessed
service. The latter is a multifaceted notion including dimensions such
as, the quality of the infrastructure (e.g., bus quality), the quality
of passenger experience (e.g., overloaded buses/subway trains), the
consistency of the service (e.g., operating according to publicized
schedules) and of course the geographic coverage of the service (e.g.,
number of transit stops and routes) to name a few. However, one
of the most fundamental aspects of the quality of a transportation
system is the connectivity it provides over the whole coverage area.
For example, a bus stop 50 feet away from your apartment may
not be useful if it only takes you to specific areas (within specific
time). In order to capture the multiple dimensions that compose the
quality of a public transit system, including this important aspect of
connectivity, we introduce in this work TDI, i.e., the Transit Desert
Index, based on network science.

1.1 System Model and Contributions
Our method, in particular, depends on a spatially-embedded multi-
layer network (see Figure 1) that captures information about the
transportation system under consideration. More specifically, the
first layer LT embeds the transportation network in the geographic
area of interest, while the second layer LG embeds a spatial grid
over the area. By defining this network, we allow for the capture of



Layer LT

Layer LG

Figure 1: TDI is based on a spatial multi-layer network. Layer
LT embeds the transport network in the area under considera-
tion, while layer LG captures the connectivity between the var-
ious areas.

multiple metrics which measure quality from the perspective of both
the quantity of transit stops/routes nearby and the connectivity of
these stops, creating a more complete picture of the supply provided
to a given area by a transit network. Using this network, we define
κi the Transit Network Availability for every area i based on the
outdegree deд+ of the stops contained in area i. This accounts for
both the number of stops and trips within a given area. We also
define the Transit Desert Eigenvalue ϕi for every area i based on
the eigenvalues of the Laplacian matrix for LG . This measures how
well connected an area is with the rest of the network. By these
metrics, we present a means to capture not only quantity of service,
as has been previously studied, but also connectivity of service,
additionally presenting a means to combine these two individual
measures into a single notion of transit supply. With this, we can
compare against transit demand ∆i in order to rank areas based on
their transit gap (between supply and demand).
Contributions: The main contributions of our work are twofold:

• We define a novel, network-based, metric TDI for quantify-
ing the transit gap of an area which considers not only the
“volume” of public transit in the vicinity but also the service
quality in terms of connectedness. This metric acts as a gen-
eralization of previously studied versions of transit supply,
allowing for the consideration of more/different notions of
quality.

• We showcase the application of TDI using data from Al-
legheny County, Pennsylvania, USA (i.e., the broader Pitts-
burgh metro area).

The rest of the paper is organized as follows. Section 2 briefly
discusses related literature and differentiates our work from the state
of the art. Section 3 introduces in detail the construction of our
multi-layer network, the computation of the transit desert eigenvalue,
and the combination of transit supply and transit demand to form
the final TDI. In Section 4, we apply TDI to the greater Pittsburgh
Metropolitan Area, presenting TDI in view of real data. Finally
Section 5 discusses future research directions and concludes our
work.

2 RELATED WORK
The transit desert concept is relatively new, and hence, there are few
efforts to quantify it. Jiao and Dillivan [9] calculate the difference
between the level of transit dependency for an area and the amount of
transit supply in the cities of Charlotte, Chicago, Cincinnati and Port-
land. The authors used census data to estimate the transit-dependent
population. They used the number of bus/rail stops in the vicinity,
the service frequency, the number of different routes, as well as the
length of sidewalks and bike routes as a proxy of transit access. The
authors identified transit deserts in all four cities examined. They
further examined their spatial distribution, finding that they were
typically concentrated close to the downtown areas. Similarly, Toms
and Song [19] analyzed the gap between transit demand and supply
in Jefferson County, KY, and found that most service gap areas were
located in the interior of the city close to the central business district
where minority and low-income populations tend to concentrate.
Similar to [9], the authors developed a supply index to measure
service level within each census tract, based on the bus stops and
route frequency within access distance (400 m). Allen [1] provides a
comprehensive review of studies in transit deserts and their relation
with various demographic minorities.

One common theme of the existing literature in quantifying transit
deserts is the definition of transit access through the number of bus
stops, as well as the number of bus routes and their frequency, in
the vicinity. While this is an intuitive proxy, it does not necessar-
ily capture the whole picture. Our network-based approach allows
us to gather further information on the quality of service in order
to develop a more holistic view of the transit supply. In fact, the
method of Jiao and Dillivan [9] was applied by 412 Food Rescue,
a local non-profit in the City of Pittsburgh fighting food waste, in
order to help quantify their impact on Allegheny County (available
at [16] with corresponding paper [15]). Our results, when applied to
the same county, present a different perspective via the additional
consideration of connectivity; this will be discussed in Section 4.
This is the main difference of our current work from existing litera-
ture. Our network-based index (described in the proceeding section)
incorporates quantification of the transit-based connectivity of the
various areas in the city, in addition to the previously studied notions
of availability, providing a different, more holistic view of of transit
supply in an area.

3 TRANSIT DESERT INDEX
In this section we introduce a network-based framework to evaluate
transit supply and demand, which we quantify independently. We
begin with a detailed description of the network at question and
then describe its important features: connectivity and availability.
We combine these two features to create a more holistic measure
of transit supply. Following this, we present a definition of transit
demand as seen in [9] and combine the components of supply and
demand to form the TDI framework.

3.1 Constructing the Network
Central to all of our considerations is a spatially-embedded multi-
layer network (see Figure 1) that captures information about the
transportation system under consideration. More specifically, the
first layer, LT , embeds the transportation network in the geographic



area of interest, while the second layer, LG , embeds a spatial grid
over the area.

The underlying properties of this multi-layer network are given
by the transportation network LT = (VT , ET ). LT is simply defined
as the directed network composed of all connections between transit
stops: nodes consist of all transit stops within the transportation
system of interest and there exists an edge ei j ∈ ET if and only if
there is a transportation route passing from stop i to stop j picking
up/dropping off at both stops; at this stage, parallel edges are allowed,
accounting for multiple transportation routes from i to j, but this will
be restricted in construction of our later embedding LG . Importantly,
we take note of the edge attributes (τi j ,di j ) as they are used later in
this section to compute the edge weight (velocity) between nodes at
LG . Time, τi, j , is computed from the scheduled transit stop-times
within the transportation network and is given by

τi j = arrival timej − departure timei
and di j is the distance between stop i and stop j given by the Haver-
sine formula

di j = 2R arcsin
√
hav (∆lat) + cos(lati ) cos(latj )hav(∆lon)

∆lat = lati − latj , ∆lon = loni − lonj , hav(θ ) = sin2
(
θ

2

)
with lat and lon referring to latitude and longitude coordinates after
conversion to radians. The Haversine formula computes the great-
circle, or fly-over, distance [18] under assumption of a spherical
earth; in all of our calculations the radius R = 6371.009 km is used
[11]. Additionally, we draw the reader’s attention to the unweighted
outdegree deд+(i) for i in VT . This value accounts for the number
of transit scheduled trips or routes which leave a given stop i. These
edge and node attributes will be important in defining our notions of
quality: connectivity and availability.

From the attributes of LT the second layer LG = (VG , EG ) can
be defined. In particular, LG represents an embedded grid over the
area of interest with each node v ∈ VG representing a grid cell in
the area under examination. To construct this grid, derivations from
the Haversine formula are used to define an equidistant partition of
a bounding box for the area of interest; in the end, if a grid cell is
contained within the bounding box, but its center point is not con-
tained within the area of interest, it is excluded from consideration
as a node. In all of our computation, a grid cell size of .322 km (i.e.,
0.2 miles) was used.

Each vi ∈ VG inherits the properties of all the transit stops in
VT it contains, aggregating this information to allow for a targeted
analysis. In particular, it inherits the paths formed by ET . For nodes
vi and vj , an edge ei j ∈ EG exists if and only if there is a transporta-
tion path that connects vi with vj or there exists a stop within .4 km
of the grid cell center of vi or vj from which a path can be traversed.
In the latter case, we consider this extension of the transportation
system to be a walking edge; for these edges we compute distance as
before and estimate time assuming a moderate walking speed of 4.83
km (i.e., 3 miles) per hour. Note here, that given the nature of the
system examined, this edge ought to be bi-directional, that is, if one
can reach vi from vj , s/he can also reach vj from vi . In particular,
for our later use of the Laplacian, we restrict LG to be an undirected,
weighted graph of shortest paths (with respect to time) in which
for any vi , vj ∈ VG , we have that there exists a single edge. This

single undirected edge ei j is a representation of the shortest path
with respect to time. Precisely, it is computed by taking directed,
temporally shortest paths in both directions, Ppq , Puw ⊂ ET from a
stop p ∈ vi to a stop q ∈ vj and u ∈ vj to w ∈ vi respectively; these
can be computed using Dijkstra’s algorithm, for example. Given this,
the edge weight w(ei j ) is then defined to be

w(ei j ) = max
{
Vi j ,Vji

}
where Vi j =

∑
ekl ∈Ppq dkl∑
ekl ∈Ppq τkl

=
total path distance

total path time

and Vji is defined similarly. If no shortest path between vi and
vj exists, then at least one of these grid cells contains no transit
stops within the aforementioned .4 km radius; in this case we set
w(ei j ) = 0, which further means the edge ei j < EG . This weight
represents the velocity of the shortest path with respect to time from
vi to vj and will be used in analysis of the connectivity of our
network.

Additionally, LG inherits a summary of the transit stops/trips
within LT . We define the node property κi for vi ∈ VG as the sum
of the outdegree. That is, if VTvi represents the non-empty set of
stops which are contained in the grid cell, vi , then κi for vi is given
by

κi =
∑

j ∈VTvi

deд+(j)

This attribute plays a significant role in the proceeding section,
quantifying availability.

In summary, we have the layer of interest in our analysis, LG , an
undirected, weighted graph of shortest paths with each edge ei j ∈
EG having a connection velocity w(ei j ) and each node vi ∈ VG
having a summary of transit stops/trips κi .

3.2 Defining Transit Supply
The properties of the given network LG together form our notion of
transit quality: connectivity and availability.

The availability within our network is precisely defined to be the
node attribute κi . As discussed, this attribute takes into account all
outbound trips in the underlying transit network, giving a general
measure of how available the transit system is to a rider and acting
as a network-based substitute to measure the number of nearby stops
and transit routes. This value, effectively represents the number
of stops contained within an area, weighted by the total number
of routes which pass through this stop, providing a network-based
substitution for measurement of nearby stops / routes as has been
discussed by the state of the art (Section 2). In keeping with the
spirit of this attribute as a measure of the availability of routes at
a rider’s entrance into the transit system, we say that any vi ∈ VG
which was connected to the transit system via walking edge, and so
by definition does not have a κi since it contains no transit stops,
receives the κi of its nearest entry point into the transit system. Stops
such as this will have hindered connectivity, but we recall, κi is a
separate measure.

The notion of connectivity is more elusive than that of availability,
but once LG has been constructed as described, we can quantify
its overall connectivity using its spectrum. In particular, we start by



calculating the Laplacian matrix of the network:

LLG = D −ALG (1)

where ALG is the adjacency matrix of LG and D is a diagonal ma-
trix, with Dii being equal to the weighted degree of vi ∈ VG . The
spectrum of the LLG includes important information with regards to
the connectivity of the whole network. In particular, if the second
smallest eigenvalue λ2 of the Laplacian is 0, then the network is
disconnected, while if λ2 > 0, the network is connected [12]. If a
network is connected, the magnitude of the second smallest eigen-
value of the Laplacian further informs us how easy it is to disconnect
the network. In fact, λ2, is often called the algebraic connectivity
because of its relation to a spectral partitioning algorithm for graphs.
Here, λ2 is directly proportional to the minimum cut size given by a
network bisection [6, 12]. Hence, in our case, with velocity as weight
in our adjacency matrix, λ2 is directly proportional to a measure
of the fragility of the network in terms of this velocity. At a high
level, let us consider a group of nodes with low velocity edges to the
remainder of the network. These nodes are not well connected within
the network since the minimum cut size required to disconnect them
is lower. Hence, the algebraic connectivity of the network as a whole
(which is proportional to this cut size) would be lower.

However, λ2 gives insight on the connectivity of the network as
a whole, rather than the connectivity of individual nodes. In order
to get an estimate of the latter, we borrow and adopt an idea from
statistical physics, namely, the cavity method [10]. In brief, the
cavity method is used to obtain mean field solutions for statistical
properties in lattices, low-dimensional spaces and networks. The
high level idea is that, for a large enough network, removing a single
node does not alter the statistical properties of the network, however,
it might make the calculations easier depending on the setting. In
our case, we neither have an exceedingly large network nor are we
interested in a mean field solution. However, we can estimate the
connectivity for every node by removing it from the network and
re-calculating the eigenvalues of the Laplacian.

To illustrate, let us assume we want to estimate the connectivity
of node vi . We start by removing node vi (and its adjacent edges)
from LG to obtain the cavity network LG−vi

= (VG−vi
, EG−vi

). We
then calculate the second smallest eigenvalue of the cavity network
ψ2(LG−vi

). Ifψ2(LG−vi
) > λ2 the overall connectivity of the cavity

network LG−vi
is better compared to that of the original network

LG , and hence, node vi is not well connected in LG . Comparably,
if λ2 > ψ2(LG−vi

) the overall connectivity of the cavity network
has decreased compared to that of the original network, indicating
vi is well connected in LG . Then, by defining the transit desert
eigenvalue as

ϕi = λ2 −ψ2(LG−vi
)

we can rank the nodes in LG based on their transit connectivity.
Algorithm 1 summarizes the calculations of ϕi .

3.3 Transit Demand
Our definition for transit demand is similar to that of [9]. In particular,
we say that the transit-dependent population in a given census block

Algorithm 1 Calculate Transit Desert Eigenvalue

Input: LG = (VLG , ELG ,WLG )
Output: ϕ
λ2 = sort(eiдen(LLG ))(2)
for i ∈ VLG do
ψ2(LG−vi

) = sort(eiдen(LLG−vi
))(2)

ϕ[i] = λ2 −ψ2(LG−vi
)

end for
return ϕ

∆′
B is given by:

household drivers =

(population age ≥ 16) − (persons living in group quarters) (2)

Transit-household population =

(household drivers) − (vehicles available) (3)

∆′
B = (transit-household population) + (population age 12-15)
+ (non-instituionalized population living in group quarters) (4)

In the above, as done by [9], we restrict to ∆′
B ≥ 0, to avoid

negative transit dependent population. To map this value to our
network, we say that given a census block B and a set VGB consisting
of grid cells which center-points lie inside B, the transit dependent
population for each grid cell vi ∈ VGB is given by

∆i =
∆′
B

|VGB |
evenly distributing the population amongst the equal area grid cells.

3.4 Synthesizing TDI
We compare supply versus demand in a similar fashion as has been
done before [9], namely by standardizing and taking differences to
determine a gap. We present a notable distinction in allowing for a
generalizable combination function ς in order to allow for versatility
in combining our different notions of transit quality.

Given that within our network we must compose multiple met-
rics with different units and potentially large difference in distribu-
tion, we first apply the common standard score, or z-score, to each
measurement. E.g, for vi with transit dependent population ∆i the
standard score is z∆i =

∆i−µ∆
σ∆ where µ∆ is the mean and σ∆ is the

standard deviation amongst the transit dependent population for all
of vi ∈ VG which have non-empty set of edges EGvi

, effectively re-
stricting our consideration to grid cells which are actually connected
to the transit network. Those not connected are handled otherwise as
discussed later in this subsection. This standard score is identical in
the cases of availability κi and connectivity ϕi giving zκi and zϕi for
vi ∈ VG . Effectively, this standard score measures the number of
standard deviations with which our measurement of interest differs
from the mean across the network. We do not require assumptions
of normality in our distributions when we take this standard score,
but with that said, by comparing the values of different distributions
by their distance from the mean µ, we place a high degree of weight
on µ as a summary statistic. As we will see in our application of



TDI, it may be necessary to transform the given data in order to
accommodate this.

Using these standard scores, we combine our two components of
supply by allowing for an arbitrary combination function ς(zκi , zϕi ).
The choice of this combination function acts as a parameter to the
system, chosen by the analyst. It is an important abstraction within
the definition of the index because it allows a significant degree of
generalization. Notably, this allows for extension of TDI to a larger
number of measures say {z1, ..., zn } or a completely different choice
of measures than those examined in this paper. Most importantly,
it allows for versatility in the combination of different notions of
quality. For example, it may often be the case, in analyzing quality
of a given transit network, that the metrics used are at odds. In this
case, for standardized metrics {z1, ..., zn } one might be interested in
best case performance which would be given by max{z1, ..., zn }. In
other cases, where each metric holds varied importance in tandem, a
wise choice may be the convex combination

ς(z1, ..., zn ) =
∑
i
wizi s.t.

∑
i
w = 1 and wi ≥ 0 ∀i

which acts as a weighted average; e.g. taking wi =
1
n would give

ς(z1, ..., zn ) = z̄. In [9], such an average was used to aggregate their
four volumetric notions of supply. Our notion of supply requires
generalization beyond averaging because we combine metrics which
measure completely different aspects of quality; the importance of
each, and required combination of each, may vary depending on
the use case. In our own application, we present and compare a
variety of the proposed combination functions as well as isolate each
proposed metric’s contribution to supply in order to better illustrate
the individual aspects of quality that each measures.

With supply given by ς to combine our network-based measures
of quality, we define TDI for grid cell vi ∈ VG by

TDIi =

{
z∆i − ς(zκi , zϕi ), if z∆i > ς(zκi , zϕi )
0, else

(5)

The implicit filtration in this case-based definition says that any
vi such that supply is greater than demand is not a transit desert;
i.e. it has index 0. All other grid cells vi ∈ VG with non-empty
set of edges EGvi

are given a positive index which increases the
more severe the transit gap is. In the case of grid cells which are
contained within the area of interest, but for which TDI cannot be
calculated – i.e., grid cells which do not contain a transit stop within
a .4 km radius and as a result have no edge in EG – we give the
designation of outright desert. These nodes have truly limited access
to the transit system because the distance to an “entrance” forces
an inconvenience on its use. TDI is not necessarily aimed at the
analysis of these grid cells because their desert status is clear, rather
TDI focuses on quantifying the desert status of grid cells which are
connected to the transit system, but may still not be well served. In
essence, TDIi takes exactly a comparison of supply and demand, as
others have done before, but combines sophisticated components in
a tunable fashion, in order to holistically represent the quality of the
transit network in question. The interested reader is invited to the
Appendix A Figures 4 and 5 where an illustrative example of the
entire calculation of TDI is performed.

4 APPLICATION AND RESULTS
In this section we apply the proposed method to Allegheny County,
Pennsylvania, home to the city of Pittsburgh. We first describe the
data used, give details on the preprocessing necessary for analysis,
and discuss some general findings on the features that compose TDI.
We then begin our application of TDI to determine transit gaps. We
first isolate each proposed metric as a source of transit supply to
better illustrate what notions of quality these metrics capture and to
empirically motivate the need for the combination of these metrics.
We then explore a number of combination functions ς , illustrating
how our framework can be tuned to magnify (or balance) the desired
notions of quality.

4.1 Data and Preprocessing
In applying the proposed method to Allegheny County, all population
data for census blocks is given by American Fact Finder [3] and
all geographic information for census blocks is given by Allegheny
County GIS Open Data [5]. The transit information used is provided
by the Port Authority of Allegheny County [13].

In this application of TDI, slight modifications to the general
procedures of Section 3 were needed. Adequate population data
could not be found for age groups 12-15, only for age groups 10-
14, so in following other organizations working within Allegheny
County [15], we modify the equation for transit demand ∆′ by this
substitution. Additionally, for data used to construct LT (see Section
3.1), the given arrival and departure times are specified only to the
minute. To prevent cases where a trip takes zero time (e.g., arrival
time is equal to the departure time), we modify by adding 30 seconds
to travel time.

Lastly, we remark on some steps in preprocessing. As mentioned
in Section 3.4, in using the standard score as a measure to compare
difference from the mean across varying distributions, we require
that the mean be an accurate representation of the data to some extent.
For roughly symmetric distributions this is the case, as the median
and mode should also cluster near it, so whenever our distribution is
highly skewed we perform a natural log transformation to achieve
better symmetry [7]. In particular, before taking the standard score,
we apply the log transformation to our measure of availability κi
as well as shifting by a constant (to account for zero values [7])
and applying the log transformation to the transit demand ∆i . We
also note that there is a single outlier in our computed values for
ϕi ; this value is included in the computation of the standard score,
but is often excluded from tables and plots (e.g. for visualization,
to maintain diversity in color mappings). In these cases, it is noted
in the figure caption with the outlier’s value as well. We invite the
reader to refer to the Appendix B (Figure 6) for a visualization of
the above transformations as well as this outlier.
4.2 A First Glance at Allegheny County Data

4.2.1 Outright Transit Deserts. We begin by identifying grid
cells not connected within the network LG . These grid cells are
classified as outright transit deserts within the TDI framework. In
total, outright deserts consist of 47% of the total transit dependent
population and 75% of the total area in Allegheny County with the
remaining nodes within our network amount to roughly 4500 grid
cells. Note, these numbers correspond to a .4 km max distance to
a transit stop. Higher maximum distances would imply the need



Table 1: From left to right are lists of the ten highest transit gaps among census blocks given by TDIwhen: using connectivity as supply
(1), using availability as supply (2), combining connectivity and availability equally as supply (3). Ranking is given by averaging the
grid cells contained in each census block. A neighborhood of reference for each census block is provided and a reference map exists
in Appendix B (Figure 13). In all cases, the outlier is removed (corresponding to the St. Clair neighborhood in Mount Oliver).

Block ID Neighborhood TDI (conn.) Block ID Neighborhood TDI (avail.) Block ID Neighborhood TDI (eq.)
1.1 Business/Hill Distr. 4.408 2.1 Oakland 4.222 3.1 Oakland 4.085
1.2 Oakland 3.948 2.2 Pitcairn 3.453 3.2 Brookline 2.942
1.3 Southside Slopes 3.870 2.3. Pleasant Hills 3.254 3.3 Squirrel Hill South 2.871
1.4 Oakland 3.725 2.4 McKeesport 3.195 3.4 Pitcairn 2.809
1.5 Oakland/Shadyside 3.630 2.5 McKeesport 3.028 3.5 Corliss/Crafton 2.667
1.6 Southside Slopes 3.553 2.6 Brookline 2.946 3.6 South Hills 2.648
1.7 Oakland 3.399 2.7 Natrona Heights 2.916 3.7 Business/Hill Distr. 2.608
1.8 Mount Oliver 3.223 2.8 Corliss / Crafton 2.895 3.8 South Side Slopes 2.579
1.9 Oakland 3.217 2.9 Carnegie 2.890 3.9 Larimer 2.557
1.10 Southside Slopes/Mt. Oliver 3.102 2.10 North Versailles 2.872 3.10 McKeesport 2.553

Figure 2: Application of TDI with isolated supply source. (Left) Connectivity zκi as supply concentrates high TDI in the city, whereas
(Right) availability zϕi as supply begins to increase TDI in certain outskirt areas. Values of TDI are averaged over non-desert grids to
aggregate information at the census block level. Outright desert grids are denoted with a dot. The outlier for zϕi is excluded to better
visualize color mappings; TDI for this outlier was 58.41.

to walk further to get to/from a transit stop, but will reduce the
transit-dependent population/area figures. Related to these figures,
we estimate that 254,924 transit-dependent persons do not have ad-
equate access within the Allegheny County transit system; these
people are located within such outright transit deserts. Appendix
B contains visuals (Figure 9) and further details concerning this
estimate. Also found in Appendix B is a visual comparison of out-
right deserts and remaining nodes (Figures 7, 8). We continue in
the remainder of this section with the central focus of this work: an
application of TDI to those nodes (grid cells) connected within the
network LG . The primary interest of TDI is not to classify outright
transit deserts which lack adequate access by definition, but to isolate
those areas which do have access and to quantify the quality of this
access.

4.2.2 Preliminary Insight into the Features which Com-
pose TDI. To that end, we continue by summarizing the computed
values of the features necessary to compute TDI. The interested
reader may find accompanying visuals for this summary in Appen-
dix B (Figures 10, 11, and 12).

Among the grid cells considered, those within the municipality of
Pittsburgh have the highest demand, excluding a few cases where a
census block is dominated by a wooded area or correctional facility.
While it may be, as will be discussed in detail later, that these city
areas are adequately serviced in terms of quantity, examination of
connectivity, ϕi , shows relatively low values for these areas. This
raises the concern that frequent local-service stops (common within
the city) may contribute to congestion, making long-distance trips
from these areas too inefficient. Emphasizing this point, we note
that there exist many areas outside of the city limits with higher
connectivity; the transit routes in these areas likely correspond to
express routes into/out of the city with high velocity. For example,
highly connected areas exist near the far West corner of Allegheny
County. One, Moon Township, has express routes that connect the
Pittsburgh Airport (28X Airport Flyer) and commuters (G3 Moon
Flyer) to the Central Business District. Trips such as these make few
stops after they leave the downtown area, allowing long distance
coverage in a short amount of time, and hence, contributing to high
connectivity.



Figure 3: Rows 1-3: Application of TDI with weighting gradu-
ally shifted, favoring zϕi top-most and zκi bottom-most. Equal
weighting (middle) accompanies rankings listed in Table 1.

The notion of congestion within the municipality of Pittsburgh
that connectivity addresses (in comparison to more efficient long
distance trips) provides interesting information about the transit
system at question, but the benefit of TDI is that we are capable
of judging these highly congested areas from a separate point of
view: availability. In fact, values of availability κi are generally
higher within the municipality of Pittsburgh, contrasting those of
connectivity. This will become more clear as we begin to actually
apply TDI, but the fact that, when computed from real-world data,
these two metrics do appear to capture different notions of quality is
important in that it motivates the proposition that different notions

of quality should be considered. Information is gained and lost when
we consider one metric or the other, so one expects (as tested in the
following) that these individual notions of quality used as isolated
measures of transit supply will measure the transit gap differently.

4.3 Applying TDI with Isolated Notions of Transit
Supply (Table 1, Figure 2)

In the following, we combine supply and demand in an application
of TDI. Specifically, in this section, we pick ς such that zϕi and zκi
are isolated in contribution to supply (see Figure 2). We do so for
two primary purposes: first, to determine differences in the notions
of transit quality these individual metrics measure and, second, to
conduct a more targeted comparison of these individual metrics with
respect to existing methods.

4.3.1 Proposed Metrics as Isolated Sources of Supply. In
isolating our proposed metrics as the source of transit supply, we
observe, as expected, transit gap patterns that are inversely related to
the patterns these metrics display as standalone features (see the pre-
ceding). Namely, isolating connectivity, zϕi , as supply, tends to give
high TDI (i.e., a large transit gap) to areas within the municipality
of Pittsburgh. This corresponds to the low-to-moderate connectiv-
ity within the city. In contrast, isolating availability, zκi , as supply
tends to give high TDI to certain outskirt areas. This corresponds
to the strong concentration of availability within the city. We refer
the reader to Table 1 giving reference neighborhoods (identified by
postal code) for census blocks with the highest average TDI. The
location of these blocks emphasize the vastly different notions of
transit quality these individual metrics capture. For example, the
ten areas with highest transit gap, given by the isolation of connec-
tivity as supply, are located within the municipality of Pittsburgh,
but isolating availability as supply gives only two areas within the
municipality of Pittsburgh, Oakland and Brookline. The remainder
lie outside this region. We note too, that Brookline is near the edge
of the municipality and that Oakland is home to the University of
Pittsburgh, and hence, inherits a large amount of transit-dependents
in the form of non-institutionalized persons living in group quar-
ters, i.e. students. This is likely the reason it appears frequently as
a highly transit deserted area in Table 1. In any case, from Table
1, it is directly visible, at least at extrema, that our two proposed
metrics capture different notions of quality. Visual examination of
the notable discrepancies in Figure 2 offers additional evidence that
these metrics provide a different perspective of transit deserts within
Allegheny County.

4.3.2 Comparison of Proposed Metrics Against Related
Work. Our metrics also provide a different perspective then is pre-
sented by the related method of [9] used by [15, 16] within Allegheny
County. We proceed by providing a comparison of our metrics’ tran-
sit desert rankings with the rankings of [15, 16]. Here, our metrics
are individually isolated in the role of supply as in the preceding (see
2). We note, interpretation of the results in [15, 16] is predominantly
visual (at the census block level) due to the lack of availability of
data.

As mentioned, the Oakland Area stands as an outlier due to its
high demand, so as both of our metrics (individually isolated as
supply) have done, the related method [15, 16] also gives this area an



exceedingly high transit gap (between demand and supply). Besides
this, when we consider the isolation of connectivity as supply, we see
that we classify a number of important areas as having high transit
gap which the related method does not. Specifically, one can observe
visually (see Figure 2), that using connectivity as supply, we classify
areas within the Central Business District and the neighboring Hill
District as having moderate-to-high transit gap (Appendix B Figure
13 shows these areas grouped with those identified in Table 1). A
number of these areas, for example some Hill District neighborhoods
such as Bedford Dwellings and Crawford-Roberts, are not ranked
as transit-deserts when using the related method. Notably, the Hill
District is a community in which many residents live in poverty,
serving as a reminder (see Section 1) of the importance of classifying
transit deserts to improve quality of life. In other cases, where our
proposed metric and the related method perceive the same area to be
a transit desert, the degree of the gap differs. For example, Southside
Slopes, which contains a number of areas that have very high transit
gap when measured with connectivity as supply (see Table 1) have
generally lower transit gap in the related work (e.g., one census
block exists here with gap bigger than 3.9 and the next largest in
the region is 1.28). Using connectivity as supply seems to provide a
different perspective than that of our related work [15, 16], but this
is to be expected as the measure of connectivity considers a different
notion of transit supply then the volumetric notion, proposed in [9]
and used in [15, 16].

Yet, as mentioned, we can still consider the notion of availability
within our framework. Many areas given high transit gap when
availability acts as supply are given a moderate gap by the related
method as well [15, 16]. These include areas in the neighborhood of
Pitcairn, McKeesport, and Carnegie (see Table 1). In Brookline, our
method performs remarkably similar to the related method with only
a .2 deviation difference. Visually, one also notices the two methods
find additional common ground, ranking certain areas within the
Central Business District as non-deserts. In contrast, we recall these
same areas were ranked as deserts when connectivity acted as supply
(see Figure 2). Although, we do note our notion of transit-availability
does not exactly agree in all cases, for example, there is only a
reduced gap in certain mentioned areas of the Hill District (while
there is no gap in the related method); this is likely due to the fact
that our availability metric does not consider ridership or length of
walk / bike lanes in measuring volume of transit availability.

We see that our notion of availability provides a comparable alter-
native to that of the related work and that the notion of connectivity
seems to provide a new perspective, but it is unclear which measure
of quality would be more beneficial to an arbitrary rider, or even to
the transit system as a whole, so in this way, isolating and comparing
rankings with related work emphasizes the importance of consid-
ering multiple metrics. We see that these metrics take into account
very different aspects of quality, so that their combined consideration
(as will be shown in the following experiment) is necessary to more
holistically evaluate poorly serviced areas.

4.4 Applying TDI with Combined Notions of
Supply (Figure 3)

In Figure 3 we apply multiple combination functions ς given by
different weighted averages. We first choose weights which favor

connectivity more strongly, followed by weights which favor both
connectivity and availability equally, followed by weights which
favor availability more strongly. In doing so, we observe that the
concentration of areas with high TDI gradually shifts, resembling
more closely the isolation of each measure (as supply) whenever each
measure is favored (see Figures 2, 3). In particular, when connectivity
is favored, TDI gives high index predominantly to neighborhoods
within the municipality of Pittsburgh. As availability is favored,
areas outside of the city begin to have higher index values while
locations within the city receive a lower index. Setting both weights
equal provides a happy medium of comparison between these two
weight schemes. Specifically, we observe areas with the highest TDI
for this equal weight scheme (see 1). We note the Southside Slopes
and Central Buisness District neighborhoods are shared with the
isolation of connectivity as supply, while neighborhoods such as
Pitcairn, Crafton, Mckeesport, and Brookline are shared with the
isolation of availability as supply. The Oakland Area, due to its
high demand, is shared with both, and some new areas including
Squirrel Hill South, the South Hills, and Lariner appear (see Table
1). In displaying remnants of both isolated supply sources, the equal
weight scheme provides a good reference for the transition that
occurs as weights shift and illustrates the ability of our method to be
tuned as desired.

5 DISCUSSION
In this study our objective has been to design a metric for quanti-
fying access to transit in a more holistic way as compared to only
considering the number of transit stops/routes in the vicinity of an
area. To that end, we have utilized spectral graph theory to capture
the connectivity of an area to its region through public transit, pre-
sented a network-based substitute for consideration of the number
of transit stops/routes, and combined these in a generalization of
transit supply into multiple notions of quality. In a demonstration
of the effectiveness of our proposed method, we have applied TDI
to the greater Pittsburgh area, effectively motivating the importance
of considering multiple metrics by exhibiting their dissimilar rank-
ings when isolated and demonstrating the capability of our proposed
method to provide a versatile view of transit quality by empowering
analyst choice for the combination function.

One element still missing in TDI is the consideration of time of
the day. In particular, two areas might be well connected during most
of the day, but not well connected late in the afternoon. While the
transit desert eigenvalue can be extended in a fairly straightforward
way to control for this through using the transit schedule, calculating
the temporal profile of transit demand is more challenging. To that
end one possibility is to use data from location-aware/geo-tagged
social media platforms (e.g., Foursquare) to build an approximation
for the temporal mobility profile between different areas. Of course,
such a proxy comes with its own challenges, the most crucial being
the representativeness of the platform’s user population.
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APPENDICES
A An Example of TDI Applied to a Small

Network
We provide here an application of TDI on a small toy network
(see Figure 4). For simplicity, and to exemplify the proposed metric
which is perhaps the least intuitive, we consider only the connectivity
of the network when computing supply. The edge weights in Figure
4 represent the transit velocities to our grid cells (i.e., nodes A, B,
C, D, and E; onward, we will index them in this order as well). We
first assume a given demand, listed below and visible (as standard
scores) in Figure 5

A : 2 B : 6 C : 5 D : 4 E : 3

We next must compute the weighted Laplacian of the graph in 4. We
do so as given in Equation 1 which results in

©«
10 −4 −1 −2 −3
−4 15 −3 −5 −3
−1 −3 7 −1 −2
−2 −5 −1 10 −2
−3 −3 −2 −2 10

ª®®®®®¬
giving the algebraic connectivity of the whole network to be λ2 =
8.368. When we proceed as in Algorithm 1. We remove nodes to
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Figure 4: A sample network. Here edge labels correspond to
the edge weight velocity. The demand for each node is given in
Figure 5.
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Figure 5: Displayed is supply and demand (after taking the stan-
dard score) for nodes in our sample network. Dots display re-
sulting value of TDI.

produce the cavity network, recompute eigenvalues of the new Lapla-
cian, and subtract these from the original algebraic connectivity λ2
to arrive at our measure of connectivity for each individual node,
given below and visible (as standard score) in Figure 5

A : 0.821 B : 3.271 C : −1.631 D : 0.862 E : 2.083

We see that the connectivity of the network improved when C was
removed (evidenced by the negative value) and the connectivity
of the network decreased most when B was removed. According
to our heuristic, this indicates that B is well connected within the
network, while C is poorly connected. In examining Figure 4 we can



0 1000
i

0.000

0.005

0.010

200 0
i

0.00

0.05

0.10

0 5000
i

0.000

0.001

0.002

0.003

0 5
log( i + 1)

0.0

0.2

0.4

10 20
i (outlier removed)

0.00

0.05

0.10

0.15

0 5 10
log i

0.0

0.2

0.4

Figure 6: ∆i and κi before and after log transformation. ϕi with
and without out lier. The constant 1 is added in the log trans-
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included in calculation of the standard score and other analy-
ses, but often left out for visualization purposes.
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Figure 7: Grids marked as outright deserts. These grids have
no transit stop within a .4 km radius.
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Figure 8: Grids which have an accessible transit stop. These
grids have edges within LG and are given an index by TDI
which is ≥ 0

understand this by noticing C has relatively low velocity edges to
the other nodes (e.g., 2, 1, 3, 1) compared to B (e.g., 5, 3, 3, 4). We
recall that the algebraic connectivity is proportional to a minimum
cut size in a network bisection and B’s high velocity edges, in this
case with a complete graph, would contribute to any cut we make.

If we take the standard scores (see Figure 5), we can now subtract
supply from demand, remembering our cases as in Equation 5 to
arrive at the final TDI for each node in our network. These are visible
in Figure 5. We have that the low connectivity of C, compared to its
above average demand, cause it to be considered a transit desert. On
the other hand, B which has even higher demand is not considered a
transit desert; this is because of its high connectivity. With supply as
connectivity, the increased transit supply of B is able to counteract
its high demand. We remark too on A, D, and E (see 5). Node A has
below average demand, so because its supply is average, it is not
ranked as a transit desert. Node D has average demand and average
supply, so the two counteract as with B. Node E, like node A, has
below average demand; its supply is above average so it is not ranked
as a transit desert. This exemplifies that the predominant cases of
interest here, where areas become classified as transit deserts, are
those where demand far exceeds supply.

B Additional Figures From the Application of
TDI to Allegheny County

Figure 6 displays all transformation done to the data before taking
the standard score; this includes log transform of both the transit
dependent population ∆i and the availability κi . Also shown, is the
distribution of connectivity ϕi with and without a single outlier.

Figure 7 displays all of the nodes within our network LG which
are classified as outright deserts and Figure 8 displays remaining
nodes for which TDI can be calculated. Recall that outright transit
deserts are classified as those grids which are not connected to the
transit network; for these nodes TDI is not computed.

Figure 9 visualizes the total number of people who are effectively
left behind within the Allegheny County transit system. Here, we
define the number of people left behind to be

# Left behind = ∆′ |V
OD
GB

|
|VGB |

where VOD
GB

are the grids within the block which are classified as out-
right deserts. Effectively, the multiplicative factor applied to demand
∆′ is the percent of grids with reasonable access to transit stops,
so if we assume the population to be evenly distributed amongst
grids within a block, this multiplication yields the number of transit-
dependent people without reasonable access to public transit. Our
estimated total of transit-dependent population without access is
254,924: a telling statistic in consideration of the impact access to
transit can have on quality of life (see Section 1). As mentioned ear-
lier, this number is computed assuming a .4 km maximum distance to
a transit stop. Higher max distances lead to lower transit-dependent
population figures.

Figures 10, 11, 12 display the values of our standalone features
(before combination into TDI) mapped across Allegheny County.
The maps display much of the detail described in Section 4.2.2.
Namely, low-to-average connectivity is present within the municipal-
ity of Pittsburgh, while high availability is present here. Also visible



Figure 9: Estimated number of people who do not have access to a transit stop within .4 km. The entire area of Allegheny County is
shown (Left) with zoomed area for detail (Right). Outskirts of Allegheny county away from the city are particularly affected.

Figure 10: Visualization of ∆i (transit demand) standard score. Left displays entire area, while Right is zoomed for more detail. For
each census block z∆i is averaged over non-desert grids to produce an aggregate value. Census blocks with no transit connected nodes,
i.e. only outright deserts, are instead dotted by their grid centers. High demand is concentrated within the municipality of Pittsburgh.

Figure 11: Visualization of ϕi (transit connectivity) with standard score averaged for each census block; those with no transit con-
nected nodes are labeled as in Figure 10. Higher connectivity is present outside of metropolitan Pittsburgh. An outlier grid is removed
to present better visualization via colormap; it is marked with a large solid point. The value of this grid was −59.35.



Figure 12: Visualization of κi (transit availability) standard score averaged for each census block; those with no transit connected
nodes are labeled as in Figure 10. Availability is sporadic with concentration within the municipality of Pittsburgh. Outside of metro-
politan Pittsburgh, some highly available areas do exist.

(A) Oakland and Shadyside: (1.2, 1.4, 1.5, 1.7, 1.9, 2.1, 3.1)
(B) Southside Slopes and Mount Oliver: (1.3, 1.6, 1.8, 1.10, 3.8)
(C) South Hills and Brookline: (2.6, 3.2, 3.6)
(D) McKeesport: (2.4, 2.5, 3.10)
(E) Business District: (1.1, 3.7)
(F) Crafton: (2.8, 3.5)
(G) Pitcairn: (2.2, 3.4)
(H) Squirrel Hill South: (3.3)
(I) North Versailles: (2.10)
(J) Natrona Heights: (2.7)
(K) Pleasant Hills: (2.3)
(L) Carnegie: (2.9)
(M) Larimer: (3.9)

A

BC

D

EF

G

H

I

J

K

L

M

Figure 13: A reference for neighborhoods shown in Table 1 and discussed in Section 4. Key displays neighborhoods and the Block IDs
(as in Table 1) which they contain. Relevant census blocks are shaded black. The Hill District is grouped under E.

are the aforementioned far West census blocks with exceedingly
high connectivity.

Figure 13 displays a reference guide for neighborhoods that en-
compass specific census blocks discussed in Section 4. The neigh-
borhoods were identified by the postal codes. This map contains all

of the neighborhoods referenced in Table 1 as well as certain other
neighborhoods mentioned such as those in the Central Business
District and Hill District.


