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Abstract—In this paper, we investigate the necessity of finite
blocklength codes in distributed transmission of independent
message sets over channels with feedback. We provide two
examples of three user interference channels with feedback where
codes with asymptotically large effective lengths are sub-optimal.
As a result, we conclude that coded transmission using finite
effective length codes is necessary to achieve optimality. We argue
that the sub-optimal performance of large effective length codes is
due to their inefficiency in preserving the correlation between the
inputs to the distributed terminals in the communication system.
This correlation is made available by the presence of feedback at
the terminals and is used as a means for coordination between
them when using finite effective length coding strategies.

I. Introduction

Most of the coding strategies developed in information

theory are based on random code ensembles which are con-

structed using independent and identically distributed (IID)

sequences of random variables [1]–[4]. The codes associated

with different terminals in the network are mutually inde-

pendent. Moreover, the blocklengths associated with these

codes are asymptotically large. This allows the application

of the laws of large numbers and concentration of measure

theorems when analyzing the performance of coding strategies;

and leads to characterizations of their achievable regions

in terms of information quantities that are the functionals

of the underlying distribution used to construct the codes.

These characterizations are often called single-letter charac-

terizations. Although the original problem is to optimize the

performance of codes with asymptotically large blocklengths,

the solution is characterized by a functional (such as mutual

information) of just one realization of the source or the

channel under consideration. It is well-known that unstructured

random codes with asymptotically large blocklength can be

used to achieve optimality in terms of achievable rates in

point-to-point communications. In fact, it can be shown that

large blocklength codes are necessary to approach optimal

performance. At a high level, this is due to the fact that

the efficiency of fundamental tasks of communication such

as covering and packing increases as the input dimension is

increased [5].

This research was supported in part by NSF grant CCF 1717299.

In network communication, one needs to (a) remove re-

dundancy among correlated information sources [2], [4] in a

distributed manner in the source coding problems, and (b)

induce redundancy among distributed terminals to facilitate

[1], [3] cooperation among them. For example, in the network

source coding problems such as distributed source coding and

multiple description coding, the objective is to exploit the

statistical correlation of the distributed information sources.

Similarly, in the network channel coding problems, such as

the interference channel and broadcast channel, correlation of

information among different terminals is induced for better

cooperation among them. At a high level, in addition to the

basic objectives of efficient packing and covering at every ter-

minal, the network coding strategies need to exploit statistical

correlation among distributed information sources or induce

statistical correlation among information accessed by terminals

in the network.

Witsenhausen [6] and Gács-Körner [7] made the observation

that distributed processing of pairs of sequences of random

variables leads to outputs which are less correlated than

the original input sequences. In the network communications

context, this implies that the outputs of encoding functions

at different terminals in a network are less correlated with

each other than the original input sequences. In [8], [9], we

built upon these observations and showed that the correlation

between the outputs of pairs of encoding functions operating

over correlated sequences is inversely proportional to the

effective length of the encoding functions. Based on these

results, it can be concluded that while random unstructured

coding strategies with asymptotically large blocklengths are

efficient in performing the tasks of covering and packing, they

are inefficient in facilitating coordination between different

terminals. Using these results, we showed that finite effective

codes are necessary to achieve optimality in various setups

involving the transmission of correlated sources. Particularly,

we showed that the effective length of optimality achieving

codes is bounded from above in the distributed source coding

problem as well as the problem of transmission of correlated

sources over the multiple access channel (MAC) and the

interference channel (IC) [8], [10].

So far, all of the results showing the necessity of finite
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effective length codes pertain to situations involving the dis-

tributed transmission of sources over channels and distributed

compression of sources. However, the question of whether

such codes are necessary in multi-terminal channel coding has

remained open. The reason is that the application of the results

in [8], [9] requires the presence of correlated inputs in different

terminals of the network. In the case of distributed processing

of sources, such correlation is readily available in the form

of the distributed source. Whereas, in distributed transmission

of independent messages it is unclear how such a correlation

can be created and exploited. In this work, we argue that in

channel coding with feedback, correlation is induced because

of the feedback link. More precisely, the feedback sequence

at one terminal is correlated with the message in the other

terminal. In order to exploit this correlation efficiently, finite

effective length codes are necessary. The contributions of this

paper can be summarized as follows. We provide two examples

of interference channels with feedback where finite effective

length codes are necessary to approach optimality. For each of

these examples, we provide an outer bound on the achievable

region as a function of the effective-length of the encoding

functions used at the transmitters. Furthermore, we use finite

effective length codes to prove the achievability of certain

rate vectors which lie outside of the outer bound when the

effective length is large. The combination of these two results

shows that in these examples any coding strategy which uses

encoding functions with asymptotically large effective lengths

is sub-optimal.

The rest of the paper is organized as follows: In Section II,

we introduce the problem formulation. Section III provides the

prior results which are used in this paper. Section IV explains

our main results. Finally, section V concludes the paper.

II. SystemModel

A. Notations

Calligraphic letters such as C and M are used to represent

sets. Random variables are denoted using capital letters such

as X,Y . The random vector (X1, X2, ..., Xn) is represented by

Xn. For shorthand, vectors are sometimes represented using

underline letters without any superscript such as X, and f . We

denote the set {1, 2, . . . ,m} by [1,m], where m is an integer.

The Hamming weight of a vector x is denoted by wH(x). For

any vector i ∈ {0, 1}n, let Zi = {Z j : i j = 1}; for example, take

n = 3, then Z101 represents (Z1,Z3).

B. Model

The problem of Interference Channel with Feedback (IC-

FB) has been studied extensively [11], [12]. A three-user in-

terference channel with generalized feedback is characterized

by three input alphabets (X1,X2,X3), three output alphabets

(Y1,Y2,Y3), three feedback alphabets (Z1,Z2,Z3), and tran-

sition probability distributions (QY |X , PZ|Y ). We assume that all

the alphabets are finite and that the channel is memoryless.

Let xn
i
, yn

i
, zn

i
, i ∈ [1, 3], be the channel inputs, outputs and the

Enc. 1

Enc. 2

Enc. 3

Dec. 1

Dec. 2

Dec. 3

QY1Y2Y3jX1X2X3

X1

X2

X3

Y1

Y2

Y3

Z1

PZ1jY1

Z3

PZ3jY3

Fig. 1: An instance of the three-user IC with generalized

feedback. Here transmitters 1 and 3 receive noisy feedback,

whereas transmitter 2 does not receive feedback.

channel feedback after n uses of the channel, respectively. The

memoryless property implies that

P
{

y j,n, z j,n , j ∈ [1, 3]
∣

∣

∣ yn−1
i , z

n−1
i , x

n
i , i ∈ [1, 3]

}

= QY |X(y1,n, y2,n, y3,n|x1,n, x2,n, x3,n)

× PZ|Y (z1,n, z2,n, z3,n|y1,n, y2,n, y3,n).

In this setup, there are three transmitters and three receivers.

The ith transmitter, i ∈ [1, 3], intends to transmit a message

index Wi to the ith receiver. The channel’s feedback Zi, i ∈

[1, 3] is causally available at transmitter i with one unit of

delay. An example of such a setup is depicted in Figure 1.

In this figure, Z2 is a trivial random variable (i.e. the second

transmitter does not receive any feedback) and PZ1,Z3 |Y1,Y2,Y3
=

PZ1 |Y1
PZ3 |Y3

.

In what follows, we provide formal definitions for achiev-

ability and coding scheme. Let M1,M2,M3 and N be arbitrary

positive integers.

Definition 1. An (M1,M2,M3,N) feedback-block-code for the

three user IC-FB consists of

• Three sets of messages Mi = {1, 2, ...,Mi}, i ∈ [1, 3].

• Three sequences of encoding functions

fi,n :Mi ×Z
n−1
i → Xi, 1 ≤ n ≤ N,

• Three decoding functions:

gi : YN
i →Mi, i ∈ [1, 3].

The message for transmitter i is denoted by a random vari-

able Wi which takes values from the message setMi, i ∈ [1, 3]

with uniform distribution. Furthermore, it is assumed that the

messages Wi, i ∈ [1, 3] are mutually independent. The output

of the ith transmitter at the nth use of the channel is denoted

by Xi,n = fi,n(Wi,Z
n−1
i

). The rate-triple of a (M1,M2,M3,N)

code is defined as Ri =
log2 Mi

N
, i ∈ [1, 3]. The probability of the

error is defined as

Pe , P
{

(W1,W2,W3) ,
(

g1(Yn
1 ), g2(Yn

2 ), g3(Yn
3 )
)

}

.

One can consider, a randomized coding strategy for which

the encoding functions are selected randomly according to

a probability measure defined over the set of all encoding
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functions f N
i
, i ∈ [1, 3] as in Definition 1. The following

defines a randomized coding strategy.

Definition 2. An (M1,M2,M3,N)-randomized coding strategy

is characterized by a probability measure PN on the set of all

functions ( fi
N), i ∈ [1, 3] described in Definition 1.

Definition 3. For ε > 0, a rate-triple (R1,R2,R3) is said

to be ε-achievable by a feedback-block-code with parameters

(M1,M2,M3,N), if the following conditions are satisfied

Pe ≤ ε,
1

N
log2 Mi ≥ Ri − ε, i ∈ [1, 3].

Definition 4. For ε > 0, a rate-triple (R1,R2,R3) is said to be

ε-achievable by a (M1,M2,M3,N)-randomized coding strategy

with probability measure PN , if, with probability one with

respect to PN , there exists a feedback-block-code for which

(R1,R2,R3) is ε-achievable.

Definition 5. For ε > 0, a rate-triple (R1,R2,R3) is said to be

ε-achievable, if there exist a (M1,M2,M3,N) feedback-block-

code (randomized coding strategy) for which (R1,R2,R3) is

ε-achievable.

Definition 6. A rate-triple (R1,R2,R3) is said to be achievable,

if it is ε-achievable for any ε > 0. Given an IC-FB, the set of

all achievable rate-triples is called the feedback-capacity.

III. Preliminaries

We investigate the case in which the input of the channel

is binary. For such a setup, at any time instance n + 1, each

encoder is modeled as a Boolean function e : Zn → {0, 1},

where Z is the input. In this section, we summarize the

results in [8] and [9] on the correlation between the outputs of

Boolean functions of pairs of sequences of random variables.

These results are used in the next section to prove the necessity

of finite effective length codes.

Suppose Zn is a sequence of IID random variables each

taking values from Z. Let P{e(Zn) = 1} = q. For the pair of e

and q, define the real-valued analogue of e as

ẽ(zn) =















1 − q if e(zn) = 1,

−q otherwise.
(1)

With this definition, E[ẽ(Zn)] = 0 and Var(ẽ(Zn)) = q(1 − q).

For ẽ and Zn define the following function

ẽi = EZn |Zi
[ẽ(Zn)|Zi] −

∑

j∈{0,1}n: j<i

ẽj, (2)

where the condition j < i means jk < ik,∀k ∈ [1, n]. Note

that ẽi is understood as the component of ẽ which is only a

function of Zi. If i is such that wH(i) = k, then ẽi is called a

k-letter component of ẽ.

Definition 7. For a Boolean function e, the collection (ẽi)i∈{0,1}n

is called the real value decomposition of e.

For each function ẽi, define Pi = Var(ẽi(Z
n)). Then, we have

the following definition.

Definition 8. For a Boolean function e with the real value

decomposition (ẽi)i∈{0,1}n , the vector of all variances (Pi)i∈{0,1}n

is called the dependency spectrum of e.

The following Lemma provides a lower bound on the

correlation between the output of two Boolean functions of

a pair of random sequences. The result of this Lemma is used

in the next Section.

Lemma 1. Let (Zn,Yn) denote a pair of sequences of IID

random variables each with joint distribution PZY and with

values in Z × Y. Let e : Xn → {0, 1}, and f : Yn → {0, 1}

be two Boolean functions with dependency spectrum (Pi), and

(Qi), respectively. Then, the following bound holds

P{e(Xn) , f (Yn)} ≥ 2
[
∑

i,j

PiQj

]
1
2
− 2
∑

i

ρwH (i)P
1
2

i
Q

1
2

i
,

where ρ is defined as ρ , supg,h E[g(Z)h(Y)], the supremum is

taken over all functions g : Z → R, and h : Y → R such that

g(Z) and h(Y) have unit variance and zero mean.

Remark 1. Note that the term ρwH (i) is decreasing in wH .

Therefore, P{e(Xn) , f (Yn)} is minimized when most of the

variance Pi is distributed on i with smaller Hamming weight.

This implies that Boolean functions with smaller effective-

lengths can have higher correlation between their outputs.

IV. Main Results

In this section, we introduce two examples of three user

IC-FBs where finite effective length codes are necessary to

approach optimality.

Example 1. Consider the setup shown in Figure 2. Here,

(X11, X12), X2, (X32, X33) are the outputs of Encoder 1, 2, and

3, respectively. The channel outputs Y1, (Y2,Y
′
2
), and Y3 are

received at Decoders 1, 2, and 3, respectively. The channel cor-

responding to the transition probability PY ′
2
|X12X32

is described

by the following relation:

Y ′2 = X12 + Nδ + (X12 ⊕ X32) ∧ E,

where Nδ and E are independent Bernoulli random variables

with P(Nδ = 1) = δ and P(E = 1) = 1
2
. Also, the

random variables Nε , and Np in Figure 2 are Bernoulli random

variables with P(Nε = 1) = ε and P(Np = 1) = p, respectively.

The variables Nδ, E,Nε and NP are mutually independent. In

this setup, feedback is only available at encoder 1 and 3. The

feedback at the first transmitter is Z1 = Y1 with probability

one. The feedback at the third transmitter is Z3 = Y3 with

probability one.

The following Theorem provides an outer bound on the

achievable region of any coding strategy with blocklength n.
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Enc. 1

Enc. 3

Dec. 1

Dec. 2

Dec. 3

X11 Y1

Np

Np

Enc. 2

X12

X2

X32

X33

Y 0
2

Y2

Y3

PY 0

2
jX12X32

Np Nǫ

Z1

Z3

Fig. 2: The diagram of the IC-FB given in Example 1. In

this setup, Z1 is the feedback at Transmitter 1, and Z3 is the

feedback at transmitter 3.

Theorem 1. For any (M1,M2,M3, n)-randomized coding strat-

egy achieving (R1,R2,R3), the following inequalities are sat-

isfied:

R1 ≤ 1 − hb(p),

R2 ≤ 1 −
∣

∣

∣

∣

hb(p) − (1 − hb(δ))
(1

n

n
∑

i=1

P{X12,i = X32,i}
)

∣

∣

∣

∣

+

,

R3 ≤ 1 − hb(p ∗ ε),

where p ∗ ε = p(1− ε)+ (1− p)ε, and hb is the binary entropy

function.

Proof. The proof is given in Appendix A. �

Corollary 1. Define the set R∗ as the union of all rate-triples

(R1,R2,R3) such that

R1 ≤ 1 − hb(p),

R2 ≤ 1 − |hb(p) − (1 − hb(δ))|+,

R3 ≤ 1 − hb(p ∗ ε).

Then, the feedback-capacity of the channel in Example 1 is

contained in R∗.

Corollary 2. For the channel in Example 1, assume ε = 0, and

p, δ are such that h(p) ≤ 1−h(δ). Then, the feedback-capacity

of the channel is characterized by the following

R1 ≤ 1 − h(p), R2 ≤ 1, R3 ≤ 1 − h(p).

Lemma 2. Let Cε denote the feedback-capacity region (as a

function of the parameter ε) of the IC-FB in Example 1 . For

any (R1,R2,R3) ∈ C0, there exists a continuous function ζ(ε)

such that, for sufficiently small ε > 0, (R1−ζ(ε),R2−ζ(ε),R3−

ζ(ε)) ∈ Cε , where ζ(ε)→ 0, as ε → 0.

The proof of Lemma 2 and Corollary 2 is given in [14] .

Theorem 2. Let δ = p. There exist γ > 0 and ε > 0,

such that for any coding strategy achieving the rate-triple

(1− hb(p), 1−γ, 1− hb(p)) the effective length of the encoding

functions producing X12 and X32 are bounded from above by

a constant. Furthermore, the effective length is greater than 1

(i.e. uncoded transmission is not optimal).

proof outline. From Theorem 1, and the assumption that (1−

hb(p), 1 − γ, 1 − hb(p)) is achievable we obtain

R2 = 1 − γ ≤ 1 − hb(p)(1 −
1

n

n
∑

i=1

P{X12,i = X32,i}).

This implies, for small enough γ, that 1
N

∑N
i=1 P(X12,i = X32,i) ≈

1. Hence, for almost all i ∈ [1, n], P(X12,i = X32,i) ≈ 1. There-

fore, by Lemma 1, this requires that the effective length be

bounded from above. If the effective length is equal to 1, then

Pin ≈ 1 for all n ∈ N. As a result, with probability PN ≈ 1, the

first encoding function satisfies F12,i(m1, z
i−1
1

) ≈ F̃12,i(Np,i−1).

Thus, P(Y ′
2,n
= Np + Nδ) ≈ 1. However,

1

n
H(Yn

2 |X
n
2 ,Y

′n
2 ) ≈

1

n
H(Nn

p|F̃
n
12(Nn

p) + Nn
δ )

≤
1

n
H(Nn

p|N
n
p + Nn

δ ) ≈ (2hb(p) − hb(p ∗ p))

As a result, from Fano’s inequality as in (3), R2 . 1+hb(p∗p)−

2hb(p) < 1. This inequality contradicts with the assumption

R2 = 1 − γ, for sufficiently small γ. In other words, using

uncoded transmission, it is not possible to reconstruct Np at

Decoder 2.

�

Example 2. Consider the IC shown in Figure 3. In this

setup, (X11, X12), X2, and (X32, X33, X
′
33

) denote the outputs

of Encoder 1, 2, and 3, respectively. In addition, Z1 and Z2

represent the feedback available at Encoder 1 and Encoder 3,

respectively. the inputs and outputs of the channel are taken

to be binary; except Y1 which is ternary. The noise random

variables N1, N3,Nδ,Nε and E are mutually independent

Bernoulli random variables with parameter p1, p3, δ, ε, and

1/2, respectively. Finally, it is assumed that p1, p3, δ, ε < 1/2.

Enc. 1

Enc. 3

Dec. 1

Dec. 2

Dec. 3

X11 Y1

Z1

E

E

Nδ

ENδ

Enc. 2

N1

N3

X12

X2

X32

X33

X
0

33

Y12

Y22

Y32

Y33

Y
0

33

Nε

Z3

3

Fig. 3: The diagram of the IC-FB in Example 2. In this setup,

Z1, the feedback at Transmitter 1, is a noisy version of Y1.

In Lemma below, we provide an achievable rate for ε = 0.

Lemma 3. For ε = 0, the rate-triple (log2 3− 1, 1− hb(d), 1−

hb(δ)) is achievable, where d = h−1
b

(|hb(p1 ∗ δ) + h(p3) − 1|+).

proof outline. Achievability for R1,R3 follows from the stan-

dard arguments as in point-to-point channel coding. Next,
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we show R2 = 1 − hb(d) is achievable. Upon receiving the

feedback, Encoder 1 and 3 recover E and (E,Nδ), respectively.

Encoderss 1 and 3 employ a source-channel coding scheme to

transmite the sources E,Nδ such that Decoder 2 reconstructs

E+Nδ within a Hamming distortion d. This problem is similar

to the Common-Bit One-Help-One Problem introduced in [13].

Using Theorem 3 in [13], we can show that Decoder 2 is able

to reconstruct E + Nδ within Hamming distortion d, if the

bounds R32 ≥ hb(∆ ∗ δ) − hb(d), and R12 ≥ 1 − hb(∆) hold for

some 0 ≤ ∆ ≤ 1/2. Suppose that the transmitted codewords

from Encoders 1 and 3 are decoded at Decoder 2 with small

probability of error. From standard channel coding arguments,

the inequalities R12 ≤ 1 − hb(p1) − ζ, and R32 ≤ 1 − hb(p3) − ζ

hold, where ζ > 0 is arbitrarily small. The proof follows by

setting ∆ ≈ p1, and d as in the statement of the Lemma. �

For the case when ε > 0, there is no common information

between Encoders 1 and 3. From the discontinuity argument

as in [13], we can show that the minimum distortion level

d is discontinuous as a function of ε. This implies that the

achievable rates using single letter coding schemes decreases

discontinuously comparing to the case when ε = 0. Using this

argument, we establish the following Lemma.

Lemma 4. There exist γ > 0 and ε > 0, such that for

any coding strategy achieving the rate-triple (log3 −1, 1 −

hb(d) − γ, 1 − hb(δ)) the effective length of the encoding

functions producing X12 and X32 are bounded from above by

a constant. Furthermore, the effective length is greater than 1

(i.e. uncoded transmission is not optimal).

The proof follows by a similar argument as in Theorem 2.

V. Conclusion

We provided two examples of channel coding with feedback

over interference networks where finite effective length coding

is necessary to achieve optimal performance. We showed

that in these examples, optimality achieving coding strate-

gies utilize the feedback available in different terminals to

coordinate their outputs. We showed that coding strategies

with asymptotically large effective lengths are inefficient in

preserving the correlation among their outputs and are hence

unable to coordinate their inputs to the channel effectively.

Appendix A

Proof of Theorem 1

Proof. The bounds R1 ≤ 1 − hb(p) and R3 ≤ 1 − hb(p) follow

from standard arguments as in point-to-point channel coding

problem. Next, we apply Fano’s inequality as follows

nR2 ≤ H(W2)
(a)
= H(W2|Y

′n
2 )

(b)

≤ I(W2; Yn
2 |Y

′n
2 ) + nζn

= H(Yn
2 |Y

′n
2 ) − H(Yn

2 |W2,Y
′n
2 ) + nζn

(c)
= H(Yn

2 |Y
′n
2 ) − H(Yn

2 |W2, X
n
2 ,Y

′n
2 ) + nζn

(d)

≤ n − H(Yn
2 |W2, X

n
2 ,Y

′n
2 ) + nζn

(e)
= n − H(Nn

p|Y
′n
2 ) + nζn, (3)

where (a) and (e) hold since Xn
12
, Xn

32
,Y

′n
2

are independent of

W2. The equality at (c) holds, because the second transmitter

does not receive feedback and, hence, Xn
2

is a function of W2.

(b) follows from Fano’s inequality and (d) follows from the

fact that Y2 is binary. Let Zi, i ∈ [1, n] be the indicator function

of the event {X12,i = X32,i}. Then,

H(Nn
p|Y

′n
2 ) ≥ H(Nn

p|Y
′n
2 ,Z

n)

=

∑

z∈{0,1}n

p(Zn
= z)H(Nn

p|Y
′n
2 , z).

Next, we have:

H(Nn
p|Y

′n
2 , z)

(a)
= H(Nn

p|X
z

12
⊕ N

z

δ
)

= H(Nn
p, X

z

12
⊕ N

z

δ
) − H(X

z

12
⊕ N

z

δ
)

(b)

≥ H(Nn
p, X

z

12
⊕ N

z

δ
) − wH(z)

(c)

≥ H(Nn
p,N

z

δ
) − wH(z)

= H(Nn
p) + H(N

z

δ
) − wH(z)

= nhb(p) − wH(z)(1 − hb(δ)), (4)

where (a) follows from the definition of Y ′
2
, (b) follows from

the fact that the binary entropy is upper bounded by one and

(c) is true as X12 is independent of Nδ. Finally, the proof is

completed by combining equations (3) and (4). �
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