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Abstract

Face alignment has been extensively studied in com-
puter vision community due to its fundamental role in facial
analysis, but it remains an unsolved problem. The major
challenges lie in the highly nonlinear relationship between
face images and associated facial shapes, which is coupled
by underlying correlation of landmarks. Existing methods
mainly rely on cascaded regression, suffering from intrin-
sic shortcomings, e.g., strong dependency on initialization
and failure to exploit landmark correlations. In this pa-
per, we propose the direct shape regression network (DSRN)
for end-to-end face alignment by jointly handling the afore-
mentioned challenges in a unified framework. Specifically,
by deploying doubly convolutional layer and by using the
Fourier feature pooling layer proposed in this paper, DSRN
efficiently constructs strong representations to disentangle
highly nonlinear relationships between images and shapes;
by incorporating a linear layer of low-rank learning, DSRN
effectively encodes correlations of landmarks to improve
performance. DSRN leverages the strengths of kernels for
nonlinear feature extraction and neural networks for struc-
tured prediction, and provides the first end-to-end learn-
ing architecture for direct face alignment. Its effectiveness
and generality are validated by extensive experiments on
five benchmark datasets, including AFLW, 300W, CelebA,
MAFL, and 300VW. All empirical results demonstrate that
DSRN consistently produces high performance and in most
cases surpasses state-of-the-art.

1. Introduction
Face alignment or facial landmark detection has recently

drawn significant attention in computer vision due to its
fundamental role in various applications, including facial
image analysis e.g. face recognition [36, 35], face verifi-
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cation [45], and facial attribute analysis [2]. Face align-
ment is the task of estimating a set of predefined key points,
known as landmarks, providing the semantic description
of facial shapes. Face alignment has been studied exten-
sively in recent years, but several aspects of it remain un-
resolved. Its great challenges stem from the nonlinear re-
lationship between input images and output shapes, since
images are usually represented by low-level features while
facial shapes contain high-level semantic meanings. Mean-
while, landmarks are spatially correlated, which can also be
exploited for more robust and accurate alignment.

Cascaded regression has been a popular method for face
alignment and made significant progress in the past decades.
Nevertheless, the cascaded regression model suffers from
intrinsic shortcomings. It is an indirect method and pro-
gressively estimates shape increments in an iterative way,
with results highly dependent on initialization. Therefore,
the final solution of cascade models is prone to getting
trapped in local optima when the initialized shape is far
from the true shape. Cascade models rely on local fea-
ture descriptors, and only the regions around landmarks are
passed through the feature extractor. As a result, the se-
mantic information of faces and correlations between land-
marks are largely overlooked. Moreover, cascaded mod-
els extract handcrafted features, e.g., SIFT [19], which fail
to leverage the strength of convolutional neural networks.
In addition, those local descriptors need to be calculated in
each iteration based on updated shapes, which can be time-
consuming and makes it hard to integrate feature learning
into one single architecture for end-to-end learning.

In this paper, we propose direct shape regression net-
works (DRSN) to directly predict facial landmarks from im-
ages without relying on cascaded regression. DSRN tackles
the aforementioned challenges by jointly modeling input-
output relationships and landmark correlations in a com-
pact end-to-end learning architecture which is composed of
one doubly convolutional layer, one Fourier feature pooling
layer, and one low-rank learning layer as illustrated in Fig 1.
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Figure 1: The learning architecture of our proposed direct shape regression network (DSRN) for end-to-end face alignment.

For feature extraction, DRSN incorporates the doubly
convolutional module [46], which is computationally more
efficient due to fewer parameters while improving perfor-
mance compared to regular convolution. It fits well face
alignment tasks where training samples are rather limited
compared to other vision tasks, such as image classifica-
tion. In conjunction with the doubly convolutional module,
we introduce a Fourier feature pooling into the last con-
volutional layer, so as to build strong holistic representa-
tions. The Fourier feature pooling is derived from kernel
approximation to leverage the strong ability of kernel meth-
ods for nonlinear feature extraction [30], and it greatly en-
hances the capability of handling the nonlinear relationship
between images and shapes. More importantly, the Fourier
pooling provides a nonlinear layer with a cosine activation
function, which is readily learned in an end-to-end way by
back-propagation.

Meanwhile, previous methods for cascaded face align-
ment have often overlooked landmark correlation, which
has not yet been modeled explicitly. Properly modeling
the correlation can not only help recover occluded land-
marks, but also improve the overall estimation performance.
We propose encoding the correlation in a principled way.
Specifically, we design a simple but effective layer with lin-
ear low-rank learning to replace the fully connected layer
as the output layer. The low-rank learning is able to explic-
itly encode the intrinsic correlations by forcing correlated
outputs to share subsets of features. More importantly, the
low-rank layer can be efficiently learned due to its nature of
linearity without suffering from bad local minima.

In this work, our major contributions can be summarized
in the following three aspects.

• We propose the first direct shape regression model for
end-to-end face alignment without relying on cascaded
regression. Our method provides a novel compact con-
volutional learning architecture, which leverages the
strengths of kernel methods for nonlinear feature ex-
traction and convolutional neural networks for multi-
variate structured prediction.

• We propose a new feature extraction layer which

is composed of a doubly convolutional layer and a
Fourier feature pooling layer to efficiently build strong
representations, which greatly enhances its capability
of disentangling the highly nonlinear relationship be-
tween images and the associated shape of facial land-
marks.

• We propose a new linear layer of low-rank learning
to explicitly encode the intrinsic correlation of facial
landmarks. The low-rank learning layer not only im-
proves the estimation performance but also offers a
principled way to model inter-correlation of multiple
outputs in structured prediction.

The effectiveness of the proposed DSRN has been ver-
ified by extensive experiments on five benchmark datasets
including AFLW, 300W, CelebA, MAFL, and 300VW. Re-
sults have shown that DSRN consistently achieves high esti-
mation accuracy on all datasets and produces the new state-
of-the-art performance which, in most cases, largely sur-
passes previous methods. In contrast to cascaded regres-
sion models, once learned in the training stage, DSRN can
efficiently predict landmarks on new input face images by
simple matrix multiplications without further iterative op-
timization. More importantly, our DSRN offers a general
compact convolutional learning architecture for multivari-
ate estimation, which can be readily used for diverse visual
tasks of structured prediction (though in this paper we focus
on face alignment).

2. Related Work
Face alignment has been extensively studied and remark-

able progress has occurred over the past decades [47, 8, 56,
7, 39, 40, 1, 7, 28, 49]. Previous work mainly focused on
cascaded regression, which relies on iterative optimization.
Cascaded regression starts with an initial shape which can
be a random guess or the mean shape of training samples,
and iteratively refines the shape by a cascade of regres-
sors. Building upon cascaded regression, many improved
variants have been developed which distinguish themselves
by the shape initialization strategies [7], shape-indexed fea-
tures [55] or regressors [42].
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Xiong et al. proposed a supervised descent method
(SDM) [42] to address the cascaded regression problem
by optimizing non-linear least squares based on SIFT [19]
features. Zhu et al. use a coarse-to-fine shape search-
ing method to locate the landmarks. That method is ro-
bust to large pose variation [54]. To achieve high perfor-
mance, they employ multiple hybrid handcrafted features,
e.g., SIFT, HOG and BRIEF etc, as local descriptors. Sup-
port vector regression and random forests are used by [41]
for face alignment from the local image patch. By using
Markov random field to model the spatial relations of land-
marks, they try to resolve the predictions uncertainties. Al-
though direct face alignment without using cascaded regres-
sion has been previously explored in [52], it is based on
handcrafted features and not in an end-to-end manner.

With the great success of deep learning in feature repre-
sentation, some methods use convolutional neural networks
(CNNs) to learn the features or deep models to represent
the regressors. Sun et al. [34] constructed a deep convo-
lutional network cascaded structure to detect facial points,
with multi-level regression networks. Liu et al. [17] not
only consider the spatial domain, but also use recurrent neu-
ral networks (RNN) to get the temporal information in the
video-based face alignment datasets.

However, most deep learning-based models are still
based on cascaded regression, which is sensitive to im-
proper shape initialization. Some recent methods [7, 6]
attempt to solve this problem by running algorithms more
than one times, but the dependence on shape initializa-
tion is still not totally avoided. Lv et al. [20] use a two-
stage regression method. It uses spatial transformer net-
works [12] to transform the full face and face parts to canon-
ical shape respectively in two stages. They call this step re-
initialization. However, this method does not optimize the
network parameters in the two stages jointly. The first end-
to-end recurrent convolutional system for face alignment
was proposed in [37]. They use CNNs to extract features
and a connected RNN to approximate the cascaded process.
The main difference from our end-to-end learning is that
our method is direct shape regression which starts with a
raw image and directly predicts coordinates of landmarks
on facial shapes rather than estimating shape increments it-
eratively. Bulat et al. [5] propose a method that can also
map 2D facial landmarks to 3D. We should also mention the
method in [4], which is a facial alignment method explicitly
designed to be lightweight and suitable for devices with lim-
ited computational resources. Obviously, our method has a
different scope as it is designed for usage with modern desk-
top computers.

Recently, Zhang et al. [50] develop a multi-task deep
learning framework to do the landmark detection and simul-
taneously learning the auxiliary attributes, such as beard,
gender, wearing glasses. Unlike other related methods, they

do not use cascaded steps, formulating instead face align-
ment as a multi-task learning problem. However, they need
to use auxiliary information, e.g, facial attributes, during the
training stage to ensure the performance for face alignment
in the test stage. In contrast, our method directly associates
images with the facial shapes by learning the mapping be-
tween them with no need for other training information.

In contrast to the existing methods for face alignment,
our DSRN is, to the best of our knowledge, the first method
that achieves direct shape regression in an end-to-end learn-
ing framework, without relying on cascaded regression.
DSRN addresses the central issue of face alignment by ef-
fectively disentangling the highly nonlinear relationship be-
tween images and facial shapes while simultaneously en-
coding correlations of landmarks on the shape. It leverages
the strengths of neural networks for structured prediction
and kernels for nonlinear feature extraction.

3. Direct Shape Regression Network
In this section, we introduce our direct shape regression

network (DSRN). We start with the problem formulation in
§3.1 and describe in detail the key components of DSRN,
that is, the doubly convolutional layer in §3.2, the Fourier
feature pooling layer in §3.3, and the linear low-rank learn-
ing layer in §3.4. We conclude by summarizing the end-to-
end learning architecture for direct face alignment in §3.5.

3.1. Preliminaries

Face alignment is the task of finding a mapping from
an input image I to the facial shape S represented by
the coordinates of landmarks in the form of a vector,
[x1, y1, · · · , xN , yN ]> ∈ R2N , where N is the number of
landmarks. DSRN directly predicts shapes from images
in an end-to-end learning architecture, which handles ma-
jor challenges of face alignment in one single framework.
Specifically, the doubly convolutional layer in conjunction
with the Fourier pooling layer are used for effective nonlin-
ear feature extraction, to model the nonlinear relationship
between images and shapes; the linear low-rank learning
layer explicitly encodes intrinsic correlations of landmarks
in a data-driven way for robust and improved estimation.

3.2. Doubly Convolutional Layer

Image representation plays a fundamental role in face
alignment. Hand-crafted features, e.g., SIFT [19] and
HoGs [9], were extensively used in previous methods [54,
55, 10, 42]. The convolutional neural network (CNN) has
recently emerged as a powerful tool for feature extraction
and shown great success in diverse visual tasks [57].

However, the size of training data is relatively small in
face alignment, while images exhibit great appearance vari-
ation and face shapes show huge variability. This poses
great challenges to conventional CNNs. Instead of using
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Figure 2: The structure of the doubly convolutional module.
The effective filters within every meta filter are considered
to be overlapped and translated versions of each other, so as
to enforce parameter sharing.

regular convolutions, we use a doubly convolutional mod-
ule [46], which has shown improved performance in term
of both efficiency and effectiveness. The double convolu-
tion is inspired by the fact that many of filters in regular
convolutions are very similar or almost translated version of
each other, which induces huge redundancy. It can largely
reduce the number of parameters while improving the per-
formance, which is well suited for face alignment.

In double convolutions, there are a set of meta filters with
size L

′ × L′
. The size of effective filters is L × L where

L < L
′
. Thus, we can consider that there are (L

′ −L+1)2

effective filters within each meta filter, and the group of ef-
fective filters are forced to be translated versions of each
other. When the input image is convolved with one meta
filter, it convolves with each effective filter in this meta fil-
ter, to produce (L

′ − L + 1)2 feature maps for this meta
filter. As a consequence, we use only one meta filter with
L

′ × L
′

parameters, while obtaining the same number of
feature maps as using (L

′ − L+ 1)2 individual filters with
(L

′ −L+1)2×L×L parameters. The structure of doubly
convolutional layer is shown in Fig 2.

3.3. Fourier Pooling Layer

To handle the complicated relationship between images
and facial shapes, nonlinear feature extraction is usually re-
quired to achieve high-level representations. The doubly
convolutional module produces a set of feature maps con-
tained in X ∈ Rw×h×c with width w, height h and the
number of maps c. For a c dimensional vector of a spa-
tial location across the feature maps in X , we use notation
x = [x1, x2, · · · , xc]> ∈ Rc. We need to pool those w × h
c-dimensional feature vectors into in a compact holistic rep-
resentation for shape regression.

We propose a Fourier pooling layer to aggregate feature
maps by leveraging the great strength of kernels for non-
linear feature extraction [51], which enables filling the se-
mantic gap between images and shapes. The Fourier pool-
ing layer is derived from the approximation of shift invari-
ant kernels [23] which is underpinned by the well-known
Bochner’s theorem [3].

Figure 3: The structure of Fourier feature pooling.

Theorem 1 (Bochner [3]) A continuous shift-invariant
kernel function k(x,x′) = k(x− x′) on Rd is positive
definite if and only if it is the Fourier transform of a
unique finite non-negative measure on Rd. Defining
ζω(x) = ejω

>x, for any x,x′ ∈ Rd:

k(x− x′) =

∫
Rd

p(ω)ejω
>(x−x′)dω = Eω[ζω(x)ζω(x

′)∗] ,

(1)
where * is the conjugate and p(ω) is the Fourier transform
of the kernel.

The kernel k(x,x′) can be approximated by drawing d
random samples as:

k(x,x′) ≈
d∑

i=1

〈√2

d
cos(ω>i x+bi),

√
2

d
cos(ω>i x

′+bi)
〉
,

(2)
where ω is sampled from the probablity distribution p(ω),
and b is uniformly sampled over [0, 2π].

Therefore, the corresponding approximated feature map
φ(x) is:

φ(xi) =

√
2

d
[cos(ω>i xi + bi)]1:d , (3)

where φ(x) is called the random Fourier feature [23], and
has been successfully used in various kernel methods.

However, the great power of kernel approximation based
on random Fourier features remains largely underdevel-
oped, and this topic has recently attracted attention [22, 33].
In most of the existing kernel approximation methods, the
sampling is independent of input data distributions, and this
usually requires high-dimensional feature maps to achieve
kernel approximation with satisfactory performance. More-
over, since no learning is involved, the approximate feature
maps would be of high redundancy and of low discrimi-
nant ability, which compromises performance while induc-
ing unnecessary computational cost. In addition, approxi-
mating the kernel with a fixed configuration does not nec-
essarily lead to high performance since it remains an open
question how to choose the best kernel configuration.
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Instead of approximating kernels by random sampling
from data-independent distributions, we learn the parame-
ters {ω, b} from data in a supervised way, which enables
more compact but highly discriminative feature represen-
tations. Define W = [ω1, · · · ,ωd] ∈ Rd×c and b =
[b1, · · · , bd]. We define a nonlinear layer of neural networks
with cosine activations:

φi = cos(Wxi + b) , (4)

where cos is an element-wise function, i indicates the i-th
location in the feature map X , and W is the weight matrix
of the nonlinear layer. The induced Fourier feature pooling
layer can be seamlessly integrated with the doubly convolu-
tional layer to achieve a fully end-to-end learning architec-
ture that can be trained via back-propagation.

To achieve a holistic representation, we concatenate
the embedded feature vectors into a single vector z =
[φ1, · · · ,φi, · · · ,φp] ∈ RD, where p = w × h, i.e., the
number of locations. In contrast to feature pooling tech-
niques by directly summing up the feature vectors, the con-
catenation can well preserve the spatial information of im-
ages, which is of great importance for predicting the spatial
locations of facial landmarks.

3.4. Low-rank Learning Layer

We propose a simple but effective layer to encode cor-
relations of landmarks by linear low-rank learning. Having
the holistic representation z, a straightforward way for pre-
diction is to use a fully connected layer with the regression
matrix represented by M ∈ RQ×D, where Q is the number
of outputs, i.e.,Q = 2N , which gives y =Mz. An identity
activation function is used by default. Although sharing the
holistic representations, landmark correlations are not ex-
plicitly encoded. Low-rank constraints, such as the nuclear
norm [51], could be simply imposed to force the regression
matrix M to be low rank, but this does not always guar-
antee low-rankness of M , and can fail to fully capture the
correlations. Instead of using one fully connected layer, we
propose linear low-rank learning layer to explicitly encod-
ing correlations of landmarks.

Specifically, we propose the low-rank learning layer by
replacing the single matrix M with multiplication of two
low-rank matrices, which gives rise to

y =Mz = U>V z , (5)

where U ∈ RP×Q, V ∈ RP×D and P ≤ Q. The lin-
ear function provides a low-rank layer to explicitly encode
inter-output correlations. U and V are learned in a data-
driven way without relying on any specific assumptions,
and can adaptively capture specific correlations in different
applications.

Low-rank learning brings two attractive advantages com-
pared to nuclear norm based minimization. First, it estab-
lishes an overall mapping of M with guaranteed low rank-
ness to explicitly encode correlations; related outputs are
forced to share similar regression parameter patterns [53],
and thus knowledge is transferred across correlated outputs.
This can significantly improve the overall prediction per-
formance. Second, low-rank learning avoids solving com-
plicated rank-constrained problems and leverages the great
effectiveness of linear learning, which enjoys great compu-
tational efficiency; by setting P � Q, the low-rank learning
can greatly reduce the number of parameters, which is espe-
cially advantageous when using iterative optimization with
stochastic gradient descent [29].

3.5. End-to-End Direct Face Alignment

The doubly convolutional layer, the Fourier pooling
layer and the low-rank learning layer are used to define
our direct shape regression network (DSRN), which is a
novel compact end-to-end learning architecture for direct
face alignment. In contrast to the cascaded regression mod-
els, DSRN is trained in one single framework by back-
propagation by directly associating images with the coordi-
nates of landmarks on facial shapes; in the test stage, DSRN
predicts facial shapes of input images by simple matrix mul-
tiplications rather than iterative optimization, which leads
to improved efficiency. More importantly, the proposed
DSRN is highly generalizable and can be readily adapted
to other structured prediction tasks with multiple continu-
ous outputs.

4. Experiments Results
We have conducted extensive experiments on five bench-

mark datasets, and we provide a comprehensive comparison
with state-of-the-art methods. The proposed direct shape re-
gression network (DSRN) consistently yields high accuracy
for face alignment, and in most cases outperforms previ-
ous methods by large margins. Moreover, the consistently
high performance on the five diverse face alignment tasks
demonstrates the generality of our method.

4.1. Datasets

The five datasets used in our experiments are commonly
used benchmarks for face alignment. Faces in the datasets
are collected in uncontrolled scenarios, demonstrating great
variations, which pose significant challenges for face align-
ment. We provide the detailed description of those datasets
to facilitate direct comparison with previous work under the
same experimental settings.

AFLW [15] contains a total of 24386 face images gath-
ered from Flickr. In contrast to other databases limited
to frontal views or acquired under controlled conditions.
AFLW faces are collected in the wild, have large-scale
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Table 1: Comparison on AFLW.
Method Error Year

CDM [43] 5.43 2013
PCPR [6] 3.73 2013
ERT [13] 4.35 2014

SDM [42] 4.05 2013
LBF [24] 4.25 2014

PO-CR [38] 5.32 2015
CFSS [54] 3.92 2015
CLL [55] 2.72 2016

DAC-CSR [10] 2.27 2017
DRA-TSR [20] 2.17 2017

DSRN 1.86

pose variations up to ±90◦ and also have large variety in
face appearance (e.g., pose, expression, ethnicity, gender).
Each image is annotated with 21 landmarks. Following the
experimental settings of cascaded compositional learning
(CLL) [55], we ignore the two ear points and use the same
20000 and 4386 images for training and test, respectively.

300W [26, 27] consists of several datasets including
AFW [56], HELEN [16], LFPW [2], XM2VTS [21]. In ad-
dition, it contains a challenging 135-image IBUG [31] set.
Following the same dataset configuration in [54], our train-
ing set of 3148 images consists of the full set of AFW and
the training sets of HELEN and LFPW. The full test set (689
images) is divided into a “common subset” (554 images),
which contains the test sets from LFPW and HELEN, and
a “challenging subset” (135 images) which is from IBUG.
300W has a 68-points annotation for each face image.

CelebA [18] is a large-scale face dataset with 202599
images. CelebA provides 5 landmarks of the facial shape
for each image. The images show large pose variations and
background clutter. Because of large diversities and large
quantities, CelebA is suitable for training and testing a deep
learning model. Following the original work [18], 182631
and 19926 images are used respectively for the training and
test sets.

MAFL is a subset of CelebA. To benchmark with pre-
vious methods, we follow the experimental settings in [50].
Specifically, we sample the same 20000 faces from CelebA
and select the same 1000 faces for testing as in [50].

300VW [31] is a video-based face alignment dataset
which contains 114 videos from different conditions. We
extract face images from the same 50 videos as [31] to train
the model, and the remaining 64 videos are divided into
three test sets.

4.2. Implementation Details

We use four doubly convolutional layers and four pool-
ing layers for the feature extraction task. Multiple feature
maps are produced in each convolutional layer. Following

each convolution operation, we use rectified linear unit as
activation function and the 5 × 5, 5 × 5, 3 × 3, 3 × 3 max
pooling. After that, the Fourier pooling layer is added to the
feature maps X ∈ R8×8×256. In Fourier pooling, we obtain
X

′ ∈ R8×8×d first, where the value of d may be changed
depending on the size of training samples and the number
of landmarks in the task. Then we do simple concatenation
for X

′
to achieve the holistic representation.

In the low-rank learning layer, we do not use any
nonlinear activtion functions but just the linear function
with identity activations. The commonly used weight
decay and batch normalization [11] techniques are also
used. The parameter for weight dacay is 0.001. We em-
ploy the stochastic optimization algorithm Adam [14] to
learn the parameters of the neural network. The mini-
batch size is set to 64. The codes are available at
https://github.com/xinxinmiao/DSRN.

For all experiments, the original bounding box given by
the dataset is used, without any data augmentation. For
the 300W dataset, due to the size of the training set be-
ing relative small, we pre-train our model on the large-scale
300VW dataset which has the same number, 68, of land-
marks, and fine tune it on the training set of 300W to obtain
the final model.

We use the normalized mean error (NME) as the evalua-
tion metric, which is defined as follows:

NME =
1
N

∑N
i=1

√
(x̂i − xi)2 + (ŷi − yi)2

d
, (6)

where (x, y) and (x̂, ŷ) denotes the ground truth and pre-
dicted coordinates, respectively, N denotes the number of
landmarks on facial shapes, and d is the distance for nor-
malization.

Following previous work, for 300W, CelebA, MAFL and
300VW, we use the inter-ocular distance to normalize the
mean error; for AFLW, we use face size to normalize mean
error since the inter-ocular distance of many faces is close
to zero. For brevity, % is omitted in all tables. We also
show the evaluation results in the form of cumulative error
distribution (CED) curve for comprehensive comparison.

4.3. Performance and Comparison

Our DSRN consistently achieves high performance on
all five datasets and outperforms previous methods in most
cases by large margins.

On AFLW, as shown in Table 1, DSRN achieves the best
error rate, 1.86%, compared to the previous best error rate
of 2.17% [20]. In Fig 4 (a), the curve of our DSRN is clearly
above those of other methods, which also indicates the per-
formance advantages. Compared with those methods based
on cascaded regression, our DSRN can detect the landmarks
for side faces accurately as shown by the intuitive illustra-
tion in the fourth and seventh images of Fig 5 (a).

4326



AFLW MAFL 300VW

Figure 4: Comparions on AFLW, MAFL and 300VW in terms of CED.

(a)

(b)

(c)

(d)

Figure 5: Illustrative results on (a) AFLW (b) 300W (c) CelebA (d)300VW .

On 300W, our DSRN achieves competitive performance,
which is better than all previous methods except for [20],
which gives better results on the challenging set and the full
test set. The challenges of 300W stem from the great varia-
tions of images while with limited training data. As shown
in Fig 5, our DSRN can accurately predict the landmarks on
faces with large orientations and diverse expressions.

On CelebA and MAFL, as can be seen in Table 3, our
DSRN achieves the best performance on both datasets, with
error rates of 3.08% and 3.15% respectively, which are sig-
nificant improvements over the previous best error rates of

3.95% and 7.95% respectively. In Fig 4 (b), we can see that
there is a big gap between DSRN and TCDCN, which uses
the similar convolutional network with DSRN and takes ad-
vantage of face attributes, but without Fourier pooling and
low-rank learning layer. In the second and sixth images of
Fig 5 (c), when the eyes in face images are occluded by
sunglasses, DSRN can still predict the landmarks correctly.
This is because our low-rank learning can encode the intrin-
sic correlation of landmarks.

On 300VW, as shown in Table 4, DSRN produces the
highest accuracy on Tests 1 and 3, where Test 3 is regarded
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Figure 6: Illustration of Fourier features.

Table 2: Comparison on 300W.

Method
Common

Subset
Challenging

Subset
Full

Test set
RCPR [6] 6.18 17.26 8.35
SDM [42] 5.57 15.40 7.52

ESR [7] 5.28 17.00 7.58
GN-DPM [40] 5.78 - -

ERT [13] - - 6.40
CFAN [48] 5.50 16.78 7.69

LBF [25] 4.95 11.98 6.32
DDN [44] - - 5.59
CFSS [54] 4.73 9.98 5.76
MDM [37] 4.83 10.14 5.88

DRA-TSR [20] 4.36 7.56 4.99
DSRN 4.12 9.68 5.21

Table 3: Comparison on CelebA and MAFL.
Method CelebA MAFL

TCDCN [50] - 7.95
Cascaded CNN [34] - 9.73

CFAN [48] - 15.84
RCPR [6] 4.12 -
SDM [42] 4.35 -
CFSS [54] 3.95 -

DSRN 3.08 3.15

as the most challenging subset. We have also compared
with TSTN [17] designed specifically for video-based face
alignment by modeling the temporal relationship across
frames. Our method achieves overall better performance
than TSTN. Moreover, DSRN can run very fast with about
500 frames per second excluding face detection in the plat-
form of NVIDIA GTX 1080Ti GPU, which is promising for
the prospect of practical application. The intuitive results of
300VW are shown in Fig 5, our DSRN can accurately pre-
dict the shapes of images with great appearance variations.

In addition, since the Fourier pooling layer serves as im-

Table 4: Comparison on 300VW.
Method Test 1 Test 2 Test 3 Year

SDM [42] 7.41 6.18 13.04 2013
TSCN [32] 12.54 7.25 13.13 2014
CFSS [54] 7.68 6.42 13.67 2015

TCDCN [50] 7.66 6.77 14.98 2016
TSTN [17] 5.36 4.51 12.84 2017

DSRN 5.33 4.92 8.85 -

portant role in feature learning, it would be interesting to
look inside into features after Fourier pooling. Assume that
feature maps from the last convolutional layer are denoted
by X

′ ∈ R8×8×d, where. We illustrate the features output
from Fourier pooling and their corresponding input images
in Fig 6. It is easy to see that the Fourier pooling layer tries
to learn the shape of a face, largely preserving spatial struc-
ture information, which will be of great benefit for accurate
facial landmark prediction.

5. Conclusions
In this paper, we propose the direct shape regression net-

work (DSRN) for end-to-end face alignment. DSRN con-
sists of the doubly convolutional layer, the novel Fourier
pooling layer, and the low-rank learning layer. These lay-
ers enable jointly handling nonlinear image-shape relation-
ships and the intrinsic correlations between landmarks. Our
DSRN offers a new learning architecture that combines the
strengths of kernels for nonlinear feature extraction and
neural networks for structured prediction. Experimental re-
sults on five benchmark datasets have shown that our DSRN
achieves superior performance on all datasets.
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