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HIGHLIGHTS

® Deployment of building energy applications is inhibited by the heterogeneity of metadata.

® Brick introduces a semantic model to comprehensively describe building infrastructure.

® Schema development based on six commercial buildings, eight energy applications.

® Brick uses standard RDF and SPARQL tools to support machine readability and querying.

® Brick is an open-source effort; we present a software ecosystem for encouraging the adoption of Brick.
ARTICLE INFO ABSTRACT
Keywords: Buildings account for 32% of worldwide energy usage. A new regime of exciting new “applications” that span a
Smart buildings distributed fabric of sensors, actuators and humans has emerged to improve building energy efficiency and
Building management operations management. These applications leverage the technological advances in embedded sensing, proces-
Metadata

sing, networking and methods by which they can be coupled with supervisory control and data acquisition
systems deployed in modern buildings and with users on mobile wireless platforms. There are, however, several
technical challenges to confront before such a vision of smart building applications and cyber-physical systems
can be realized. The sensory data produced by these systems need significant curation before it can be used
meaningfully. This is largely a manual, cost-prohibitive task and hence such solutions rarely experience wide-
spread adoption due to the lack of a common descriptive schema.

Recent attempts have sought to address this through data standards and metadata schemata but fall short in
capturing the richness of relationships required by applications. This paper describes Brick, a uniform metadata
schema for representing buildings that builds upon recent advances in the area. Our schema defines a concrete
ontology for sensors, subsystems and the relationships between them, which enables portable applications. We
demonstrate the completeness and effectiveness of Brick by using it to represent the entire vendor-specific sensor
metadata of six diverse buildings across different campuses, comprising 17,700 data points, and running eight
unmodified energy efficiency applications on these buildings.

Schema
Ontology

1. Introduction operational cost, curb carbon emissions, improve indoor air quality,
and keep occupants healthy and productive [1]. Driven by the avail-

Buildings account for 32% of the energy and 51% of the electricity ability of inexpensive embedded sensing and networking devices,
demand worldwide as of 2010 [1]. Improving the energy efficiency of modern buildings are being integrated with a variety of networked
buildings can reduce energy demand by up to 90%, will help reduce sensors and equipment for centralized operation and management.
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Technological innovations in what is now called the “Internet of
Things” (IoT) have led to connected lights, power meters, occupancy
sensors and electrical appliances that are capable of interfacing with the
underlying SCADA (supervisory control and data acquisition) systems
used in building automation. These technological improvements hold
the promise of significant advances in energy efficient operations [1-3].
For example, research shows that up to 40% of HVAC energy use can be
reduced by mitigating faults in these systems [4] and there are hun-
dreds of Automated Fault Detection and Diagnosis (AFDD) algorithms
available in the literature that could be used to identify these faults [5].
As of 2012, 14% of the commercial buildings in the U.S. had deployed
Building Management Systems (BMS) to manage data collection and
remote actuation of the connected building infrastructure [6]. Newer
buildings are equipped with BMS by design, and many older buildings
are being retrofitted with networked systems for improved efficiency.
Furthermore, integration with the Internet presents an exciting possi-
bility for value-creation through a network of buildings that can ac-
tively participate in smart grids. Leveraging these technologies a
number of innovative software applications have emerged that pose to
transform building energy dynamics such as model predictive control
[7], automated demand response [8], occupancy based control [9],
energy apportionment [10], fault diagnosis [11], participatory feed-
back [12], and architectural design iterations [13].

These emerging applications present an excellent opportunity for
creating an “app store” like those available for smartphones to provide
new capabilities to building operators and occupants alike. In this
scenario, an energy solution can be deployed across a multitude of
buildings containing the requisite infrastructure with minimal config-
uration. Yet, this vision is far from realization: deploying energy ap-
plications in buildings requires significant manual effort and building
specific domain expertise. Even the most modern BMS present a ca-
cophony of data and information flows that vary across buildings,
vendors and locations. Unlike the mobile phone landscape, there is no
standardized operating system or hardware abstraction layer for
building applications.

The lack of a common data representation prevents interoperability
between buildings and limits deployment of energy applications as de-
velopers need to map the heterogeneous data of each building to a
common format. This problem has been recognized for a while now. NIST
in 2004 estimated that the U.S. building industry lost $15.8 billion an-
nually due to lack of interoperability standards [14]. Attempts have been
made to address this problem. Building Information Models (BIM) [15]
were introduced to address the interoperability concerns both for the
design and operation of buildings. Schemata such as the Industry Foun-
dation Classes (IFC) [16], and more recently the Green Building XML
(gbXML) [17], are useful but they remain largely oriented towards design
and construction efforts. As a consequence, only limited support is pro-
vided for BMS operations, energy management and data analysis. More
recently, several other schemata (Project Haystack [18], SAREF [19])
have emerged to highlight the importance and use of building operations
metadata, i.e., the information that captures the properties of different
equipment, sensors and controls used in buildings. Brick builds upon
these efforts to devise a practical schema that demonstrates use of several
energy applications in a number of buildings across the U.S. and Europe.

The technical challenge here is to design a schema that can, at the
very least, capture the information that the building engineers and fa-
cilities managers chose to put into real-life deployments across a diverse
set of buildings. The schema needs to be expressive enough to capture
the contextual information for building subsystems, the sensors in-
stalled and the data they generate so that canonical energy applications
such as fault detection/diagnosis [20] and demand response [21] can
be easily developed and deployed. Recent work has shown that the
existing schemata fall short in capturing the important relationships
and concepts necessary for applications for even one real building BMS
[22].

Designing a comprehensive schema for the emerging IoT universe in
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order to run any conceivable application in any context is a difficult task
but unnecessary for the current scope of creating a usable platform
spanning commercial buildings. Therefore, we focus on creating an
information exchange platform focused on commercial buildings where
interactions among devices and building spaces are core to sophisti-
cated applications. In developing such a platform, we are guided by the
sensors, attributes and relationships that have been shown to be useful
in the published literature with a view towards composability and ex-
tensibility. In designing Brick, we ask the following important questions
and seek answers with demonstrated effectiveness:

e Completeness: Can Brick represent all the metadata information
(such as a sensor’s location, type, etc.) contained in a building’s
BMS?

Expressiveness: Can Brick capture all important relationships be-
tween building entities that are (a) explicitly or implicitly men-
tioned in a building’s BMS, and (b) expressed in canonical energy
applications in published academic literature?

Usability: Can Brick represent the information in a way that is easy
to use for both the domain expert and the application developer
unambiguously? Can the schema support automation with machine
readable data formats and querying tools? Can it be extended for
new concepts in a unified way?

Due to the highly diverse and changing nature of buildings across
the world, these questions can only be answered with a representative
sample of current buildings, and it is important for our schema to re-
main extensible and open in order to accommodate the evolving BMS
landscape. Thus, our design of Brick is grounded by the information
from BMS across six buildings spread across two continents, comprising
more than 630,000 sq-ft of floor space. The information in a BMS is
characterized by data points that correspond to values reported by
sensors, configuration parameters such as a temperature setpoint and
status of equipment. Brick design is based on more than 17,700 data
points supplied by BMS from six different vendors, and have vastly
varying subsystems and sensors. We further refine our design require-
ments using eight canonical energy applications that require integrated
information across commonly isolated building subsystems: air con-
ditioning, heating, lighting, spatial and power infrastructure.

We demonstrate that 98% of BMS data points across our six build-
ings can be mapped to Brick, and our eight applications can easily
query the mapped building instances for required information. We open
source the Brick schema files, the BMS metadata from our buildings, the
application queries that run on top of Brick and tutorials on how to map
existing building metadata to Brick. Brick schema and documentation
can be found at http://brickschema.org/.

This paper is based on our earlier work [23] where we presented the
initial version of the Brick schema and how it modeled building
equipment, locations, sensors and the relationship between them. This
paper extends the work by presenting methodologies actually needed
for deploying such metadata schema in real systems. First, we show
methodologies to instantiate Brick in large scale by exploiting existing
information sources including raw point names in building manage-
ment systems and other schemata as Project Haystack and IFC to ease
the adoption of Brick. Second, we propose an architecture for the in-
tegration of Brick with actual building operating systems as well as two
concrete open-source implementations, XBOS [24] and BuildingDepot
3.0 [25]. Third, We validate the extensibility of our model by our
community contribution model and the integrations with other sche-
mata for diverse aspects beyond Brick’s original coverage.

2. Background
2.1. Building applications and energy efficiency

U.S. Department of Energy reports that the commercial sector,
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mostly accounted by its buildings, consumed 18% of the primary en-
ergy and 47% of the electricity in the country in 2017 [26] and that, on
average, 30% of this energy is wasted [27]. By taking advantage of the
proliferation of sensing and control devices in buildings, many ap-
proaches have been developed to reduce this waste, ranging from naive
occupancy-driven control [28] and AFDD [11] to model-predictive
control [29]. Because these approaches are, for the most part, algo-
rithms and heuristics that can be implemented in software, we refer to
them as building applications. For example, Agarwal et al. developed a
building application and showed that occupancy-based-control of
HVAC of a single floor in a four floors building reduces 9-15% electrical
and 7-12.85% thermal energy consumption of the entire four-story
building with minimal hardware installations [28]. If this application
was ported to the other 20 buildings on the same campus, the accu-
mulated annual savings would be nearly 40,000 MBTU. Similarly, faults
also account for 4-18% of the entire energy consumption in commercial
buildings [30], and up to 40% of HVAC energy use [4], which various
fault diagnostic algorithms can detect to mitigate.

The largest barrier for the adoption of energy efficient applications
is cost [31]. As of 2012, 86% of the buildings in U.S. have no BMS that
controls buildings in a centralized way [6]. Adoption of a naive BMS
costs between 2.50 USD to 7.00 USD per square foot as of 2016, which
sums up to a minimum of 250,000 USD for a 100,000 square feet
building [32]. In a case study of retrofitting a 20,500 square feet
medium-sized building in 2010, the labor cost for designing and en-
gineering the system takes the largest portion with 35% other than any
other set of devices just to enable scheduled air conditioning [33]. Even
the remaining 14% of buildings with BMSes require significant en-
gineering effort even without adding new hardware. Upgrading a BMS
or deploying a new application over a BMS requires significant financial
investment for paying the BMS vendor. Five of the architectural re-
quirements for BMSes listed by the report are interoperability, scal-
ability, deployment, open, and plug-n-play for the large deployment of
energy efficiency applications [33]. These are closely related to meta-
data organization in buildings addressed by our paper.

2.2. Metadata in buildings

Many large commercial buildings today have monitoring and ac-
tuation sensor networks that are accessed through the BMS or through
SCADA (Supervisory Control and Data Acquisition) systems. BMSes
capture the building infrastructure information in terms of different
subsystems such as lighting, electric power, water, and heating, venti-
lation and air conditioning (HVAC). BMSes describe the equipment in
each domain, how they connect with each other, monitor their opera-
tion through networked sensors and actuate them through remote
commands. BMSes typically have programmable interfaces for higher
level control, store historical data and provide visualization. We refer to
each of the sensor or control point in the BMS as a “data point”. Their
metadata consists of “labels” that describe the many aspects of a data
point such as its function, type, location and relationships to different
subsystems. Labels in some buildings are simply terse alphanumeric
representations, while in other buildings they are long-form and human
readable. Typically, these labels are attached to various user interfaces
of the specific BMS/SCADA systems, so that engineers and operators
can check status and plot trends.

Since BMS metadata information is neither standardized nor de-
signed to be machine readable, “label” naming is heterogeneous and
inconsistent across commercial vendors, between the buildings set up
by the same vendor, and even within a building. For example, a Zone
Temperature Sensor may be referred to as a ZNT, Zone Temperature,
or even by an opaque numerical identifier. Even with programmatic
access to labels, data, and other descriptive information, scaling ana-
lytics or intelligent control across commercial buildings remains
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Fig. 1. A simple example building that highlights the components to be modeled in a
building schema.

challenging. This is likely to be the case as long as the basic steps in
interpreting the metadata involve labor intensive efforts by trained
professionals with deep knowledge of building operations and specifics
of each building.

Brick directly addresses this problem of building-specific labeling by
compiling a normalized list of domain terms that we refer to as our
vocabulary and devising canonical relationships that capture de-
pendencies and connections in and between building subsystems. Brick
describes a building in a machine readable format to enable program-
matic exploration of different facets of a building. Hence, building
managers can represent diverse set of BMS information using Brick, and
applications developed based on the Brick schema can be directly de-
ployed on those buildings.

2.3. An example model building

We start with a hypothetical model building to understand the re-
quirements of a uniform building data representation, outlining the
current state of the art. Fig. 1 shows the major components of two
building subsystems that are commonly found in a modern BMS: HVAC
system and lighting system. In the HVAC system, an Air Handler Unit
(AHU) supplies conditioned air to a Variable Air Volume Box (VAV),
which modulates the air provided to an HVAC Zone consisting of two
rooms. The HVAC Zone is a portion of the building that maintains a
uniform temperature and uses a thermostat with a temperature and CO,
sensor for feedback. The luminaire driver in the building only controls
the luminaire in the Lighting Zone of Room 101. The lighting system for
Room 102 is omitted for readability. Lighting Zones may or may not be
overlapped with HVAC Zones as they are defined by different sub-
systems.

At the very minimum, a schema should be able to model the com-
ponents illustrated in Fig. 1 as well as their relevant sensors (e.g.
temperature sensor) and their related control parameters. Data points
and subsystems (such as structures, HVAC, lighting, electrical, and
water systems) have complex interrelationships. For example, the AHU
in an HVAC system can consist of equipment such as fans, cooling coils,
humidifiers, valves and dampers. Each component could have further
types; for example, fans could be of type supply fan, return fan or ex-
haust fan, and each fan could have its associated sensors measuring
speed, air flow and power consumption.



B. Balgji et al.

2.4. Current state of the art

2.4.1. Project Haystack

Project Haystack [18] aims to address heterogeneity in buildings
using tags to label different entities, and is the current de facto standard.
Using Haystack, the temperature sensor in Fig. 1 is associated with the
tags: [zone, temp, sensor]. Tags provide a flexible and scalable
framework for annotating metadata to building data points. Haystack
defines a vocabulary of tags describing building equipment, weather,
units and data types. However, the current set of tags lacks or does not
fully describe key aspects of buildings such as spatial elements, lighting
equipment and electrical subsystems [22].

While deficiency of tags can be addressed by future updates, a
subsequent challenge is that use of tags can be ambiguous and inhibit
application portability. For example, a user may annotate a tempera-
ture sensor as [zone, temp] and omit sensor. A simple query
searching for list of all sensors will not work with this annotation. We
cannot enforce the correct grouping of tags to annotate the entities, and
hence, users will invariably create multiple variations for the same
entity. Therefore, Haystack earns the flexibility of use at the expense of
ambiguity in tagging scheme.

Furthermore, Haystack relationships lack the expressive power re-
quired of an effective building metadata schema. Haystack represents
relationships using a ref tag, which is enough to associate two pieces
of equipment, but cannot express the nature of that association. For
example, a VAV may have an ahuRef tag with a value of its parent
AHU and a equipRef tag with the value of a supply air flow sensor.
The equipRef tag does not capture whether the supply air flow sensor
occurs before or after the VAV in the HVAC system. Further, Haystack
does not model “reverse” tags, which makes it difficult to enumerate
sequences of equipment.

Project Haystack defines a REST API and a filtering query lan-
guage.' The query language provides basic mechanisms for identifying
timeseries points using the associated tags, but does not clearly define a
way of traversing ref tags for the purpose of exploring the structure of
a Haystack model. At the time of writing, there are no open source
server implementations available.

Haystack Tagging Ontology (HTO) [34] maps the Haystack tags to
an ontology, with each tag corresponding to an ontology class. Thus,
HTO is able to combine the flexibility of tags and the formal modeling
of ontologies to define essential BMS metadata and the relationships
between entities. However, HTO confines the ontology to the defined
tags, and does not model the building entities which are a collection of
tags (e.g. zone temperature sensor). HTO also does not provide a way to
compose complex subsystems in a building and relies on Haystack
tagging for mapping raw metadata to the ontology. Brick follows a si-
milar methodology to combine tags and semantic models, but over-
comes HTO’s limitations with a vocabulary based approach. Thus, Brick
provides a direct mapping to the data points and metadata exposed in a
BMS and an enriched ontology that can be queried with ontology tools.

2.4.2. Industrial foundation classes

IFC [16] is a standardized Building Information Model (BIM) that
developed from the need to have a common exchange model for 3D
architectural drawings needed for a building’s construction. IFC is good
at capturing space-related information such as floors, rooms and zones,
but also exhaustively describes the mechanical composition of building
subsystems: not just AHUs and VAVs, but also ducts, flanges and other
mechanical components not directly measurable or controllable.

IFC lacks much of the vocabulary for describing the necessary
subcomponents needed for building operation. Recent versions of the
IFC standard include references to generic sensor types
(IfcSensorTypeEnum) which can be associated with the spaces the

1 http://project-haystack.org/doc/Ops.
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sensor covers. However, the IFC standard does not include explicit
mechanisms for describing the functional role of sensors, such as
whether a temperature sensor measures supply, return or exhaust air.
There is also no common way of adding new vocabularies compliant to
existing ones. The IFX 2x2 schema also contains descriptors for
building controllers,” which describe at a high level the existence of
alarms, events and schedules.

2.4.3. Semantic web and ontologies

Semantic Web is a framework promoting common data formats,
exchange protocols and vocabularies with which machines can process
contents’ meanings without human interruptions on the Web. Its re-
levant standards include RDF, SPARQL, and Turtle [35]. It was ori-
ginally advocated for annotating the Web documents [36], and since
then it has seen adoption in multiple domains such as biology [37], IoT
[38], and energy management [39] to control the complexity of the
domain information.

In Semantic Web, ontologies define formal naming of entities and
their properties. An ontology is formally defined as “an explicit speci-
fication of a conceptualization [40]. Ontologies are often represented as
a directed, labeled graph. Different systems can refer to an ontology for
the set of definitions and relationships in a target domain, which helps
to reduce ambiguity.

A number of ontologies have been proposed for smart homes and
buildings. Most of these ontologies focus on realizing specific ap-
plications like controlling things [41], energy management [42], or
automated design and operation [43]. Ontology representations of
IFC [44] and Haystack [34] also exist. Daniele et al. [19] combined
these ontology modeling efforts in collaboration with industry to
create a simple but unified model called Smart Appliances RE-
Ference (SAREF). They identify 20 recurring concepts in homes and
buildings across these ontologies, and lay out the steps to convert
SAREF to a custom ontology. These common concepts, however, do
not effectively cover the diversity of devices and equipment in
buildings [22] because their goal was to capture generic sensor and
smart devices rather than building operations where domain-spe-
cific information is required. Brick adopts similar design principles
as SAREF, but our vocabulary and concepts are based on ground
truth BMS deployments and representative smart building appli-
cations and systems.

The BOnSAI [45] smart building ontology describes the function-
ality of sensors, actuators and appliances as well as how they interact
and effect their physical environment. However, they fail to capture the
interactions and relationships between the sensors and other building
assets. Hence, it lacks a system-level view of the building infrastructure
necessary for many applications [22]. Further, the vocabulary does not
describe the mechanical or functional compositions of critical building
subsystems like HVAC and lighting.

2.4.4. Ontologies and energy management

Energy management systems commonly consist of heterogeneous
systems where a standardized way of retrieving and processing complex
information is much desired. Tahir et al. present an ontology and actual
system supporting decision makers to emulate various electricity gen-
eration mixes scenarios [46]. Even though the ontology was not fully
evaluated, it shows the importance of having a good schema for ap-
plications and the suitability of ontologies as a meta model. Eco-in-
dustrial park is a community of manufacturing and service businesses
sharing the environment, such as energy, water, and materials, to im-
prove productivity in synergy. Various subsystems from different par-
ticipants need to cooperate in EIP, which in turn increases the com-
plexity in organizing the required information [39]. They extend a

2 http://www.buildingsmart-tech.org/ifc/IFC2x4/rc2/html/schema/
ifcbuildingcontrolsdomain/content.htm.
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Fig. 2. Comparison of different schemata for buildings [22]. The paper used 89 appli-
cations (apps) and three buildings to evaluate IFC, SAREF and Haystack. * We show
Brick’s result for eight representative apps from each of the eight categories of the 89 apps
and six buildings we described in this paper. Two of the buildings are the same as that
used by Bhattacharya et al.

couple of existing ontologies for processes and industrial symbiosis with
domain vocabularies and necessary relationships for their energy ap-
plications. However, none of the existing work in energy management
has shown the complete evaluation on the real systems and the ex-
tensibility as we present in this paper.

2.4.5. Analysis of existing schemata

Bhattacharya et al. [22] performed a comparison of IFC, SAREF, and
Project Haystack. The paper uses 89 building applications among eight
categories published in the literature as a baseline to compare different
schemata and shows that relationships between different pieces of in-
formation are essential to enable interoperability and portability of
building applications over three buildings. The paper compares the
capabilities of Haystack [18], IFC [16] and SAREF [19] using three
metrics to measure the effectiveness of a schema: (i) the ability to
completely map BMS metadata from three existing buildings to the
schema, (ii) ability of the schema to capture the relationships required
by applications, and (iii) the flexibility of the schema to deal with un-
certainty as well as their extensibility to new concepts. Fig. 2 presents
the comparison across Haystack, IFC, SAREF and Brick for metrics (i)
and (ii). We evaluated Brick based on eight representative applications
and two of the three buildings used by Bhattacharya et al. Among the
three existing schemata, Haystack shows the best vocabulary coverage
as it is a tag-based model where tags can be arbitrarily combined. IFC is
the most complete in describing application relationships as its model
captures the building subsystems and the dependencies between them.
SAREF scored the lowest for both metrics because it models the
common concepts across different models and systems instead of
comprehensively modeling buildings. In comparison, Brick has com-
plete coverage of both vocabularies and application requirements.

Brick builds upon these works in several ways to achieve both ex-
tensibility and expressibility. We utilize the tagging concept of
Haystack and extend it with mechanisms to model relationships and
entities. We use the location concepts from IFC. We use a semantic
representation to utilize its flexibility and extensibility properties. The
semantics allows us to formalize, restrict, and verify the usage of tags,
entities, and relationships.

This paper is an extension of our BuildSys 2016 conference paper
[23], covering several significant additions. Specifically, in this manu-
script:

e We have updated the Brick schema based on lessons learned and
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feedback from the community. We have incorporated modeling of
resources such as air, water, gas in the schema. We have introduced
representation of control sequences of building subsystems in Brick.
These capture the dependencies such as how a sensor value is used
to adjust the speed of a fan or a position of a valve.

We present how Brick can be incorporated into a BMS. The Brick
model of a building serves to bind contextualized physical resources
with logical resources such as API endpoints, timeseries streams,
controllers and other processes. Specifically, we examine how Brick
has been integrated into two academic BMS: XBOS [24] and Buil-
dingDepot [25].

We describe a general methodology for creating Brick models from
the entities and relationships captured in BMS point names,
Haystack models and IFC models. We have developed software to
automatically convert Haystack and IFC building models to the
Brick schema. We demonstrate their operation on generating Brick
models for three buildings.

We describe our extensibility and collaboration model for Brick. We
follow an open source model and have created a framework for
discussions, feedback and iterative improvements to the Brick
schema. It is our hope to create a community of Brick users to help
Brick evolve to meet the needs of application developers, building
managers and occupants. We also show integrations with other ex-
isting ontologies to augment Brick’s functionality without losing the
integrity of each model.

3. Schema design
3.1. Design principles

Brick’s design focuses on data points, their metadata found in real
building deployments and requirements defined by end use applications
for operations and managements. Brick is separated into a core on-
tology defining the fundamental concepts and their relationships as
discussed below and a domain specific taxonomy expanding the
building specific concepts. This allows users to extend new concepts as
well as the taxonomy with the concepts. We obtain ground truth in-
formation from six diverse buildings across the US and Europe, which
have 17,700 data points and five different vendors in total (Table 4).
We pick eight representative application categories from the list of
smart building applications compiled by Bhattacharya et al. [22], and
formulate metadata queries for these applications to drive the basic
requirements of Brick as well as evaluate how well our building me-
tadata can be mapped to Brick. Section 7 contains our findings for the
six buildings. We use existing standards in ontology development such
as Turtle [47] for data formatting and SPARQL [48] for querying. Users
can exploit existing tools such as ontology visualization tools and
querying engines.

Brick is distinguished from the other building schemata as follows:

e Completeness: The current version of Brick covers the 98% of the

vocabularies found in six buildings in different countries. (Section 7)

Vocabulary Extensibility: The structure of Tags/TagSets allow

easy extensions of TagSets for newly discovered domains and de-

vices while allowing inferences of the unknown TagSets with Tags.

(Section 3.2)

Usability: Brick represents an entity as a whole instead of anno-

tating it. It promotes consistent usages by different actors.

Furthermore, its hierarchical TagSets structure allows user queries

more generally applicable across different systems. (Section 3.2 and

3.3)

e Expressiveness: Brick standardizes canonical and usable relation-
ships, which can be easily extended with further specifications.
SPARQL facilitates all the possible combinations of the relationships
required by queries of the eights application categories in the lit-
erature. (Section 3.4 and 6)
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e Schema Interoperability: Using RDF enables straightforward in- RC"‘“i””“hil’)

tegration of Brick with other ontologies targeting different domains
or aspects. (Section 11) . feeds,
isPartOf isPartOf

/N feeds, /N

3.2. T d tagsets . .
ags and tagse isLocationOf

We borrow the concept of tags from Project Haystack [18] (Section
2.4) to preserve the flexibility and ease of use of annotating metadata.
We enrich the tags with an underlying ontology that crystallizes the
concepts defined by the tags and provides a framework to create the
hierarchies, relationships and properties essential for describing
building metadata. With an ontology, we can analyze the metadata
using standard tools and place restrictions to prohibit arbitrary tag isPointOf
combinations or relationships. For example, we can restrict the units of
temperature sensors to Fahrenheit and Celsius or prevent sensor and
setpoint from occurring together in a tags combination for a data point.

An ontology also enables property inheritance in the hierarchy. A Fig. 3. Information concepts in Brick and their relationship to a data point.
subconcept of a concept preserves the original characteristics with more
specifications.

We introduce the concept of a tagset that groups together relevant
tags to represent an entity. With Haystack and related tagging ontolo-
gies [34], an entity such as Zone_Temperature_Sensor from Fig. 1 is
defined by its individual tags, so its properties and relationships with
other entities can only be specified at the tag level. A user should as-
sume that the other users would have exactly used zone, temperature,
and sensor for annotating the sensor to look for zone temperature
sensors. Thus, the way of annotating the same type of sensors in tagging
scheme may differ across different buildings. On the contrary, with
tagsets based on tags, we have a cohesive concept of a Zone_-
Temperature_Sensor that can be consistently used to represent ac-
tual instances of zone temperature sensor. We can further provide its
semantics as the temperature is maintained between the zone’s
Cooling_Setpoint and Heating_Setpoint. The concept of tagsets
works well with an ontology class hierarchy - a Zone_Tempera-
ture_Sensor is a subclass of a generic Temperature_Sensor, and
will automatically inherit all its properties. Further, we avoid use of
complex tags such as the chilledWWaterCool and hotWaterReheat
tags in Haystack. The vocabulary of Brick is defined by its list of tagsets.

We can expand these concepts in future versions to expand the
metadata covered by Brick (e.g. Network). Each concept has a class
hierarchy to concretely identify each entity in the building. For ex-
ample, the Equipment class has subclasses HVAC, Lighting and Power,
each of which have their own subclasses. Fig. 4 showcases a sample of
Brick’s class hierarchy.

It is common in a domain to use multiple terminologies for the same
entity. For example, in HVAC systems, Supply Air_Temperature
and Discharge Air Temperature are used interchangeably. We
identify these synonyms from our ground truth buildings, and mark the
corresponding tagsets as being equivalent classes in Brick. Note that the
class hierarchy does not strictly follow a tree structure, and we use
multiple inheritance when appropriate. For example, a desk lamp can
be a subclass of both the lighting system and office appliance classes.

3.4. Fundamental relationships

Relationships connect the different entities in the building and are
essential to providing adequate context for many applications. For in-
stance, to diagnose a VAV, a fault detection application running on our
example building (Fig. 1) needs to know the room to which the VAV
supplies air, the temperature sensor located in the room, other opera-
tional data points in the VAV, and the AHU that provides air to it.
However, Bhattacharya et al. establish that current industrial standards
lack the ability to sufficiently describe all the relationships required for
modern applications [22].

We construct essential relationships by pulling a representative
example from each of the eight common application dimensions iden-
tified by Bhattacharya et al. [22] as summarized in Table 2. The cate-
gories of quintessential relationships we extract from the applications
are:

3.3. Class hierarchies

We define several high level concepts that provide the scaffolding
for Brick’s class hierarchy. As the central emphasis of our design is on
representing points in the BMS, we introduce Point as a class, with
subclasses defining specific types of points: Sensor, Setpoint, Command,
Status, Alarm. Each point can have several relationships that relate the
data point to other classes such as its location or equipment it belongs
to. Bhattacharya et al. [22] recognize that building metadata has sev-
eral dimensions, which we carry forward into the design of Brick. We
define three dimensions as high level classes to which a Point can be
related to: Location, Equipment and Resource (Fig. 3). We define each

e Taxonomy: what class or classes of things define an entity
category as follows:

e Point: Points are physical or virtual entities that generate timeseries v Equipment v Location
data. Physical points include actual sensors and setpoints in a > @ 'Fire Safety System’ Building
building, whereas virtual points encompass synthetic data streams M HVAC Floor
that are the result of some process which may operate on other > @AHU 'H_VAC_ Zone'
timeseries data, e.g. average floor temperature sensor. > @Fan 'Lighting Zone'
e Equipment: Physical devices designed for specific tasks controlled > ?ump_ . > _Room
by points belonging to it. E.g., light, fan, AHU. M Termlnal L_’mt . v @Point
e Location: Areas in buildings with various granularities. E.g. room, Fan:Coll Unit > @Alarm
floor. VAV > Command
- . > Valve > Sensor
. Res9urce: Physical resource o.r materials that are controlled by 'Lighting System’ > Setpoint
equipment and measured by points. An AHU controls resources such > '"Water System' > Status

as water and air, to provide conditioned air to its terminal units.
Fig. 4. A subset of the Brick class hierarchy.
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e Location: which building, floor and room an entity is in, but also
where in the room it is

e Equipment Connections: what equipment an entity is connected
to, and how it is connected

e Equipment Composition: what equipment an entity is a part of, or
what equipment is a part of it

e Point Connections: what points affect the behavior of other points

e Monitoring: what measures the entity or what it measures

Portability and orthogonality are two primary concerns in designing
the set of relationships. When describing or reasoning about a building,
the set of possible relationships between any two entities should be
small enough and well-defined such that the correct relationship should
be obvious. This orthogonality reduces the risk of inconsistency across
buildings. Taken to its extreme, orthogonality informs a set of re-
lationships that are specific and non-redundant, which can lead to
overfitting the set of relationships for a particular building or sub-
system. To support the goal of designing a unified metadata schema
across many buildings, these relationships must also be sufficiently
generic to be portable to many buildings.

Resolving these two tensions leads to the set of relationships listed
in Table 1. The specific entities and relationships each application ca-
tegory requires are listed in Table 2. We provide relationships together
with their inverse relationships so that users can express them in any
direction they prefer. SPARQL queries can accommodate both direc-
tions to be compatible with any choices of inverse relationships. The
left side of Endpoints column defines the possible subjects and the right
side defines the possible objects that the relationship can have, which
can provide a guideline for users not to improperly use them. The
isPartOf relationship captures the compositions among the entities in
the building. For example, a room isPartOf a floor and a return fan
isPartOf an AHU. The feeds relationship captures the different flows
between entities such as equipment or locations in the building, such as
the flow of air from AHU to VAV, the flow of water from a tank to a tap,
or the flow of electricity from a circuit panel to an outlet. Each of these
relationships can have sub-properties. For instance, feeds can be ex-
tended to feedsAirTo, feedsWaterTo, etc. Fig. 5 shows the re-
lationships for a subset of the example building in Fig. 1.

Brick uses the possible subjects/objects defined in Endpoints
column of Table 1 as a guideline when users add relationships. Using
ontology property restrictions, we provide rules for certain properties to
have precise subjects and objects. For instance, the object of hasPoint
must be an instance of a class in the Point hierarchy. Likewise, the
subject of isLocationOf must be an instance of a class in the Lo-
cation hierarchy. These can be exploited by a user interface to guide
users while tagging raw metadata or while establishing relationships

Table 1

List of the Brick relationships and their definitions. All definitions follow the form A
{relationship) B, where relationship is the first one listed, not the inverse. All
Brick relationships are asymmetric, and transitive where marked. If a relationship — is
transitive, then if A - B and B — C, then A — C is a valid relation. Asymmetric simply
means that if A — B, then B — A is invalid.

Relationship Definition Endpoints
(Inverse)
isLocationOf A physically encapsulates B Loc./Point
(hasLocation) Loc./Equip.
controls A determines or affects the internal Point/Point
(isControlledBy) state of B
hasPart A has some component or part B Equip./Sensor
(isPartOf) (typically mechanical) Equip./Equip.
Loc./Loc.
hasPoint A is measured by or is otherwise Equip./Point
(isPointOf) represented by point B Loc./Point
Resource/Point
feeds A “flows” or is connected to B Equip./Location
(isFedBy) Equip./Equip.
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between entities. We define these restrictions as a set of guidelines for
Brick model developers to aid in keeping Brick usage consistent be-
tween building models.

3.5. Control sequences

A control sequence is the logic determining an equipment’s beha-
vior. Select variables of such logic are exposed as points in building
systems. Some points’ values are measurements of physical properties,
some are results of calculations and others are configuration parameters
used to control physical devices. The flow of these control signals is key
for understanding buildings operations. Users rely on this to interpret
values (e.g., is Air_Flow_Setpoint’s value correct given
Zone_Temperature_Sensor?) or to properly control equipment (e.g.,
what point should I change to achieve certain temperature in this
room?).

Representations of control logic vary wildly between buildings. In
many older buildings, control logic is embedded in physical controllers
distributed throughout a building. Some vendors will provide visuali-
zation tools to represent their proprietary control logic, and others use
proprietary programming languages. Some compelling representations
of control logic include Simulink Simscape and Modelica. Simulink
Simscape [49] provides multi-domains simulation of exact control logic
with mathematical models, but is designed for simulations rather than
for integrating with real physical systems. Modelica [50] is an object-
oriented language and execution environment for modular simulations
and has current development efforts focusing on building control and
simulation [51]. These software, however, are only used in simulation
and not designed for BMS operation. MLE + [52] and BCVTB [53] have
created co-simulation environments where control simulation logic can
be deployed in real buildings with BMS. They are designed for experi-
mental evaluation of control algorithms and are not meant for pro-
duction operation of buildings.

Brick does not currently attempt to model the control logic in
building systems; rather, it describes the dependencies between sensors,
actuators, commands, setpoints and related equipment and spaces. We
model the control dependencies using the controls relationship be-
tween points. When a point’s value is used for another point’s value
determination, we say that the former one controls the later one.
Fig. 6 is an example with a simplified version of VAV control. An AHU
provides temperature-controlled air to VAVs, which control their as-
sociated zones’ temperature by changing the amount of air flow. When
the zone’s temperature is lower than its corresponding setpoint, the
VAV increases the supply air flow controlled by its damper. To be more
specific, Cooling_Command increases proportionally to the difference
between Zone_Temperature_Sensor and Zone_Temperature_-
Setpoint. Cooling_Command determines Supply Air -
Flow Setpoint and the difference between Supply Air_-
Flow_Setpoint and Supply Air_Flow_Sensor determines the value
for Damper_Command. Damper_Command affects its damper’s state that
controls actual air flow. We model these dependencies with controls
such as Cool-
ing_Command” and “Zone_Temperature_Sensor controls Cool-
ing_Command”. We know from the two triples that if we want to
change Cooling_Command, we have to change Zone_Tempera-
ture_Setpoint. Zone_Temperature_Sensor is not considered as it
is a sensor that cannot be controlled arbitrarily.

While the exact mathematical relationships between control points
are not included, dependencies modeled as controls relations give us
enough insights for causal analysis and identify pieces of logic that an
application is interested in. To analyze Cooling_Command is working
properly in terms of control logics, we can easily find what points affect
it with controls relationships and compare the data from the three
data points to find an anomaly. We can also easily find the high-level
commands/setpoints to properly control the equipment, which is
Zone_Temperature_Setpoint in the example. If needed, the Brick

“Zone_Temperature_Setpoint controls
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Table 2

Applied Energy 226 (2018) 1273-1292

This table shows at a high level which entities and relationships are required by each of the eight representative applications.

Entities  Occupancy Energy Web Model Participatory ~ Fault Detection ~NILM [64] Demand
Predictive
Modeling [65] Apportionment [10] Displays [66] Control [7] Feedback [12] and Diagnosis Response [21]
[11]
Points Temp Sensor X X
CO,, Sensor X
Occ Sensor X X X
Lux Sensor X X
Power Meter X X X X X X
Airflow Sensor X
Equipment Generic X X
HVAC X X X X
Lighting X X X
Reheat Valve X X
VAV X X
AHU X X
Chilled Water X X
Hot Water X X
Locations Building X X
Floor X X X
Room X X X X X X
HVAC Zone X X X
Lighting Zone X X
Relationships Sensor isLocIn Loc. X X X X
Equip isLocIn Loc. X X X X
Loc. hasPart Loc. X X X
Loc. hasPoint Sensor X X X X X
Equip hasPoint Sensor X X X X X
Equip hasPart Sensor X X X X
Equip feeds Zone X X X
Equip feeds Room X X X
Equip feeds Equip X X X
Zone hasPart Room X X X
Legend: | Equipment et Pttt Jelationships easily composing different kinds of information in buildings such as
hierarchical location information (e.g., room-101 is a part of the first
P hasPoint floor) and interconnected equipment (e.g., a VAV is fed by an AHU).
Luminaire 1\/([);/:; ------- AHU All entities and relationships exist in some namespaces, indicated by
! " Id a namespace: prefix. This enables distinguishing and reusing entities
f c\c&ds ceas in different namespaces. Brick especially exploits well-defined standard
e \ Y vocabularies from RDF [56], RDFS [57] and OWL [58] to express
L1Zght1ng HZVAC . . feeds_ | VAV common relationships. For example, RDFS defines subClassOf re-
0,1\16 . olne R lationship to represent super-sub-concepts such as ”sensor
4 - - 3
S \I b e hasPloint hasPoint ! rdfs:subClassOf temperature sensor”. A user can define mul-
hasPart m\s\ art  hasPart i hasPart tiple namespaces to reduce complexity in allocating unique names to
’ g 1 e . . . .
) 4 V2 Y entities especially when she handles many buildings. If a user defines
Room-101 | | Room-101 Tef;fnesfg;ure Damper two namespaces as bldgl and bldg2, she can easily append name-

Fig. 5. Brick classes and relationships for a subset of the example building in Fig. 1.

model can be extended to incorporate more detailed control char-
acteristics such as exact math equations. For example, Ploennigs et al.
model linear time invariant dependencies for fault diagnosis [54].

4. RDF and SPARQL
4.1. Representing knowledge in RDF

Brick adheres to the RDF (Resource Description Framework) data
model [55], which represents knowledge as a graph expressed as tuples
of subject-predicate-object known as triples. All buildings in Brick are
represented as a collection of such triples. A triple states that some
subject entity has some relationship predicate to some other entity object,
which is node/directed-edge/node in the graph theory. RDF enables
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spaces to rm-101 to distinguish the rooms in two buildings with the
same name as bldgl:rm-101 and bldg2:rm-101.

The triples in Fig. 7 represents the connection of the VAV to the
temperature sensor using the hasPoint relationship from the example
building in Fig. 5. Line 5 declares an entity identified by the label
building:myVAvV, this creates the myVAV entity in the building
namespace. brick:VAV is a TagSet defined by the Brick to represent
any variable air-volume boxes. rdf : type declares building:myVAV
to be an instance of brick:VAV. Similarly, line 6 instantiates a Zo-
ne_Temperature_Sensor with the label, building:my-
TempSensor. Line 7 uses the Brick relationship brick:hasPoint to
declare that building:myVAV is functionally associated with the
given temperature sensor.

4.2. Querying knowledge with SPARQL

Applications query the Brick graph for entities and relationships
using SPARQL (SPARQL Protocol and RDF Query Language) [48].
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other

controls, relationships

Legend: Equipment Location Point ) ——— =======5
HVAC Zone <<= -feeds—7 VAV r---=------ hasPart™ = = == === Damper
A T :
! - asPoint~ "~ .
hasLocation __--" ¢ hdsI?()mt NIRRT has[iomt
we"" R ' S N v
Temperature ™\, “ Cooling Supply Air Flow Damper
Sensor Command Setpoint Command
y2s Qq
Temperature Supply Air Flow
Setpoint Sensor

Fig. 6. Control flow example of a simplified VAV. A VAV has points related to equipment control to adjust its feeding zone’s temperature. A point’s value is often determined by other

points’ values. Such dependencies are modeled as controls.

PREFIX rdf:
PREFIX brick:
PREFIX building:

building:myVAV rdf:type brick:VAV

B N T

building:myTempSensor rdf:type brick:Zone Temperature Sensor
building:myVAV brick:hasPoint building:myTempSensor

Fig. 7. RDF triples instantiating a VAV and a Temperature Sensor and declaring that the VAV measures temperature via that sensor.

SPARQL queries specify constraints and patterns of triples, and traverse
an underlying RDF graph to return those that match. For Brick appli-
cations, this underlying graph consists of all the entities and relation-
ships in buildings.

Fig. 8, a query for retrieving all rooms which are connected to a
given AHU, contains a representative example of each of these features.
Lines 1-3 declare the prefixes for the various namespaces to shorten the
references to entities; for brevity, we omit these from all later queries in
this paper. Line 4 contains the SELECT clause, which states that the
variables ?ahu and ?room should be returned (the ? prefix indicates a
variable). The WHERE clause determines the types and constraints on
these variables. Line 6 states that 2zone is any entity in the graph that
is an instance of the class brick:HVAC_Zone. Likewise, line 7 declares
?room to be an instance of a brick:Room.

Brick provides both generic (such as AHU) and specific classes of
equipment (such as a RoofTop-Unit AHU). A building represented in
Brick can specify the specific subclasses, or if that information is not
available, instantiate a generic class. Line 8 is a common construct in
Brick queries which accounts for this type of uncertainty in how Brick
represents buildings. This sub-query returns all entities ?ahu that are
either an instance of a subclass of brick:AHU or an instance of
brick:AHU itself. An application that does not require specific features
of such subclasses may want to query for the generic class rather than

exhaustively specify every possible subclass.

After declaring the types of the entities involved, the query restricts
the set of relationships between the entities on lines 9 and 10 to de-
termine which pairs of entities are connected. Line 9 finds all HVAC
zones downstream of a particular AHU by following a chain of
brick: feeds relationships (the + indicates that 1 or more edges can
be traversed as long as the edges are of type brick:feeds). Line 10
links the identified HVAC zones with the rooms they contain. The
correct relationships to use can be determined from the Brick re-
lationship list (Table 1).

This example query illustrates an important quality of Brick queries:
establishing a link between two entities (even across different subsystems
such as HVAC and spatial) does not require explicit knowledge of all in-
termediary entities. Rather, the query denotes the relevant entities and
relationships: the query in Fig. 8 is indifferent to whatever building-spe-
cific equipment and details lie between an Air Handler Unit and the end
zones. This is possible because the relationships between those entities all
use Brick’s brick: feeds relationship. Furthermore, the query is concise
enough to return the answer only with a few expressions.

5. Brick development process

Brick development was a collaborative effort from sixteen

| PREFIX rdf:

2 PREFIX rdfs:

3 PREFIX brick:

4 SELECT 2ahu ?room

5 WHERE {

6 ?zone rdf:type brick:HVAC_Zone

7 ?room rdf:type brick:Room

8 ?ahu rdf:type/rdfs:subClassOf+ brick:AHU
9 ?ahu brick:feeds+ ?zone

10 ?zone brick:hasPart ?room

—

Fig. 8. A simple SPARQL query for retrieving all rooms connected to a given Air Handling Unit (AHU).
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Table 3

Number of matching triples in each building for the SPARQL queries consisting the eight
applications. A non-zero number indicates that the application successfully ran on the
building. Buildings with ‘~’ did not have any relevant points exposed in the BMS.

Building
Application EBU3B GTH GHC IBM  Rice Soda
Occupancy [65] 261 245 366 821 265 232
Energy Apportionment [10] - 302 - 397 4 -
Web Displays [66] 699 81 65 835 106 605
MPC [7] 482 69 428 324 110 482
Participatory Feedback [12] - 253 - 386 - -
FDD [11] 229 29 229 728 - 136
NILM [64] 6 82 - 1348 - -
Demand Response [21] 2300 24 2490 608 4 152

researchers across seven institutions across the U.S. and Europe. From
our experience on working with building systems, we identified that a
common expressive schema was an essential step towards deployment
of energy efficiency applications in buildings on a large scale. Together
we contributed BMS data from six buildings to bootstrap the schema
development. Initially, we compiled the vocabulary of terms from in-
formation in two buildings. We gradually expanded the vocabulary by
adding information from two more buildings. Throughout this process,
our focus was to capture information for building operations, and we
excluded detailed information covered in building models for design,
construction (e.g. IFC [16]) and energy modeling (e.g. gbXML [17],
EnergyPlus [59]).

We concluded that a semantic model would best capture the com-
plexity of building vocabulary we gathered as exemplified by models in
other fields such as social networks [60], web search [61] and biology
[62]. Hence, we organized the terms into a class hierarchy and iden-
tified relationships that would be essential but sufficient to capture the
dependencies that existed between building equipment, locations and
data points. We decided to use tags to support keyword search and ease
of compatibility with tagging models such as Haystack [18]. We chose
eight canonical energy efficiency applications from the list of applica-
tions compiled by Bhattacharya et al. [22] in their literature review. We
identified the information that each of these applications will require
from a building model. Given the class hierarchy and relationships in
Brick, we formulated the application requirements into SPARQL
queries. The SPARQL queries clearly laid out the expected relationships
between different equipment and points, and acted as the specification
for the semantic graph modeling of our testbed buildings to the Brick
schema.

As our initial vocabulary was based on BMS information from four
buildings, there was a risk that the vocabulary was not general enough
to capture information found in other buildings which differ in usage or
BMS vendor. To evaluate the effect of such “over-fitting” of Brick’s
tagsets to the set of known BMS points, we examined the percentage of
BMS points covered by Brick’s tagsets for the last two buildings - Rice
Hall and Soda Hall - both before and after we incorporated their spe-
cialized points into Brick. Using an unaltered Brick, we matched 93.5%
and 93.1% of Rice and Soda Hall’s BMS points respectively, giving us

Table 4
Case study buildings information.

Applied Energy 226 (2018) 1273-1292

confidence that Brick vocabulary does indeed capture the diversity of
data points available across many buildings. After incorporating the
BMS-specific points, they scored 98.5% and 98.7% respectively, using
Brick’s class hierarchy to avoid compromising generalizability. Table 4
contains a summary of the configuration of the six buildings, and how
well Brick covers their BMS points. Examining Table 4, we can see that
Brick matches the majority of points in all six buildings.

6. Applications

Applications interact with buildings through either reading or
writing to the necessary data points’ either historical or the most cur-
rent data. However, as the timeseries data are in different structures
compared to the metadata, the interactions are often separated into the
following two steps. First, an application finds the names or the iden-
tifiers of the data points of interest with their metadata. Then, it re-
trieves or changes the data points’ timeseries data in a BMS or a data
historian. The application will run a fault detection algorithm or change
a temperature setpoint with the retrieved data. We show how Brick and
SPARQL together standardize the first step, of which typical systems
lack. Brick excludes modeling the second interaction with BMS for
timeseries data retrieval because each system has a unique interface.
The two-steps interaction still could be further standardized through
federating metadata query and data query [63]. The federated query is
out of scope in this paper, but could be implemented upon Brick.

We consider eight applications — one from each of the application
categories compiled by Bhattacharya et al. [22]. Research has shown
that each of these applications can have a significant impact on im-
proving building energy efficiency [64,65,10,66,7,12,11,21]. There
have been hundreds of papers published that discuss how to design
each of these applications so as to maximize their energy savings and
we have seen several industry startups that have started to deploy them
in real buildings [67-71]. If Brick successfully models different build-
ings in a uniform manner and enables portability of these applications,
it can have a large impact on the building energy efficiency efforts.

6.1. Application coverage

We implemented these applications as a set of SPARQL queries
identifying the relationships in Table 2. Brick allows applications to
write portable queries that identify relevant resources in a building-ag-
nostic manner. An application can then adapt its behavior to the set of
returned resources, likely using some API to interact with the required
points. For this reason, we implement each of the applications as a set of
SPARQL queries that return the set of relevant entities and relation-
ships. Table 3 contains the results of running these queries over the six
buildings for each of the applications. Applications such as Occupancy,
Web Display, Model-Predictive Control (MPC), and Demand Response
run on most buildings as they are mostly related to HVAC systems,
which are common in buildings. Such applications require VAVs, AHUs,
HVAC zones, relevant sensors, and their relationships to each other. The
Participatory Feedback application is designed for lighting controls. It
shows relatively low coverage of buildings as many of the BMSes in our
buildings do not expose points related to lighting systems. However, the

Building Name Location Year Size (ft%) # Points % Tagsets # Relationships
Mapped Mapped
Gates Hillman Center (GHC) Carnegie Mellon Univ., Pittsburgh, PA 2009 217,000 8292 99% 35,693
Rice Hall Univ. of Virginia, Charlottesville, VA 2011 100,000 1300 98.5% 2158
Engineering Building Unit 3B (EBU3B) UC San Diego, San Diego, CA 2004 150,000 4594 96% 8383
Green Tech House (GTH) Vejle, Denmark 2014 38,000 956 98.8% 19,086
IBM Research Living Lab Dublin, Ireland 2011 15,000 2154 99% 14,074
Soda Hall UC Berkeley, Berkeley, CA 1994 110,565 1586 98.7% 1939
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1 SELECT
2 WHERE {
3

?airflow_sensor ?room ?vav

brick:Supply Air Flow_Sensor
?vav rdf:type brick:VAV
?room rdf:type brick:Room .
?zone rdf:type brick:HVAC_Zone
?vav brick:feeds+
?room brick:isPartOf ?zone

?zone

?airflow_sensor brick:isPointOf ?vav

?airflow_sensor rdf:type/rdfs:subClassOf~

Fig. 9. Genie query for airflow sensors and rooms for VAVs. The query returns all relevant triples for Genie to bootstrap itself to a new building.

relationships used in the application is generic for other types of sys-
tems too. The NILM application needs power meters to dissect energy
usage into multiple subsystems, and power meters may not be in-
tegrated into the BMS as in the half of our testbed buildings.

We instantiate models from the target buildings’ BMSes, so the
coverages depend on how many data points the BMSes expose is the
primary limiting factor for whether each application runs on a building.
In addition, applications have to account for the diversity of points
across buildings: Brick defines synonym tagsets where possible, but
there will always be a degree of disambiguation specific to applications.

The primary challenge in developing portable queries was ac-
counting for the variance in relationships across buildings. For example,
a zone temperature sensor may have either an i sPointOf relationship
with an HVAC zone or a VAV. These inconsistencies arise from differ-
ences in building construction and the representation of the points in
the BMS. It is possible to account for these differences in SPARQL to
construct truly portable queries with using UNION operations that
allow the temperature sensor be associated with either a zone or a VAV.

6.2. Example application: Genie

We show an example application from the perspective of Brick. The
Genie [66] application incorporates monitoring and modeling of HVAC
zone behavior and power usage with occupant feedback to provide a
platform for occupants to directly contribute to the efficacy and effi-
ciency of a building’s HVAC system. Genie requires the following re-
lationships:

o the mapping of VAVs to HVAC zones and rooms

o the heating and cooling state of all VAVs in the building

o the mapping of VAV airflow sensors to rooms

e all available power meters for heating or cooling equipment

Immediately, the requirements of this application outstrip the fea-
tures provided by other metadata solutions. Genie needs to relate en-
tities across subsystems typically isolated or ignored in modern BMS:
the spatial construction of the building, the functional construction of
the HVAC system, and the positioning of power meters in that infra-
structure. Brick simplifies this cross-domain integration and makes it
possible to retrieve all relevant information in a few simple queries.

To identify the airflow sensors and rooms served for each VAV, the
application uses the query in Fig. 9. Lines 3-4, 5, 6, 7 find all the
Supply_ Air_Flow_Sensors, VAVS, Rooms and HVAC_Zones in the
building respectively. Line 8 identifies the VAVs that feed the respective
HVAC_Zones and line 9 identifies the Rooms that are part of the cor-
responding HVAC_Zones. Line 10 finds the SupplyAir -
Flow_Sensors that are part of the corresponding VAVs. The application
uses Brick’s synonyms to capture both Discharge Air_Flow_Sensors
as well as Supply Air_Flow_Sensors. The “Web Displays” row of
Table 3 contains the results of running Genie over the six buildings.

1283

7. Case studies

We showcase the effectiveness of our schema by converting six
buildings with a wide range of BMS, metadata formats, and building
infrastructure into Brick. We discuss the challenges faced in converting
the buildings into Brick as well as to provide guidance for using Brick.
We also discuss how we can map labels of BMS points to Brick in
Section 8.1 at scale.

7.1. Gates Hillman Center at CMU

The Gates and Hillman Center (GHC) at Carnegie Mellon University
is a relatively new building, completed in 2009, with 217,000 square
feet of floor space, 9 floors, and 350+ rooms of various types (offices,
conference rooms, labs), and contains over 8000 BMS data points for
HVAC. CMU contracts with Automated Logic® for building manage-
ment.

The GHC includes 11 AHUs of different sizes serving multiple zones:
three small AHUs serve a giant auditorium, a big laboratory and three
individual rooms respectively. Eight large AHUs supply air to more than
300 VAVs. GHC’s HVAC system also contains computer room air con-
ditioning (CRAC) systems which are equipped with additional cooling
capacity to maintain the low temperature in a computer room and fan
coil units systems to provide cooling and ventilation functions. Brick
matched 99% of GHC’s BMS points, with the remaining points being too
uncommon to be required by most applications (such as a Return Air
Grains Sensor which measures the mass of water in air).

The major challenge in GHC was determining the relationships be-
tween pieces of equipment not encoded in the BMS labels. While the
information is available through an Automated Logic GUI representa-
tion of the building, there was no machine readable encoding of which
VAVs connected to which AHUs. This required examining the building
plans directly to incorporate more than 400 relationships Brick re-
presentation, instead of being reliant upon manually examining a GUI
to determine relationships between equipment, is more amenable for
applications in both human and machine readable formats.

7.2. Rice Hall at UVA

Rice Hall hosts the Computer Science Department at the University
of Virginia. The building consists of more than 120 rooms including
faculty offices, teaching and research labs, study areas and conference
rooms distributed over 6 floors with more than 100,000 square feet of
floor space. The building contracts with Trane® for building manage-
ment.

Rice Hall contains four AHUs associated with more than 30 Fan Coil
Units (FCU) and 120 VAVs serving the entire building. Besides the
conventional HVAC components, the building features several different

3 Automated Logic, http://www.automatedlogic.com/.
4 Trane, https://www.trane.com/.
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new air cooling units, including low temperature chilled beams and ice
tank-based chilling towers, an enthalpy wheel heat recovery system,
and a thermal storage system. The building also contains a smart
lighting system including motorized shades, abundant daylight sensors
and motion sensors. Rice Hall’s BMS points are easily interpretable for
conversion to Brick despite it containing some uncommon equipment
such as a heat recovery and thermal storage systems as part of the
building design as an energy-efficient “living laboratory”. However, the
relationships defined by Brick sufficiently captured their relationships
to the other parts of the system. They also have points specific to Rice
Hall such as ice tank entering water temperature sensor.
Brick’s structure allows the clean integration of such new tagsets into
the hierarchy without disrupting the representation of existing build-
ings.

7.3. Engineering Building Unit 3B at UCSD

The Engineering Building Unit 3B (EBU3B) at University of
California, San Diego hosts the Department of Computer Science &
Engineering and contains offices, conference rooms, research labora-
tories, an auditorium and a computer room. The building was con-
structed in 2004 and has 150,000 square feet of floor space with over
450 rooms. The BMS of EBU3B is provided by Johnson Controls,” and
contains more than 4500 data points, most of which related to the
HVAC system and power metering infrastructure.

The HVAC system consists of a single AHU that supplies conditioned
air to 200+ VAV units and some FCUs. There are exhaust fans for all
kitchens and restrooms and a CRAC system serving the computer room.
The HVAC system also has Variable Frequency Drives (VFD), valves,
heat exchangers and cooling coils to facilitate operation of AHU and
CRAC. Brick’s schema provides the necessary tagsets and relationships
for all of these components. The university central power plant provides
the hot and cold water for domestic medium temperature water system
and controlling air temperature in the HVAC. The corresponding sen-
sors that measure the hot and cold water use such as flow rate and
temperature were modeled in Brick, but the central plant was left out as
it was not part of the building.

An issue in mapping EBU3B to Brick is that the AHU discharge air is
divided into two parts for two wings of the building. Brick currently
does not model how the discharge air in the AHU is divided into two
wings but describe the connections to other equipment such as VAVs.
Additionally, EBU3B’s BMS contains data points related to Demand
Response (DR) events such as load shedding for hot water, which ex-
poses an interesting conflation of the representation and operation of
the building, while Brick does not model DR events as points. Because
BMSes have been typically written as monolithic applications over
vendor-specific interfaces, they must incorporate external signals such
as DR into the set of BMS points directly. On the other hand, Brick
decouples the resources and infrastructure of a building from the
building operation so that any application can operate on top of Brick
representation.

7.4. Soda Hall at UC Berkeley

Soda Hall, constructed in 1994, houses the Computer Science
Department at UC Berkeley. It mostly consists of closed small to
medium sized offices, where either faculty or groups of graduate stu-
dents sit. The BMS system, provided by the now-defunct Barrington
Systems, exposes only the data points in the HVAC system.

The HVAC system of the building runs on pneumatic controls, and
comprises 232 thermal zones. Each zone has a VAV and especially VAVs
for the zones on the periphery of the building have reheat mechanism.
For a VAV with reheat, the same control setpoint indicates both the

3 Johnson Controls, http://www.johnsoncontrols.com/.
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amount of reheat and the amount of air flowing into a zone. While such
combination is building-specific, Brick can express the fact that the
same sensor controls both the reheat and air flow by labeling the point
as a subclass of both reheat command and air flow setpoint tag-
sets. The logic of the setpoint also can be described with control re-
lationships in Brick for dependencies to other setpoints related to actual
reheat and air flow rate.

Unique to the other buildings presented here, the operational set of
Soda Hall’s HVAC components is not static. Soda Hall contains a re-
dundant configuration of chillers, condensers and cooling towers. At
any point of time, one of these systems is operational while the others
are kept as standby. An isolation valve setpoint indicates which of the
redundant subsystems is currently operating. Brick completely ex-
pressed the redundant subsystem arrangement, but the equipment
contained several unique points such as on timer for the chiller sub-
system that had to be added to Brick’s tagsets.

7.5. Green Tech House

The Green Tech House (GTH) was constructed in 2014 as a 38,000
square feet office building in Vejle, Denmark. It contains 50 rooms
spanning three stories and functions as office spaces, a cafeteria,
meeting rooms and bathrooms. GTH is controlled by the Niagara BMS,°
but to protect basic building functionality only a subset of the BMS
points are exposed via oBIX. As the oBIX points do not include AHU nor
VAV points, the Brick representation was constructed from a combi-
nation of BMS points, BMS screen shots and technical documents.

Compared to the rest of the case study buildings, the thermal con-
ditioning of GTH is reversed: Air is heated centrally in a single AHU and
distributed to VAVs with cooling capabilities. The AHU uses a rotary
heat exchanger to recovers heat from the return air. The pressure of the
AHU return and supply air for the north and south side of the building is
measured separately. Additionally, most rooms have radial heating on
either walls or in the floor. These are supplied by two independent hot
water loops — one for wall-mounted heaters and one for floor heaters —
heated by district heating.

The two main challenges were to (i) find, extract and merge in-
formation from diverse sources, and (ii) to map this to Brick. Although
equivalents are present neither the BMS nor the technical documenta-
tion of GTH refers to AHUs and VAVs. These equivalents are not named.

7.6. IBM Research Living Lab

The IBM Research building in Dublin was retrofitted as modern
15,000 m? office in 2011 from an old factory. The building serves as
living laboratory for IBM’s Cognitive Building research and is heavily
equipped with modern building automation technology to provide a
rich data source for research.

The building has been renovated multiple times and new systems
were installed by different companies. The heterogeneity of systems
became very high in the building. The building contains 2154 points
collected from 11 different systems. The building is served by 4 AHUs
with 115 points but also has old disconnected legacy systems in the
point list. Unlike the other buildings, it contains 250 smart meters and
150 desk temperature sensors. It has 1000 points for 161 FCUs as well
as 350 points on the lighting system including 150 PIR sensors and door
with people counters.

The configuration of the FCUs connected to different AHU, boilers
and chillers are unique for this building while terminal units such as
VAVs and FCUs are connected to a single central unit such as an AHU in
the other buildings. It shows importance of the relationship modeling
and the capability of Brick.

© Tridium, https://www.tridium.com/.
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8. Converting BMS points to Brick

Existing building metadata and BMS points need to be converted to
the Brick schema for use by applications. The ease with which this
conversion can be performed will have a significant impact on its
adoption. Some buildings describe the metadata using vendor specific
nomenclature while others use schemata such as Haystack and IFC.
Though existing schemata do not capture all of the entities and re-
lationships that Brick can express, it is possible to automate the con-
version of a subset of each schema. We describe a general approach for
converting building metadata to Brick, present initial conversion tech-
niques for the popular Haystack and IFC building schemata, and de-
monstrate these techniques on three real buildings.” Finally, we de-
scribe methods to convert vendor specific BMS metadata to Brick.

The general approach is to parse the given building metadata into
sets of entities that have obvious relationships between them and then
add these entities and relationships to a Brick model. The success of a
conversion depends on what information is captured in a schema and
how structured that information is. For unstructured metadata, the
conversion implementation is often site-specific. For structured meta-
data, the conversion implementation is more portable.

8.1. BMS point conversion

Metadata in traditional BMSes is commonly represented as un-
structured or semi-structured strings identifying points of measurement
or actuation. Converting BMS metadata to Brick requires extracting the
semantic information, i.e. entities and relationships, from these labels.
Because point names are inconsistently named across and within
buildings, this conversion requires tremendous manual effort, domain
expertise and in-depth knowledge of the target building.

Fig. 10 shows an example of a BMS point and the equivalent Brick
representation. To convert the BMS point to Brick, we need to infer that
ZNT corresponds to Zone_Temperature_Sensor, RM-101 corre-
sponds to the room (and HVAC zone) where the sensor is located in a
building named BLD-A and VAV-101 is a VAV feeding conditioned air
to this HVAC zone. Domain experts need to provide this mapping to
automate this conversion of point name to entities. Once the entities are
extracted, we can infer the relationships between them using the fact
that there are only a limited number of possible relationships between
types of entities. For example, a zone temperature sensor and a VAV
probably have a isPointOf relationship between them. However,
BMS point names do not always contain all the information necessary to
fully populate a Brick model, such as which VAVs are downstream of a
particular AHU. This information could be obtained through interviews
with building managers. For the six case study buildings described in
Section 7, we generate Brick instances using Python scripts which parse
point names to generate Brick entities and infer the relationships be-
tween them.®

Several frameworks have been proposed to reduce the effort of
converting BMS metadata to standardized vocabularies. Because these
vocabularies are well-structured, they are simple to convert to Brick.
Most of the frameworks focus on identifying point types. Methodologies
include clustering BMS metadata with similarities to reduce the number
of inputs to learn a model inferring point types [72,73]. Gao et al. ex-
tract features from time series data to learn a model for point types
[74]. Pritoni et al. propose to learn the relationships between AHUs and
VAVs by observing reactions of devices to artificial perturbations [75],
which correspond to feeds relationship in Brick. Bhattacharya et al.
propose a framework to construct synthesis rules from examples pre-
sented to building managers and domain experts [76]. The synthesis
rules extract all possible relationships in BMS metadata which usually

7 These are different from the six buildings we present in our case studies (Section 7).
8 https://github.com/BuildSysUniformMetadata/Brick.
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Raw BMS Metadata
BLD-A.VAV-101.RM-101.ZNT

:

Brick Metadata

type brick:Building.

type brick:VAV.
rdf:type brick:HVAC Zone.
rdf:type

brick:Zone Temperature Sensor.
bf:hasLocation :BLD-A.
bf:feeds :RM-101.
bf:hasLocation :BLD-A
bf:isPointOf :VAV-101.
bf:hasLocation :RM-101.

:BLD-A
:VAV-101
:RM-101
:ZNT-101

o rdf:
Entity Types from rdf:

Domain Expertise

:VAV-101
:VAV-101
:RM-101

:ZNT-101
:ZNT-101

Implicit
Relationships

Fig. 10. An example of mapping raw metadata of a BMS point to Brick. The abbreviations
inside the raw metadata represent some entities in the BMS and the mapping can be given
by a domain expert or inferred by an automated inference algorithm. The relationships
between entities in the raw metadata are implicit but the number of possible relationships
are limited as shown above.

covers Equipment, Point, Location and relationships among them like
hasLocation and isPartOf.

While this family of techniques is effective for creating part of a
Brick model, the synthesis of a complete Brick model (including control
relationships, spatial information and the full specification of building
subsystems) has not yet been fully automated. The integration of many
sources of building metadata for the creation of a complete Brick model
is the subject of future work.

8.2. Haystack model conversion

We have developed a simple Haystack to Brick converter. It has two
components: a translator module maps Haystack entities to Brick tag-
sets, and a relationship module infers a possible set of Brick relation-
ships between those entities using contextual information and a set of
base assumptions.

Haystack entities, like Brick entities, refer to equipment, sensors,
setpoints and other physical objects and are described using a combi-
nation of Haystack tags and tag-value references to other entities. To
convert these entities to Brick, the translator module takes advantage of
the fact that Brick tagset names are based on Haystack tags. For each
Haystack entity, the translator finds the Brick tagset with the largest
intersection with the entity’s Haystack tags and adds a corresponding
Brick entity to the output Brick model. For example, a Haystack entity
with the tags air, exhaust, flow, his, lab, sensor and identifier
“OEA-F-3133-Lab” shares the most tags with the Brick tagset/class
Brick.Exhaust_Air_Flow_Sensor, so the translator would output
the following triple:

1 Bldg.OEA-F-3133-Lab rdf:type

Brick.Exhaust_Air_Flow_Sensor
This technique captures the majority of Haystack entities, and re-
quires only minor additions to account for rare or site-specific equip-

ment. These additions can be carried forward for future translations.

The relationship module uses the tag-value pairs each Haystack
entity contains to populate the set of relationships around the translated
Brick entity. Some of these tag-value pairs describe aspects of the entity
such as engineering units or square footage, which could be captured in
future Brick extensions. Other tag-value pairs use “-Ref” tags to relate
entities (e.g. equipRef, siteRef, elecMeterRef). These references
do not capture the full set of relationships required by Brick, but usually
imply a few obvious relationships. For example, the elecMeterRef
implies a Brick hasPoint relationship between an equipment entity
and an electric meter entity. The ubiquitous equipRef tag requires
more context. If the owner (the entity that has the tag) and the target
(the value of the equipRef tag) are both equipment, then we infer a
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area: "546 sg ft"
associatedRooms: "3165,
canopyHoodSignage: true
code: "VAV-1D"

dcv: 1.0

done: true

equip: true
equipParent: "AHU 04"
equipRef: "AHU 04"

id: "VAV 4_16 Rm 3167"
navName: "VAV 4_16 Rm 3167"
priorityTwo: true

siteRef: "Ghausi"

vav: true

3240"

Fig. 11. Haystack VAV entity, with spatial information encoded in the entity identifier string. Note that only boldface tags are standardized in Project Haystack. The original author of this

metadata needed to add the other tags.

1 Ghausi.AHU_04 rdf:type brick:Air Handling Unit
2 Ghausi.VAV_4_16 rdf:type brick:VAV

3 Ghausi.Room3167 rdf:type brick:Room

4 Ghausi.Room3165 rdf:type brick:Room

5 Ghausi.Room3240 rdf:type brick:Room .

6 Ghausi.HVAC_Zone_4_16 rdf:type brick:HVAC_Zone

7 Ghausi.HVAC_Zone_4_16 bf:hasPart Ghausi.Room3167

8 Ghausi.HVAC_Zone_4_16 bf:hasPart Ghausi.Room3165

9 Ghausi.HVAC_Zone_4_16 bf:hasPart Ghausi.Room3240 .

10 Ghausi.AHU_04 bf: feeds Ghausi.VAV_4_16 .

11 Ghausi.VAV_4_16 bf: feeds Ghausi.HVAC_Zone_4_16

Fig. 12. The Brick triples (entities and relationships) generated from the Haystack entity in Fig. 11. Boldface relationships and TagSets are standardized by Brick and a user only needs to
define the identifiers. The annotative information such as duplicated names and code is omitted from Fig. 11.

Brick feeds relationship between the entities. If the owner is a sensor
and the target is equipment, then we infer a Brick isPointOf re-
lationship. With these simple contextual assumptions, the Haystack
identifiers of the owner and target of a “-Ref” tag are enough to gen-
erate the requisite Brick triples. Furthermore, We use the same tech-
nique as BMS point conversion for the relationships that are implicit in
Haystack names and identifiers, which requires a more site-specific
implementation.

Fig. 11 contains the Haystack representation of a VAV entity in
Ghausi Hall on the UC Davis campus (described below). The non-
standard associatedRooms tag and the room number in the entity
identifier string (“VAV 4_16 Rm 3167”) describe the set of rooms in the
HVAC zone conditioned by the VAV. From this entity, we can in-
stantiate three rooms, an air handling unit, a VAV, an HVAC zone, and
the set of Brick relationships connecting all of them. The resulting tri-
ples are in Fig. 12.

We have implemented our Haystack-to-Brick converter script in
Python, totaling 350 lines of code.” We apply this technique to two
Haystack models from the UC Davis campus and were able to suc-
cessfully translate air handling units, VAVs, dampers, HVAC zones,
rooms, setpoints and electric meters as well as temperature, humidity
and occupancy sensors. Ghausi Hall is a 66,000 sq ft engineering
building with 2183 Haystack entities; the translated Brick model con-
tains 4135 triples. PES is a 90,000 sq ft office and lab building with
6475 Haystack entities; the translated Brick model contains 15,561
triples.

8.3. Converting IFC

The IFC building information model captures a very different set of

2 https://github.com/gtfierro/BrickConvert/tree/master/haystack.
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relationships than Brick. However, it is still possible to generate a
partial Brick model from an IFC representation of a building. IFC
models mostly consist of spatial information useful for construction
such as the size and position of walls, dampers and ducts, but also in-
cludes semantic groupings of these entities into floors, rooms and HVAC
zones. The IFC schema encodes information as “objects”, which corre-
spond to equipment, spaces and other infrastructure. Objects can also
refer to groups of objects.

We have implemented a simple converter that exports spatial in-
formation in IFC models to Brick. The converter first scans an IFC model
for all instances of IFCZONE objects, which can correspond to an HVAC
Zone, and IFCSPACE objects, which correspond to rooms. IFCRELA-
SSIGNSTOGROUP objects associate zones (using a “RelatingGroup” at-
tribute) with a list of rooms (using a “RelatedObjects” attribute).
IFCRELAGGREGATES objects associate rooms with floors (instances of
IFCBUILDINGSTOREY).

Our IFC-to-Brick converter, implemented in 100 lines'® of Python
(not including an open-source IFC file parser''), converts IFC re-
presentations of floor, room and zones to their Brick equivalents. The
converter currently makes the assumption that all zones are HVAC
zones because there is not enough contextual information in the IFC
model to determine the “kind” of zone without programmatically tra-
versing the components of the HVAC system as represented in the IFC
model. We have successfully tested the converter on an IFC model of a
7000 sq ft office building in downtown Berkeley. The textual IFC model
totals some 150,000 lines and the exported Brick model contains 159
triples. This informally illustrates the expressive differences between
IFC and Brick; the IFC model contains a very detailed description of the
construction physical space, but the translated Brick model only

19 https://github.com/gtfierro/BrickConvert/tree/master/ifc.
11 https://github.com/mvaerle/python-ifc.
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Fig. 13. Generic Building Operating System (BOS) Architecture, with the Brick building model stored in the Building Profile’s metadata database.

represents the high-level spatial information required by building ap-
plications.

9. Building operating system integration

We have designed Brick so that it describes the essential compo-
nents of buildings present in existing BMSes and supports applications
on top of the building system infrastructure. In this section, we outline
the role of Brick in building operating systems.

9.1. Building Operating System (BOS)

Traditional BMSes provide supervisory operation and maintenance
of different building systems. However, to support third party appli-
cations, we need to have other functionalities such as management of
metadata, data storage, search, authentication and access control. We
use the term Building Operating System (BOS) to describe such a system.
Fig. 13 shows the architecture for a generic BOS. We can think of a
traditional BMS as a single “monolithic” application engineered for a
specific building. It is possible to extend or augment a BMS’s func-
tionality, but this often requires intensive collaboration between a
building manager and a BMS engineer. In contrast, BOS seek to be much
more easily extensible. An BOS provides an application programming
interface (API) that enables users such as building managers, controls
engineers and even building occupants to integrate building compo-
nents and data into novel applications. An effective metadata solution
for buildings is crucial because it allows applications and users to easily
find the necessary components for building controllers, schedulers,
analytics and other software.

A BOS abstracts the different types of systems, equipment and
sensors in a building with a hardware presentation layer that provides a
common interface for interactions and abstracts away different com-
munication protocols such as BACnet, LonTalk or ZigBee. The infra-
structure components are represented in a canonical way using Brick
and stored in a database. A BOS provides storage infrastructure and
control system framework for applications to perform data analytics
and control operations. All the interactions with a BOS are authenti-
cated and access control permissions ensure that applications privileges
are kept in check while building managers have supervisory access. For
example, building managers would be allowed to update equipment
model and create new sensor data streams, while a fault detection ap-
plication can only read the data stream. Applications interact with a
BOS using APIs and building managers will have graphical interfaces
for overseeing building operations. A few examples of BOS include

Tridium’s NiagaraAX [77] and academic efforts such as XBOS and
BuildingDepot.

9.2. Role of brick in a BOS

The building Brick model describes all the infrastructure compo-
nents using the Brick schema. Hence, it acts as the common metadata
layer that applications and users use to interact with the building in-
frastructure. This Brick building model is stored in a metadata database
and a user can search the database for specific sensors, setpoints,
equipment, etc using SPARQL. Any changes to building infrastructure
can be updated by the building manager using the metadata database.
Each Brick entity is associated with a corresponding API endpoint to
retrieve historical data or send control commands. With this archi-
tecture, users can discover resources in a building, identify relation-
ships between building entities, and access spatial, mechanical and
control system context.

9.3. Case study: XBOS

The eXtensible Building Operating System (XBOS) is a distributed
BOS composed of microservices'> communicating over a secure mes-
sage bus. The BOSSWAVE [78] message bus provides topic-based
publish-subscribe functionality coupled with a fine-grained permission
model. The hardware presentation layer in XBOS communicates with
BMS points, equipment, devices, data sources and other external, net-
worked resources using drivers. Drivers expose functionality through
standardized interfaces accessed through publishing and subscribing on
structured topic names. An archival service stores all produced data in a
timeseries database.

The Building Profile stores Brick models for the buildings in an
XBOS deployment and serves SPARQL queries against them. The
Building Profile provides the necessary binding between physical en-
tities (building subsystems, sensors, setpoints and equipment) and lo-
gical entities (drivers, services, controllers and streams of timeseries
data). It also contains references to the timeseries data for Brick entities
such as sensors, setpoints, commands and other networked devices.
XBOS applications query the Brick model to find the equipment they
need to operate as well as for the necessary identifiers to either inter-
face with that device (by using API endpoints to communicate with

12 Martin Fowler, Microservices, https://martinfowler.com/articles/microservices.
html.
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XBOS drivers) or query historical state (by using timeseries identifiers
to communicate with the archiver). In XBOS, the Building Profile is
implemented using HodDB, a specialized RDF/SPARQL database for
Brick [79]. HodDB resolves SPARQL queries at interactive speeds
(< 100 ms) and integrates with the BOSSWAVE message bus. On top of
these base services, applications implement controllers, schedulers,
analytics and dashboards for the buildings in the deployment. Low-la-
tency Brick queries allow all components of XBOS to make use of
building metadata without significantly impacting performance; user
interfaces, controllers and alarms especially need fast queries.

Brick is an essential component of XBOS because it enables portable
applications that can discover not only physical building resources
through SPARQL queries, but also the related logical entities that pro-
vide BOS functionality.

9.4. Case study: BuildingDepot

BuildingDepot (BD) is a BOS designed for scalable and secure big
data management across multiple buildings with a protocol-agnostic
API for data storing and actuation [25]. It consists of two types of
services: (i) a Central Service (CS) to manage metadata and (ii) a Data
Service (DS) to manage timeseries data. The metadata of BD was ori-
ginally designed with tag-value pairs stored in MongoDB, a document-
oriented database. For example, a temperature sensor point can be as-
sociated with tag-value pairs such as unit: Fahrenheit and loca-
tion: Room-101. Each point in CS can have an associated timeseries
data stream stored in DS and they are linked with a unique identifier.
An application can find points matching requested tag-value pairs from
CS and then request corresponding data with the found identifiers to a
DS. Users are also associated with tag-value pairs for access control.
When a user tries to read data of some points from DS, her access
permission is evaluated by what tag-value pairs the user is associated
with. If a user is associated with 1ocation: Room-101, she can access
data points in that room.

We implement Brick’s functionality on top of tag-based scheme
that BD was originally designed for. The data models and their
examples are described in Fig. 14a. An entity’s metadata are com-
posed of its name and the tag-value pairs describing it. While tag-
value pairs can be arbitrary, we adopt Brick TagSets as tags and
entity names as values to emulate Brick’s graph structure. ha-
sLocation tag in Fig. 14b emulates a triple of ZNT-1 bric-
k:hasLocation RM-101 where RM-101 is a Room. We introduce
BrickTagSets to represent TagSets and they can have Brick re-
lationships with each other using the tag-value pairs. While any
relationship can be added to BrickTagSets, subClassOf and su-
perClassOf relations are fully expanded for query optimization as
it is common to exploit transitive queries such as finding an in-
stance of all subclasses of a temperature sensor. We flatten such
hierarchy and add all subclasses of an entity to the superClassOf
field.

In addition, we implement a subset of SPARQL on top of tag-value
querying capability supported by document-oriented databases. Each
triple in WHERE clause of SPARQL filters candidates satisfying the
triple which can be emulated by finding documents matching with
given tag-value patterns. Recursive querying in a triple with * operator
is executed with document match querying recursively. Note that we
exploit MongoDB’s document-oriented structure to minimize change to
the original BD architecture. Although its speed is lower than querying
a native RDF store, any tag-based system can adopt Brick with this
framework.

10. Extensibility model
The Brick schema currently incorporates points, equipment and

location entities that exist in modern BMS and are required for ca-
nonical applications. We envision new applications will emerge, and
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developers may want to model other aspects of a building such as its
network infrastructure or security system. We have a well defined
process to perform updates to Brick. We briefly outline the process
here.

We use the Brick GitHub repository'”® as the main tool for update
requests, discussions and development tracking. We will have Brick
maintainers who manage the repository. Maintainers will also manage a
development road map which would list all future milestones, i.e.,
anticipated changes to Brick. Community developers can take up the
implementation of any of these milestones and perform a git pull re-
quest to merge the changes with the Brick schema. Maintainers will
review the changes and perform the merge. Based on these merges, new
versions of Brick will be released. Building applications and systems can
still use the older version of the Brick and update to the newer version
as per their needs. Brick version follows the Semantic Versioning v2
system'*: backward compatible changes to Brick will be released as
minor versions and non-compatible changes will be released as major
versions.

Requested changes or updates are filed as issues on the GitHub issue
tracker. Mature proposals can be submitted as Requests For Comment
(RFGs), also using the issue tracker.'® The issue tracker will serve as the
primary forum for discussion of the submitted change, but RFCs will
also be announced on the mailing list.'® Community members are free
to discuss issues and suggest modifications. Based on the discussions,
the Brick maintainers may choose to accept or reject the RFC. Accepted
RFCs will be added to the Brick development roadmap and included in
a subsequent release.

Discussions in RFCs cover various aspects of schema development.
An RFC for lighting systems filled the gap of domain expertise among
the original Brick developers by providing exact hierarchy of necessary
TagSets and expedited discussions to select common vocabularies
across different domains (e.g., occupancy sensor in HVAC and
presence sensor in lighting systems) and to find common concepts
in the domains (e.g., interface for thermostat in HVAC and LED
touch panel in lighting systems. We will discuss lighting systems and
electrical power systems extended through RFCs in Section 10.1.

10.1. Ongoing extensions

Several external contributors have proposed extensions to lighting
systems and electrical systems in the Brick schema. The essential con-
cept in the lighting system is the lighting fixtures and its control
system.'” We introduce the TagSet Luminaire to represent lighting
fixtures and Luminaire Driver for the corresponding end point
controllers. A Lighting_Zone is the area in the building that is con-
trolled by a single Luminaire Driver. We introduced the tagset
interface to capture devices that are designed for human interaction.
These are common across domains: dimmer in lighting systems and
thermostat in HVAC. We reuse the feeds relationship to model the
relationship of luminaire feeding light to 1ighting zone. The basic
taxonomy is shown in Fig. 15a.

The proposed extensions to the electrical power system captures the
concepts in the power distribution network and related equipment.'®
Each equipment is either used for isolation — Bus, Transformer or
protection — Circuit_Breaker. Each of the categories has specia-
lized equipment, e.g., Panel_Board is a type of Bus. Such hierarchical
relationship is captured well with subclasses in Brick. We reuse feeds

13 https://github.com/BuildSysUniformMetadata/Brick.

14 http://semver.org/.

15 https://github.com/BuildSysUniformMetadata,/Brick/issues/25.

16 https://groups.google.com/forum/#!forum/brickschema.

17 Lighting System RFC: https://github.com/BuildSysUniformMetadata/Brick/issues/
20.

18 Electrical System RFC: https://github.com/BuildSysUniformMetadata/Brick/issues/
28.
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Entity = {

"Name": String,

"Tag-Value Pairs": List of (Tag String, Value String).

}
BrickTagSet = {

"Name": String,

"subClassOf": List of subclass Brick TagSets in String.
"superClassOf": List of superclass TagSets in String.

}

v Equipment
v Interface
: Dimmer
i Switch
v-- {0 Lighting_System
Y Luminaire
i Emergency_Luminaire
Luminaire_Control_Group
Luminaire_Driver
¥ Location
v Zone
Lighting_Zone
V- Point
v Sensor
: Tlluminance_Sensor

(a) Lighting system tagsets.

(a) Data Schema
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ZNT-1={
"Name": "ZNT",
"Tags": [("type", "brick:Zone Temperature Sensor"),
("bf:hasLocation", "RM-101")]
}

Zone_Temperature Sensor = {
"Name": "Zone Temperature Sensor",
"subClassOf": ["Temperature Sensor", "Sensor"],
"superClassOf": ["Average Zone Temperature Sensor"]

}
(b) Example entity and TagSet.

Fig. 14. Building Depot 3.0 Data Model.

v Equipment
v--{) Power_System
Alternator
hé Bus
i Circuit
Distrubition_Board
Panel_Board
| 2 Energy_Storage_System
: Generator
Isolator
hé Protection_Device
i Circuit_Breaker
Fuse
Rectifier
Transfomer

(b) Power system tagsets.

Fig. 15. Extended domains proposed and discussed through RFCs. The extended domains
share the same characters of hierarchical relationships among tagsets and common re-
lationships such as feeds already defined in Brick.

to model flow of electricity from transformer to circuit breaker,
circuit panel, isolator, and then to end equipment like a re-
frigerator. Power meters are modeled equipment that hasPoint such
as power, voltage, current. With the power meter class and
feeds relationship, a user can easily query what loads a power meter is

measuring.

subClassOf

""""" >
Relationship
Brick feeds, .
isFedBy
isPartOf isPartOf
feeds,

_

isLocationOf

Resources

\ 4

hasUnit

hasQuantityKind

11. Integration with other ontologies

There are various aspects of buildings that applications need to exploit
and a single model cannot describe everything. Even though integrating
different ontologies and standards for a system is a common practice, there
has been little discussion in how to systematically integrate different
models in buildings. In the RDF framework, it is easy to extend Brick to
accommodate other ontologies by connecting relevant concepts via either
predefined or custom relationships. Each ontology community can main-
tain and develop their own model without deteriorating the other models.
As an example, we illustrate the integration of Brick with three ontologies
covering different aspects in Fig. 16, showcasing Brick’s flexibility and
extensibility even for the scope outside Brick’s original design.

11.1. Unit of measurement (QUDT)

Units of measurement vary across systems, e.g., Celsius and
Fahrenheit for temperature measurements. They need to be explicitly
specified so that applications can interpret corresponding data un-
ambiguously without human input. QUDT is a representative ontology
for quantities, units, and data types [80]. We link the vocabularies
under QuantityKind and Unit it the QUDT ontology using the re-
lationships hasQuantityKind and hasUnit respectively as shown in

SEAS
connectedThrough
5en)

~ -
. . S - '
c ~ -

[Transformer][ Consumer ]— i Bus

A applicableUnit

QuantityKind

Fig. 16. Integration of Brick with other ontologies. Common concepts are linked through subClassOf relationships and auxiliary concepts are connected through new relationships.
This integration provides all the functionalities without violating any models.
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1 # query name: unit conversion

2 PREFIX unit:

3 PREFIX xsd:

4 PREFIX qudt:

5 PREFIX bf:

6 PREFIX building:

7 SELECT ?result

8 WHERE {

9 VALUES (?currVal ?targetUnit) { (70 unit:DEG_C) }

10 building:ZNT-101 bf:hasUnit ?srcUnit. # Assume

11 ?srcUnit qudt:conversionMultiplier ?srcFactor.

12 ?srcUnit qudt:conversionOffset ?srcOffset. # ?srcOffse

13 ?targetUnit qudt:conversionMultiplier ?targetFactor. # 72t = 0.5556
14 ?targetUnit qudt:conversionOffset ?targetOffset. # rtargetOffset = 255.372

15 BIND ((((xsd:float (?currVal) »* xsd:float (?srcFactor) + xsd:float (?srcOffset))

16 - xsd:float (?targetOffset))

/ xsd:float (?targetFactor)) AS ?result).#

071 1

=zd el il

(a)

# query name: unit validation
# Same
SELECT ?isApplicable

WHERE {

?target bf:hasQuantityKind ?gk
?target bf:hasUnit ?targetUnit

BIND

VALUES ?target {building:ZNT-101}

namespace prefixes in the above query.

?gk qudt:applicableUnit ?applicableUnit
(?applicableUnit = ?targetUnit AS ?isApplicable)

(b)

Fig. 17. Example usages of QUDT with Brick. (a) Automated unit conversion: This query converts a temperature value from the sensor in an unknown unit into Celsius. The base unit of
temperature units is Kelvin (retrieved from QUDT) and the parameters converting them into Kelvin can be automatically retrieved from QUDT and then used to produce a value in the
target unit. The value in the source unit is converted into the base unit, Kelvin, and into the target unit, Celsius, in turn. This query returns the right conversion of 70°F in Celsius, 21.11.
bldg:ZNT-101, the target value 70, and the target unit unit:DEG_C can be parameterized for more generic usage. In SPARQL, VALUES provides inline values to variables and BIND assign
values in certain rules to a variable. (b) Automated unit validation: This finds a QuantityKind and a Unit corresponding to the sensor ZNT-101, and then checks if the unit is found in the

QuantityKind’s applicable unit set. building:ZNT-101 can be parameterized.

Fig. 16. QuantityKind represents “any observable property that can
be measured and quantified numerically [80]” such as temperature and
energy. The vocabularies under QuantityKind can be automatically
associated with Brick Point TagSets that contain Tags of what they
measure. For example, temperature sensor contains temperature
as a Tag and we can infer that any instances of temperature sensor
should have temperature as a QuantityKind. Unit is “a particular
quantity value that has been chosen as a scale for measuring other
quantities the same kind [80]” such as Celsius and Joule. The voca-
bulary of units in the building domain can be extracted from BACnet
vocabularies or directly adopted from QUDT in the future. QUDT de-
fines extensive instances of both QuantityKind and Unit, and each
instance of QuantityKind is associated with a set of units through the
relationship, applicableUnit. Thus, we can systematically define
the semantic relationships between Brick points and units through
QUDT.

Given the explicit representation of units as an ontology, we can
automate various use cases handling units [81]. We present two of the
use cases in Fig. 17 for building applications. The first one (Fig. 17a) is
to convert a value in a unit into a target unit automatically. An appli-
cation does not need to know unit conversion rules for given values but
just needs to submit the query with a value for a target unit; this is
Celsius in the example. The second one (Fig. 17b) is to validate if the
given unit for a point is correct. The validation query checks if the
discovered unit is applicable to the corresponding quantity kind. Thus,
QUDT integration enables automated functionalities with unit compo-
sition, conversion and validation.

1290

11.2. Control Logic (CTRLont)

Even though Brick’s controls relationships can represent control
dependencies between Points, some applications may require full con-
trol logic such as PID controllers and state machines. CTRLont [82] is
an ontology modeling control logic that can fully describe control actors
and logic, and modularize the logic to ensure reusability and easy ex-
tension. We can easily integrate the CTRLont into Brick. The core
concept of CTRLont is the “sense-process-actuate” model of control
processes: ControlActor processes Inputs based on Applica-
tionLogic and produces Outputs that may actuate devices. Points in
Brick receive inputs based on controls relationships from other
points to produce their own output. This is essentially an abstraction of
ControlActor in CTRLont. By making the Brick Point a subclass of
CTRLont’s ControlActor, every controls relationship can be fur-
ther clarified using the Input-isConnectedTo-Output relationship and its
logic can be specified by ApplicationLogic modules. As Point
inherits the properties of ControlActor, the integration can inherit
functionalities proposed by CTRLont such as the automated rule-based
verification of control logic in BMS [82].

11.3. Electrical Power System (SEAS)

Smart Energy Aware Systems (SEAS) Knowledge Model [83] is an
ontology aligning energy systems to existing ontologies such as SOSA
(Sensor, Observation, Sample, and Actuator) ontology [84] and SAREF
(Smart Appliances REFerence) ontology [19] and has several subdomains
including electric power systems. Even though Brick has its own ontology
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for representing electrical power systems, we can increase the interoper-
ability and portability of Brick by defining associations to other ontologies.
In SEAS, Systems are connected with each other through Connections
like a transformer is connected to a power consumer through a bus. In
Brick’s design, both System and Connection are a type of Equipment
that can be monitored, controlled and functionally connected to each
other.

Some inconsistencies can arise when integrating two different
ontologies. For example, the SEAS ontology does not define a direction
when connecting two entities (connectedThrough), whereas Brick
does (feeds/isFedBy). A user may choose to keep both relationships
in the unified model, which is enabled by a well-defined mapping of
which concepts are common to the SEAS and Brick ontologies.

12. Conclusion

There are millions of buildings in the world and they constitute a
major portion of the human energy footprint. With the growing efforts
to mitigate climate change, numerous building energy efficiency solu-
tions have been invented, tested and deployed. To have meaningful
impact, these solutions must be deployed at a global scale; however, the
heterogeneity of building representation presents a major bottleneck in
fast and low cost deployment of energy efficiency measures.

We have designed the Brick schema as a strong candidate to solve
this open problem. Brick builds upon prior work and introduces a
number of novel concepts. Brick uses easy to understand Tags and
TagSets to specify sensors and subsystems in a building. We define tags
and tagsets in an ontology with class hierarchies. We define portable
and orthogonal relationships between entities from an extensive list of
smart-building applications. Relationships among entities are re-
presented as triples, which allows users to leverage existing tools to
build and query the resulting building representations. We showcase
Brick’s extensibility model as well as its interoperability with other
existing schemata and ontologies. Finally, we have proposed practical
methodologies to use Brick in the real world including how to convert
existing unstructured and structured metadata into Brick and how to
integrate Brick with actual building systems.

Brick is complete, capturing an average of 98% of BMS data points
across six diverse buildings comprising almost 17,700 data points and
615,000 sq-ft of floor space. Brick is expressive, successfully running
eight canonical applications on these buildings. Four applications ran
on all the six buildings, while the remaining applications ran on
buildings whose BMS exposed the requisite points. Brick is usable, as
converting each of the buildings’ legacy BMS metadata to the normal-
ized schema took no more than 20 man-hours with semi-automated
methods. Given structured metadata such as Haystack and IFC, the
conversion process can be automatic. The resulting schema is under-
standable and easy to query as shown in Figs. 7-9. Brick was integrated
with two example systems under a common BMS architecture while
providing querying capability. Brick’s extensibility model is already
being put to the test by a growing user base.

Brick maintains orthogonality in describing tagsets and relation-
ships, i.e. there is a single straightforward way to describe an entity,
collection of entities and their inter-relationships. Open references of
our six buildings provide a common platform to evaluate different
schemata. The code, schema, and reference implementations of all the
buildings in our testbed are available at http://brickschema.org/.

We hope that our solution to this well-defined open metadata pro-
blem lays the foundation for industry and academic collaboration to
produce bona fide standards that could be transformative in producing
energy efficient buildings and portable applications.
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