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Abstract. Trending Topic Detection has been one of the most popu-
lar methods to summarize what happens in the real world through the
analysis and summarization of social media content. However, as trend-
ing topic extraction algorithms become more sophisticated and report
additional information like the characteristics of users that participate
in a trend, significant and novel privacy issues arise. We introduce a
statistical attack to infer sensitive attributes of Online Social Networks
users that utilizes such reported community-aware trending topics. Addi-
tionally, we provide an algorithmic methodology that alters an existing
community-aware trending topic algorithm so that it can preserve the
privacy of the involved users while still reporting topics with a satisfac-
tory level of utility.

1 Introduction

With the explosive growth of Online Social Networks and the consequential
unparalleled creation of an enormous amount of user generated content, algo-
rithms that can extract meaningful insights and summarize this content have
been widely studied and used. Specifically, the concept of Trending Topics has
been popularly utilized in the detection of breaking news, hyper-local events, or
memes, and also significantly contribute as marketing and advertising mecha-
nisms. In its broader definition, a trending topic is a set of words or phrases that
refer to a temporarily popular topic. Trending topics are used to understand
and explain how information and memes diffuse through vast social networks
with hundreds of millions of nodes. However, due to the open-access nature of
Online Social Networks like Twitter, where everyone can see who says what, and
depending on how much information a trending topic contains, novel notions of
privacy emerge.

As a concrete example, Twitter reports Trending Topics by location, even at
the city resolution. Their service also offers a search functionality which enables
the discovery of all social postings (tweets) that contain certain keywords, and
those tweets are always associated with a user of the social media service. When
Twitter reports that a topic is trending in Athens, Greece, anyone can find the
users that mentioned this topic through Search and may, therefore, assume that
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they live in Athens, Greece. The location of a user could be considered a sensitive
attribute, if for example they post provocative political opinions and are afraid
of physical repercussions. As we will show later, an attacker can easily infer the
location of hundred of thousands of Twitter users through a simple crawling of
Location-based trending topics using the official Twitter API. These users do not
geocode their tweets neither publicly display their location on their profile. Thus,
the correlation between trending topics and attributes like location can lead
to privacy leaks. Building smarter trending topic extraction algorithms, which
contain richer demographic information of the involved users can further increase
the privacy risk of any reported topic. It is important that any algorithm that
extracts multiple correlated user attributes takes privacy seriously into account.

In [8] we proposed an efficient method to identify trending topics on Twitter
where the underlying user population (the users that mention the topic) share
common attributes like age, location, gender, political affiliation, sports teams,
etc. Through human-based evaluations we showed that topics correlated with
surprising attribute values tend to be 27% more interesting and informative
than trending topics that are extracted purely based on their raw frequency or
burstiness. We call such an algorithm a community-aware trending topic extrac-

tion algorithm since the involved users in each topic form homogeneous groups
(communities), even if they are not linked directly.

Due to the public nature of Online Social Networks like Twitter, apart from
identifying the real identity of a user, an attacker will usually try to infer sen-
sitive attribute values of certain users utilizing knowledge of the social network
(who is a friend with whom, or who follows who). Furthermore, a sensitive
attribute inference attack is also a significant risk in the context of community-
aware trending topic reporting and to the best of our knowledge has not been
studied before. At the same time, large Social Media websites like Facebook
and Twitter already have proprietary methods for inferring social attributes of
their users that are not explicitly provided by them. Recently, it was revealed
that Facebook is able to learn a user’s political preference between values like
“Liberal”, “Very Liberal”, “Moderate”, or “Conservative”. This is a particularly
interesting case since user content on Facebook is usually not accessible to any-
one except the user’s immediate social network. However, if sensitive attribute
information, like political preference, is used in the context of enriching other
features which are publicly known, like Facebook’s Trending section, then this
feature could start leaking sensitive information to virtually anyone.

To demonstrate how sensitive attribute inference could be applied as an
attack in the context of trending topics, we provide a hypothetical example
in Fig. 1 where users mention certain topics that were reported as trending from
a community-aware algorithm (listed in the table at the top of the figure). The
information in the table is public to everyone, similarly to the lists of Trend-
ing Topics that Facebook and Twitter already publish to their users in general.
The main difference is that each topic is also linked with values for specific
attributes like gender, age, location, political preference, etc. The association of
an attribute value with a topic indicates that this specific attribute value is a
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Fig. 1. Alice and Bob are two users who have discussed some topics. These topics were
reported as trending and additionally, for each topic certain demographic information
was extracted for 3 attributes: Location, Political Preference, and Gender. These values
indicate that a significant portion of all the users that mentioned each topic, belong
to the community defined by those values. An attacker can observe these values and
can also find which topics Alice and Bob have discussed. Based on this knowledge, the
attacker can infer certain attribute values of Alice and Bob with certain confidence. In
case (a) (left), where Bob and Alice have only discussed a single topic, the attacker has
low inference confidence. In case (b) (right), Bob and Alice have also discussed topic
T4 which increases the confidence of the attacker for Alice’s gender and Bob’s political
preference but at the same time decreases the confidence for Bob’s gender because T2

and T4 have mostly male and female communities correspondingly.

characteristic for the majority of the users that mentioned the topic (but not
necessarily all of them). For an attacker, this means that they cannot be 100%
confident that every user mentioning topic T1 lives in Boston. However, when
users discuss several topics, the attacker’s confidence may increase. As shown in
Fig. 1 Alice and Bob each mention some of the topics that happen to be listed in
the table of trending topics. Since the attacker can obtain a list of the users that
mentioned each topic (e.g., Twitter provides such search functionality), they can
also increase their confidence (note the difference between cases (a) and (b)) in
inferring Alice and Bob’s sensitive attributes like political preference or gender
without even accessing their posts or network.

In Table 1 we list some real examples of topics and their corresponding com-
munity characteristics (attribute values) that we extracted from Twitter data.
The communities are characterized by values for several attributes including
Location, Gender, Age, Political party (US only), or even Sports teams. Note
that these attribute values are temporal and might change over time, even for
the same topics. Each topic has a frequency (how many unique users mentioned
it) and a community defined by the attributes that describe a significant part
of the users that mentioned the topic. In practice, it is impossible to observe
topics where the entirety of their population forms a homogeneous community
on some attribute values, therefore, the reporting algorithm will only guaran-
tee that at least some percentage of this user population shares the reported
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attribute values. Note, that a community is not necessary to have a value for
every attribute, as it happens for “#NFL” where the user population is homo-
geneous only on Gender and Location and not in Age or Politics. In the last
column of the table we provide the number of privacy violations for each topic,
i.e. the number of social media users that will have at least one attribute exposed
to an attacker if the corresponding trending topic is publicly reported.

Table 1. Real examples of community-aware trending topics

Topic Frequency Community characteristics Size Violations

#NavyYardShooting 5427 Location: USA, Age: 19–22 5218 2561

#NFL 1534 Gender: Male, Location: USA 1212 389

#FreeJustina 54 Location: Boston, Gender:
Female, Political party:
Democrats

51 13

#OscarTrial 1242 Location: Johannesburg: ZA,
Gender: Female

1133 345

#ObamaCare 5090 Location: USA, Politics:
Republicans

4818 1002

#ObamaIn3Words 246 Location: USA, Age: 19–22,
Gender: Male, Politics:
Republicans

224 76

#RedSox 528 Location: Boston, Age:
19–22, Gender: Male, Team:
Red Sox

411 256

An attacker similar to the one in Fig. 1 can peruse the rows of Table 1 and
attempt to infer sensitive attribute values for the involved users. If there is a user
that mentioned both topics #ObamaCare and #ObamaInThreeWords then the
attacker can be very confident that the user supports the Republican party, that
they are located in the United States, and moderately confident that they are
male and a young adult. This is becomes more important In the presence of even
more sensitive attributes like sexual orientation, religion, or race. Note that this
kind of attack is different from existing privacy scenarios where the attacker
infers sensitive attributes through the user’s local social graph (e.g., [26]). In
the case of community-aware trending topics, membership to a community is
implicit and happens just by mentioning certain topics. Therefore, even if a user
is careful with which groups they subscribe to or become members of, sensitive
information can still be exposed simply through the mention of a topic.

We tested how easily we can attack private attributes in existing Trending
Topics reports. As mentioned earlier, Twitter provides Trending Topics by loca-
tion (a total of 401 cities in the world). We crawled these topics through the
Twitter API, and managed to infer the location of approximately 300k users
that mentioned topics which were trending only in a single location just within
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a single day of crawling. 11.8% of these users had public location and from a
sample we estimated that this location inference attack was 82.33% successful.
This proved how easy an attacker can exploit existing Trending Topics to infer
the location of thousands of users. Therefore, altering trending topic algorithms
to protect the sensitive attributes of OSN users is an important area to study.

Main contributions: In this research we formally introduce a novel privacy
model that captures the notion of sensitive attribute inference in the presence
of community-aware trending topic reports where an attacker can increase their
inference confidence by consuming these reports and the corresponding commu-
nity characteristics of the involved users. We discuss a basic attack and provide
an efficient algorithm that preserves the privacy of each individual user so that
sensitive attributes can not be successfully inferred. To the best of our knowledge
we are the first to address this notion of privacy and introduce an algorithm that
uses the idea of attribute generalization in combination with Artificial Intelli-
gence techniques to efficiently defend against such attacks.

In the next sections we provide related literature on the subject of sensitive
attribute inference in Social Media (Sect. 2), discuss the data, attack, and privacy
models (Sect. 3), and provide an analysis of the basic attack that is based on
Naive Bayes inference (Sect. 4), which is commonly used in this line of research.
We then present a novel approach to preserve privacy while maintaining topic
reports with high utility (Sect. 5). Finally, we provide experimental results on
the algorithm’s performance and utility (Sect. 6).

2 Related Work

Data privacy is a thoroughly studied area and several families of algorithms
have been proposed to deal with different kinds of attacks, mostly on published
anonymized datasets. Most notably, the concepts of k-anonymity [16,17,20],
l-diversity [11], t-closeness [10], and Differential Privacy [6] include methodolo-
gies to preserve data privacy and information anonymity. However, privacy in
Online Social Networks follows a different data model where most of the infor-
mation is publicly available: the Twitter social graph, the set of online postings
by every user in Twitter, user membership in Facebook pages, etc. What is
not accessible though, is information about sensitive characteristics that users
might want to keep hidden from the general public. An attack to discover these
characteristics is known as sensitive or private attribute inference.

There are studies and published algorithms for inferring user demograph-
ics based on the content posted by social media users or their social network.
Schwartz et al. [18] developed language models to identify the gender and age
of Facebook users. [5] describe a method to infer user demographics by utilizing
external knowledge of website user demographics and correlating it with a social
media service. Their approach mainly differs from Schwartz et al.’s in its ability
to infer the user characteristics without analyzing the content of postings. Nazi
et al. [12] proposed a methodology to discover hidden information from Social
Media by exploiting publicly accessible interfaces like the search functionality.
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While all the aforementioned work provides useful data mining tools and models,
the privacy implications of the proposed methods are not examined.

Zheleva et al. [26] were the first to study the privacy of sensitive attributes in
the context of Online Social Networks. They describe a variety of attack models
to infer sensitive user attributes but the model most related to the current work,
is the model that utilizes the membership of users in Facebook pages. This
model is similar to the “membership” of a user to a trending topic’s community.
However, they do not provide any algorithmic solution since it is the choice of the
user to subscribe to a page. A system called Privometer [21] measures how much
privacy leaks from certain user actions (or from their friends’ actions) and creates
a set of suggestions that could reduce the risk of a sensitive attribute being
successfully inferred, like “tell your friend X to hide their political affiliation”.
Similar to Privometer, in [3], and then in [14], a method is proposed for the
prevention of information leakage by introducing noise, through the removal of
edges or addition of fake edges, to the social graph. This idea was then extended
to a finer-grained perturbation in [2] where edges are only added partially. Eunsu
et al. [15] built a system called “curso” that identifies when a user’s privacy
is violated through the analysis of their local network. There are also studies
that focused on the anonymization of network data where the attacker tries to
statistically infer the relationship between members of the social network. Most
prominent works in this area include [4,25]. Tassa et al. [22] also studied the
same problem but specifically consider distributed social networks.

Dealing with privacy on a virtually infinite stream of data poses its own
challenges and most of the aforementioned techniques focus on static datasets.
Dwork et al. have studied privacy in streaming environments and proposed a
family of algorithms called Pan-Private Streaming Algorithms [7]. The main
focus of these algorithms is to deal with attackers with control of the machine(s)
where the algorithm is running but no access to the stream, while in our case
they have access to every social post.

3 Data and Attack Models

3.1 Data Model

The users of a Social Media service are represented as a set U = {u1, u2, ..., un}.
Each user u is associated with a vector v of k sensitive attributes (e.g., location,
age, etc.). The attribute ai of a user u (u.v.ai) can take on one of a set of possible
values {ai1, ai2, ..., aimi

}, where mi is the corresponding attribute’s total number
of unique values. The values of an attribute form a hierarchy which for some
attributes can have a significant depth (e.g., for location: cities, to regions, to
countries, to continents, to wordwide) or be trivial (e.g. for gender: from male and
female to any gender). An attribute value can be generalized by being replaced
with an ancestor value from the hierarchy. A user can mark a set of attributes
as sensitive and keep them private. Or depending on the nature of an attribute,
e.g., race, which the social media service might infer using its own proprietary
inference algorithm, it could be considered as sensitive for everyone.
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The content of the Social Media service is represented as an infinite stream
P of posts. Every post p ∈ P has a unique author (user) p.u and contains
an arbitrary number of topic keywords p.T = {t1, t2, ...}. We define a publicly
available search function SEARCH that returns all the users mentioning a given
topic keyword t: SEARCHt = {p.u|t ∈ p.T}. The number of users mentioning t
is referred to as topic population and its size is equal to |SEARCHt| and referred
to as topic frequency (second column in Table 1). We can assume that each user
that mentions topic t is counted only once to avoid bias from spamming. The
search function SEARCH is defined for multiple topics as well, and returns the
intersection of the users that mention all the given topics.

We define a homogeneous community as a group of users with identical values
in some of their attributes, but not necessarily connected in the social graph.
More formally, a homogeneous community contains users that share the same
values for a combination of attributes where is the power-
set symbol and ai is a user attribute (e.g., location, age, etc.). Users that live in
San Francisco, are 25 years old, and are male, form a homogeneous community
that contains all the users identified by these values for the attribute combi-
nation {location, age, gender}. Users in New York form another homogeneous
community defined by the singleton attribute combination {location}.

A community-aware trending topic algorithm (referred to as CATT [8]) iden-
tifies topic keywords mentioned by a homogeneous community that has at least
size ξ of the total topic population (0 < ξ ≤ 1). For example, if ξ = .7, a topic
with frequency 1000 will have at least 700 users forming a homogeneous com-
munity. The CATT algorithm reports records in the form of a stream of tuples:
ti, Ci, where Ci is the set of attribute values that define the homogeneous commu-
nity CATT identified for topic ti. If a topic t has no homogeneous community of
size ξ|SEARCHt| or larger associated with it then it isl not reported by CATT.
We will refer to homogeneous communities simply as communities and to topics
extracted via a community-aware algorithm as community-aware topics.

CATT extracts trending topics using a batch-based sliding window on the
stream of social postings of the service. At the end of each window, CATT
reports a set of pairs ti, Ci) which includes all the extracted topics from the
current window. We refer to the output of CATT for each window of social
postings as a batch. Table 1 shows an example of such a batch that contains 8
pairs. Through the definition of community-aware trending topics, the users of
the social media service inherit an implicit membership to communities just by
mentioning certain topics. Using a single reported pair ti, Ci one can infer that
at least ξ% of the users in SEARCHti are characterized by the values of Ci.
This constantly increasing knowledge enables an attacker to gradually improve
their inference confidence for a given user’s sensitive attribute(s).

Note that execution of CATT requires the knowledge of community attributes

for the involved users. Realistically, CATT is executed by the Social Media service

itself which has access to private user information or even its own proprietary

method to extract attributes. Attackers lack access to the necessary information

to execute CATT themselves.



212 T. Georgiou et al.

3.2 Attack Model

A CATT algorithm reports a stream of batches of pairs ti, Ci. The attacker
knows CATT’s threshold ξ, as it is public knowledge, has access to the output
stream, and to the search function SEARCH which returns the set of users
that have mentioned the provided topic(s). It is also safe to assume that the
attacker has general knowledge of each attribute’s prior distribution. For exam-
ple, such knowledge might include the location distribution based on a Census,
the age distribution based on published statistics from the social media service,
the gender distribution based on users that have this information public, etc.
We can safely assume that the attacker is omnipotent and can indefinitely store
the pairs (ti, Ci) and the corresponding sets of users SEARCHti. The goal of
the attacker is to infer a user’s sensitive attribute by exploiting the knowledge
of each topic’s community Ci and the users associated with it. In the presence
of an omnipotent attacker a privacy preserving algorithm must maintain all pre-
vious trending topics and communities to accurately calculate the probability
distribution of the sensitive attribute values, of each user.

In related literature on sensitive attribute inference [14,21,26], an attacker
would train a Naive Bayes Classifier to choose the value of a sensitive attribute
L that maximizes the probability distribution PL|u.T . However, though Naive
Bayes is known to be a decent classifier, it is also known to be a bad estima-
tor [24]. For the inference process to be accurate, a high probability bound is
necessary, so we consider that attack to be successful only when the inference
probability of an attribute value is greater than a set threshold θ (e.g., θ = .75
or .85). We will be using a global value for θ across all attributes and users, but
the proposed model and algorithm support different values for each attribute
and user.

4 Privacy Model

4.1 Sensitive Attribute Inference

Having established the models for the data (social stream) and the attacker
(inference of sensitive attributes) we can now formally define the privacy model.
For every user in the social network that discusses several topics in a stream-
ing fashion, we want to protect against having their sensitive attribute values
leaked through the continuous reporting of community-aware trending topics.
Specifically, any attacker that has access to current and historical reports of
community-aware trending topics should not be able to infer any user’s sensitive
attribute with confidence that is higher that a set value θ. At no point should an
attacker be able to infer a lower bound for the distribution PL|u.T (probability
distribution of sensitive attribute L of a user u given the topics T of u), that is
higher than θ.

Definition: If there is even a single case where a user’s sensitive attribute can
be inferred with confidence larger than θ, this comprises a privacy violation.
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A community-aware trending topic algorithm that is capable of maintaining a
record of zero privacy violations while it continuously reports new batches of
topics is called θ-private.

Referring back to the example of Fig. 1, if θ is set to .75 then an algorithm
that reports the topics in the table of the figure is not θ-private in case (b), since
the attacker can infer the gender of Alice and the political preference of Bob with
confidence that is higher than θ. To make the algorithm θ-private we would need
to obfuscate the gender and political preference associated with topics T1, T2,
and T4. If Alice and Bob had only discussed topics T1 and T2, as in case (a),
then the algorithm would be θ-private for this specific instance.

The inference of a sensitive attribute involves estimating the probability of
a specific value given some background knowledge. As already discussed, the
attacker has access to prior attribute probabilities and the output and settings
of CATT. The Naive Bayes classifier is a powerful and simple technique to cal-
culate the probability of a sensitive attribute value. Arguably, if the attacker
has additional information of other sensitive attributes (e.g., already knows that
Alice is a woman because she has her own photo in her profile) then they can
get a better estimation of the probability of another sensitive attribute, like her
location, than they would from Naive Bayes. In the following subsection we focus
on the calculations necessary to get a lower bound of the probability P (L|u.T )
using Naive Bayes. The end goal is to anticipate what values the attacker can
successfully infer so that they can be kept private. This is typically easy since
the attacker’s knowledge is generally based on publicly available information and
the privacy model can incorporate it if necessary. To keep things simple, for the
rest of the paper we assume that the attacker has no existing knowledge of sen-
sitive attribute values and therefore the Naive Bayes Classifier can set a precise
upper bound. The introduced privacy model is independent of how P (L|u.T ) is
calculated by an attacker and the privacy preserving algorithm proposed later
can be easily adjusted to calculate these distributions differently.

4.2 Naive Bayes Inference

Given a collection of topic and community tuples ti, Ci (the output of CATT)
and a search function SEARCH, an attacker may attempt to infer the sensitive
attributes of users that mention at least one of the topics ti. Let u be a user
that has mentioned k topics t1, t2, ..., tk and let L be one of the user’s sensitive
attributes (e.g., location). The probability distribution of L, given that the user
mentioned some topics t1, t2, ..., tk is:

PL|t1, t2, ..., tk =
Pt1, t2, ..., tk|LPL

Pt1, t2, ..., tk
(1)

by applying the Bayes Rule. P (L) is the prior multinomial distribution of the
attribute L and can be assumed to be known to an attacker based on their
general knowledge on such information. The probability distribution of a user
mentioning topics t1, t2, ..., tk given L, Pt1, t2, ..., tk|L, is equal to the number of
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users u that mention all the k topics and have a specific value for L, over the
total number of users with that value of L. For example, for L = a:

Pt1, ..., tk|L = a =
|{u|u.v.L = a, t1 ∈ u.T, ..., tk ∈ u.T}|

|{u|u.v.L = a}|
(2)

where u.v.L is the attribute L in the user’s vector of attributes v. Similarly, the
prior probability of topics Pt1, t2, ..., tk is equal to the number of users that men-
tioned these topics over the total number of users n: |SEARCHt1, t2, ..., tk|/n.

While an attacker might have knowledge of the attribute’s multinomial distri-
bution and the ability to calculate the prior probability of any topic combination
(using the search function SEARCH), they cannot compute the set of users that
have a specific attribute value L = a: {u|u.v.L = a}. Instead, they can obtain an
approximate value of the probability distribution Pt1, t2, ..., tk|L based on the
reported tuples from CATT. The attacker can exploit the guarantees provided
by CATT that a reported trending topic ti has a population of size |SEARCHti|
with a homogeneous community Ci with size at least ξ|SEARCHti|.

More specifically, if the attribute L is not part of Ci, then the topic population
of ti follows the prior distribution of L: Pti|L = PL. If L ∈ Ci and has a value
L = a, then applying the Bayes Rule we get:

Papproxti|L = a =
PL = a|tiPti

PL = a
=

ξ

PL = a
Pti (3)

Similarly, the probability that a user with value L = b mentions topic ti is:

Papproxti|L = b = PL=b|tiPti

PL=b

=
1 − ξPL = b|SEARCHti|

PL = bn
= 1 − ξP ti (4)

The attacker can now approximate the probability distribution (2) by assum-
ing topic independence given L: Papproxt1, t2, ..., tk|L =k

i=1 Pti|L where each fac-
tor of the product can be computed using the probability formulas from (3) and
(4). Note that topic independence given L is an assumption that can be true
when the number of topics k is large. An attacker can use the following formula
to approximate PL|u.T :

PapproxL|u.T =
nPLti∈u.T Pti|L

|SEARCHu.T |
(5)

If for any value of L = l, the probability PL = l|u.T becomes larger than the
threshold θ then we assume that the privacy of this user for L is violated.

5 Privacy Preservation Methodology

A community-aware trending topic algorithm is also θ-privacy-preserving if its
output does not enable the inference of sensitive user attributes with a confidence
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greater than a threshold θ, for any of the users involved. We will refer to this
modification of the CATT algorithm as θ-CATT. At the same time, the goal is to
keep reporting trending topics with maximum utility. Maximizing the utility of
the results is a competing goal with preserving privacy since the algorithm could
report an empty result set and the privacy leakage would be zero. Issues arise
when the algorithm reports at least one trending topic ti and its community Ci

and for all users in SEARCHti some statistical information is leaked. Especially
challenging is the fact that users continuously discuss new topics which results
in a constant stream of information that an attacker can use to increase their
inference confidence of sensitive attribute values (as demonstrated in Fig. 1).

We now introduce a novel approach that utilizes the concept of generalization
in combination with Artificial Intelligence to efficiently solve the exponentially
expensive anonymization problem while preserving significant utility.

5.1 Utility of Trending Topics

The goal behind extracting trending topics that certain communities focus on is
to provide additional insight into why certain topics end up trending, understand
which user demographics are interested in an event, product, etc., and generally
provide more interesting, surprising and personalized trending topics to the users
of the social media service. Using the notion of Self-information from Information
Theory [19] we provide a measure of the information content for community-
aware trending topics. Self-information can capture how surprising an event is
based on the probability of the event. The total utility of θ-CATT’s results
is equal to the self-information sum of every reported topic’s community. The
self-information of a community Ci is ICi = −log2PrCi. Intuitively, the less
likely a community is to be observed, the higher its self-information. Since we
are using the logarithm with base 2, self-information is measured in bits. This
metric provides a systematic way to measure the utility of the reported topics
and can be used to calculate the information/utility loss when anonymization is
applied. We define a utility function util() which returns the utility over a set of
tuples (ti, Ci). Other metrics can be used as well without alterations to θ-CATT.

5.2 Community Attribute Anonymization

θ-CATT needs to constantly monitor the maximum confidence of a hypothetical
attacker to infer every sensitive attribute of every user in the service. When
θ-CATT identifies a trending topic ti with a homogeneous community that
involves |SEARCHti| users, it has to make sure that none of the users u ∈
SEARCHti will have their sensitive attributes leaked by publishing (ti, Ci). To
ensure that, it calculates the probability of each sensitive attribute for every user
u: PL|u.T and checks if the value becomes greater than θ. If it does not, then
the pair (ti, Ci) is published. If it does, θ-CATT will anonymize the sensitive
attribute of the community before publishing, while preserving as much utility
as possible.
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We utilize the method of attribute generalization to achieve anonymization
similarly to k-anonymity [9,16,17,20]: if the city of a user can be inferred,
θ-CATT reports location at the state level instead, which will alter the infer-
ence probability since a much larger population is described by this value. Gen-
eralization of categorical attributes is achieved by moving up a level in the
attribute hierarchy (as described in earlier section). Depending on the depth
of an attribute’s hierarchy, a single generalization (moving up a single level in
the attribute’s value hierarchy) might lead to complete anonymization which
also means zero utility for this attribute. For example, generalizing the value
“male” will result to “any gender” (or “*”).

The θ-CATT algorithm encapsulates the privacy-agnostic CATT algorithm
which just extracts the community-aware trending topics by consuming the social
stream. θ-CATT receives the batch of topics and attributes pairs (ti, Ci) (as
described in earlier section), and combined with the knowledge of every user’s
sensitive attributes and the topics they have previously mentioned (u.T ), calcu-
lates if any user’s privacy would leak with the publication of the batch.

5.3 Finding the Best Anonymization Strategy

In order to output a list of trending topics that contains no privacy violations,
a decision must be made that involves choosing which topic communities should
be anonymized without sacrificing too much utility. There are many solutions
to this problem, each with a different level of utility loss. To avoid solving this
problem in exponential time by trying all possible combinations and choosing the
one that minimizes the utility loss, we propose an algorithm that efficiently finds
the best strategy for identifying a near optimal combination to anonymize. The
θ-CATT algorithm is able to identify the privacy risk each new topic-community
pair poses before publishing it, ideally in real time. To achieve this computation,
θ-CATT needs to store: (1) the history of trending topics previously reported
by the algorithm, that each user u has mentioned, and (2) the communities that
were reported to be correlated with those topics. With this information θ-CATT
can simulate an attacker and identify privacy violations before they even occur.

Batch-Based Anonymization. When a batch of pairs (ti, Ci) is reported
by CATT, θ-CATT will iterate through all pairs, apply necessary anonymiza-
tions and publish the altered set of pairs. A naive approach to identify which
pairs require anonymization, is to iterate through them one by one, and if a
pair violates the privacy of at least one user, appropriately anonymize the com-
munity’s sensitive attribute(s) before moving to the next topic. However, the
iteration order might lead to non-optimal results where more communities get
anonymized than necessary to preserve privacy and utility loss is not minimal.
For example, it might be better to anonymize a single community C3 instead
of anonymizing two communities C1 and C2 and achieve the same privacy gain.
Occasionally, the combination of two topic communities can enable their publi-
cation without anonymization while if we each pair is individually considered,
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then neither of them would get reported. For this reason, θ-CATT considers
the privacy and utility of the whole batch to identify the best anonymization
strategy which minimizes the required attribute generalization and utility loss.

Assume for simplicity that there is a single sensitive attribute L and let S be a
batch of k pairs (ti, Ci) with communities that have a value for attribute L. Since
the generalization of an attribute in a community Ci lowers the total utility of the
batch, we want to generalize L in the least possible number of communities. An
anonymized batch S′ is a modified version of S with an arbitrary number of the
communities in S anonymized (a community is anonymized when its attribute L
is generalized at least once as described earlier). If a community does not contain
a value for attribute L, it is ignored since it will not alter any user’s inference
probability for L. Therefore, there is a total of 2k different anonymized batches
S′ ranging from the case where nothing is anonymized to the case where all k
communities are anonymized and every possible combination in between.

The goal for θ-CATT is to find the batch S′ that has greater utility than
any other S′′: utilS′ ≥ utilS′′ while at the same time S′ preserves the privacy
of every user’s sensitive attribute. For example, in Table 1, k = 7 and S contains
the eight topic-community pairs listed in the table. If reporting these 7 pairs
violates the privacy of any of the involved users, then θ-CATT will identify an
anonymized version of the batch that does not leak sensitive attributes.

A* State Encoding. To find the best anonymized batch S′, a naive approach
would be to enumerate all 2k possible batches and keep the batch with the max-
imum utility, which at the same time does not leak any sensitive user attributes.
However, this approach has exponential complexity O(2k). Instead, we propose
a customized version of the A* algorithm, which is an Informed Search method
[13], to identify a good batch S′ efficiently. A* is a search algorithm, hence,
it requires a search tree with a starting node and a goal node to reach. Each
node of the tree is called a state and corresponds to a batch S′. The starting
state would be the non-anynomized batch S while the goal state would be the
anonymized batch S′ that preserves the privacy of all involved users. There are
many acceptable goal states, so additionally a cost function is needed to indicate
the amount of sacrificed utility to reach a specific state.

Each anonymized batch S′ corresponds to a state and all possible states
form the search tree. We encode S′ as a k-digit binary number where the i-th
digit corresponds to the pair ti, Ci ∈ S′. A value of 0 as the i-th digit indicates
that the sensitive community attribute L in ti, Ci is generalized, while a value
of 1 indicates that it is not. Ideally, we would like to report the batch S′ that
corresponds to the value 111...1 (no anonymization). A batch S′ is an ancestor

of batch S′′ in the search tree if their encoding differs in exactly one digit, where
this digit is 0 in S′ and 1 in S′′. Using this notion of ancestors a search tree
can be defined where the encoding 111...1 is the root node and a node’s children
contain all descendant encodings. For example, for k = 4, the children of root
node 1111 are: 1110, 1101, 1011, and 0111. The children of 1110 are: 1100, 1010,
and 0110, etc. A visual example for k = 3 is shown in Fig. 2(a). All search tree



218 T. Georgiou et al.

branches will have 00...0 as the common leaf node which corresponds to a fully
anonymized batch and is the least desirable result since its utility is minimal.

As the starting state of A* θ-CATT selects the batch S (original, non-
anonymized output of the CATT algorithm) which has encoding 111...1. The
goal state will be the first state that has no privacy leaks (all sensitive attribute
inference probabilities are below θ). Given a random state S′, the neighbors are
generated by flipping a single digit with value 1. If there are no such digits left,
the search tree has reached its end. Given that the algorithm is stable across
batches (all probabilities are below θ before a new batch), an acceptable goal
state will always exist. In the worst case this will be the state with encoding
00...0 at the bottom of the search tree (Fig. 2(a)).

A* Cost Function. A* requires a cost function that returns the cost of visiting
each state. θ-CATT utilizes the following cost function f.: fS′ = gS′ + hS′.
Function gS′ returns the total utility loss: gS′ = utilS − utilS′, where S is the
original non-anonymized set of topics and communities. Function h(S′) is the
heuristic that estimates how close the current state is to the goal state and we use
the following measure: h(S′) = # users with a privacy violation. The number of
users with a privacy violation is obtained by iterating through all the involved
users in the batch and calculating the probability of inferring their sensitive
attribute(s) with confidence higher than θ (Eq. 5). The function g measures the
cumulative cost to reach a node in the search tree (how much utility has been
sacrificed) and function h estimates the remaining distance of the goal state,
where there is no privacy violation for any user. Note that this specific heuristic
is not admissible (it might overestimate the cost to reach the goal state), which
means that A* might not find the optimal path. Not finding the optimal path
means that some additional utility might be sacrificed in order to greedily reach
a goal state in less steps. Since the two functions g and h measure different units
we normalize them with two weights α and β: f(S′) = αg(S′) + βh(S′) where
α+β = 1. The exact values of α and β depend on the total number of users (for
g) and the specific utility function used (for h).

Algorithmic Complexity. A* checks recursively if the current node is an
acceptable goal state—number of privacy violations is equal to zero—and if it
is not, it expands its children nodes and adds them in a priority queue to visit
them next. Priority is calculated using the f(.) function. This strategy enables
θ-CATT to find a path to a batch S′ that does not violate the privacy of any
user, while reducing the number of necessary steps. The only trade-off is that the
utility of the reached S′ might not be optimal. For multiple sensitive attributes,
the same process can be executed in parallel.

Let V be the set of sensitive attributes, k the size of the batch with pairs
of topics and communities, T the set of all topics in the batch, and n the total
number of users in the social network. The time complexity of the algorithm is:

O(|V | · k · |SEARCHT | + |SEARCHT | · |u.T |
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The main bottleneck of the algorithm is the calculation of the inference prob-
ability (Eq. 5) for a specific attribute and every involved user. First, the whole
process must be repeated for every sensitive attribute. This entails linear com-
plexity to the number of sensitive attributes. Second, probability calculations
must be repeated every time the cost of a state in the search tree is valuated.
While there are 2k states to explore, the customized A* with the proposed greedy
heuristic can reach a local optimum in logarithmic complexity. log22

k = k, thus,
the algorithm scales linearly (amortized) with the number of topics in the batch.
Finally, we need to calculate probabilities for every involved user, so the time
complexity will also be proportional to |SEARCHT |. The inference probability
formula (Eq. 5) contains the product of the empirical probabilities Pti|L where
ti is an old topic the user has mentioned and L is a sensitive attribute. To avoid
calculating this product every time the inference probability is measured, we can
instead store in memory the products for all topics the user has mentioned so
far. The prior probability of PL needs to be calculated only once per batch and
n is a fixed number (at least in the context of a batch). The only “problematic”
term is the denominator of the fraction, |SEARCHu.T |, which requires the cal-
culation of the intersection of every set of users that mentioned the same topics
with user u. However, this value needs to be calculated only once per user, per
batch. Therefore, the time complexity of the inference probability calculation is
constant.

The necessary space complexity to store the probability products for each
user and sensitive attribute is: On|V |.

6 Experimental Results

For our experiments we used a real Twitter dataset that contains a uniform 10%
sample of the complete Twitter Firehose stream from a 39 day period between
April 16 and May 24, 2014. Each tweet also contains the information of its
author (user). The extracted topics include unigrams, hashtags or capitalized
entities from the tweets’ raw text. The four extracted user demographics include
location, gender, age, and US political party preference. Location extraction
was done on (1) the tweet level using Twitter’s geo-tagging mechanism, and
to further improve the recall, on (2) the user level using a user-provided raw
text field (similarly to [1,23]). To extract gender and age we applied existing
language models extracted from [18] on social media data. The hierarchy for
gender includes the leaf nodes “male”/“female” and the top level of “all genders”
or “*”. Similarly, the hierarchy for age includes the leaf nodes “13–18”/“19–
22”/“23–29”/“30+” and the top level “*”. Finally, for political party affiliation
we gathered the official Twitter accounts associated with the three most popular
US political parties: Democratics, Republicans, and Libertarians. Then, a user’s
political affiliation was determined based on the simple majority of interactions
(@-replies) with these accounts. More extensive details can be found in [8].

We consider all four attributes to be sensitive for every user. Then we ran
two versions of our algorithms (simple CATT and θ-CATT) and compared the
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results. The algorithm settings are: θ = .7 (attacker’s inference confidence), ξ =
.5 (community size as a ratio of the topic population), utility util{ti, Ci} =k

i=1

ICi (self-information sum), α = .999, and β = .001. The selected values were
empirically chosen to reflect a realistic scenario with a plethora of violations.

The average number of extracted trending topics and community pairs in the
dataset is 112 per window (a window of data corresponds to a single batch of
trending topics as described in earlier section). We focus on the topics that have a
specific city-level location, or age, or gender, or political party preference values,
which on average is k = 21.57 topics per batch. The per-batch average number of
unique location values is 15.2, number of unique gender and political party values
is 2, and number of unique age values is 2.8. The average number of involved
users is 8162. The average utility without any anonymization (simple CATT)
is 43.1 bits but also contains an average of 213.2 privacy violations. Privacy
violations were counted by identifying users that have inference probabilities
(Eq. 5) for either location, age, gender, or political party preference, that is higher
than θ. To preserve the privacy of the location attribute, θ-CATT anonymized
on average 4.3 communities to bring the number of privacy violations to 0. The
average utility of the anonymized results published by θ-CATT is 38.37 bits, so
there is a total utility loss of 4.73 bits.

Examples that demonstrate cases where a community got anonymized to
preserve the involved users’ privacy are listed in Table 2. The 4th column lists
how many privacy violations would occur if the original community was pub-
lished. The 5th column shows how the proposed algorithm decided to anonymize
the community by generalizing at least one attribute. After anonymization, θ-
CATT managed to bring all privacy violations to 0 so that the reported results are

θ-private. For the topic #OscarTrial the location attribute was generalized to
hide the location of 345 users. For the topic #ObamaInThreeWords both age
and party preference are generalized to preserve the privacy of 76 users.

Table 2. Examples of communities and the corresponding anonymized versions.

Topic Original community Size Viol/ns Anonymized community

#OscarTrial Location:
Johannesburg, ZA,
Gender: Female

1133 345 Location: ZA,
Gender: Female

#FreeJustina Location: Boston,
Gender: Female,
Politics: Democrat

51 13 Location: Boston,
Gender: *, Politics:
Democrat

Bruins Location: Boston,
Gender: Male, Age:
19–22

196 58 Location: *, Gender:
Male, Age: 19–22

#ObamaIn3Words Location: USA, Age:
19–22, Gender: Male,
Politics: Republican

224 76 Location: USA, Age: *,
Gender: Male, Politics:

*
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(a) (b) (c)

Fig. 2. (a) Full search tree (k = 3). “No anonymization” is the starting state of A*.
(b) Running time for k = 21.57. (c) Utility loss for different values of θ.

In Fig. 2(c) it can be seen how the utility loss scales for different values of θ.
As expected, when θ = 1, an attacker must be 100% confident when inferring
a sensitive attribute which in reality is practically impossible and results in
maintaining the full utility of the results (equal to the utility of CATT’s output).
On the other end, for θ = 0, no information leakage is permitted at all, therefore,
full anonymization of the communities is necessary and utility becomes equal
to 0. These two extremes are equally not practical for a meaningful and realistic
combination of trending topics with utility and preserved privacy. Based on the
values in Fig. 2 we observe that choosing a value of θ above .6 can maintain at
least 73% of CATT’s original utility of community-aware trending topics. This
curve is a useful guide for choosing the desired privacy-utility trade-off.

Figure 2(b) shows the running time of our privacy preservation algorithm.
All running times are recorded on a personal laptop with a 2.6 GHz Intel Core
i5 processor and 16 Gb of RAM. There were 70 datapoints each corresponding
to randomly sampled batches of topics. Since the complexity of the algorithm
is mainly affected by the number of involved users (users mentioning one of
the topics in the batch) the plot demonstrate how the running time is affected
by this number. Each datapoint is an execution time (y-axis) of a single batch
and corresponds a certain number of involved users (x-axis). The number of
topics with sensitive attributes (batch size) was quite stable throughout our
experiments with a mean of k = 21.57 and a standard deviation of 3.35. The plot
also contains the corresponding least-square linear trendline and its equation.
All reported running times are within the range of 0 s (no anonymizations were
necessary for these batches so A* immediately found the goal state to be the
starting state) and 160 s. Note that the time necessary to stream-in the data of a
single batch takes around 3–4 min based on the rate of new tweets being created
on Twitter, therefore, an average running time of 39.56 s is more than sufficient
to produce results before the new batch is even ready for processing. This means
that the algorithm can be used in a real-time fashion, a strong requirement for
any streaming algorithm.

To examine if the running time is affected by the size of a batch k we also
performed an experiment where we forced the number of topics to be always
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equal to 15—an arbitrarily selected value that is less than 21.57—by randomly
dropping some topics. We observed that the running time is also increasing
linearly with the number of users, as expected. Altering k had no apparent effect
on how the running time scales with the number of users, similar to the slope
of the trendline in Fig. 2(b), which proves that the greedy heuristic of A* has
sublinear amortized complexity. Based on the projected trendlines in Fig. 2(b),
we estimate that the running time for 100K users, which is a number that can be
observed for trending topics on the Twitter web-page, would be approximately
490 s which is again acceptable based on the rate of generated tweets. Therefore,
our algorithm satisfies the efficiency requirement of a practical real-world setting.

7 Conclusions

With the introduction of algorithms that extract trending topics that corre-
late with user demographics (community-aware topics), novel ways emerge to
attack sensitive user information through attribute inference. We are the first to
address privacy concerns in this context, by demonstrating how an attacker can
statistically infer sensitive attribute values and introducing a privacy model for
the preservation of these sensitive values of each individual user that discusses
trending topics in a social network. Towards this end, we propose a new algo-
rithmic approach that utilizes Artificial Intelligence methods in a novel way to
efficiently identify when a privacy violation may occur and remedy all violations
by efficiently extracting an optimal anonymization strategy which maximizes the
utility of the reported trending topics and corresponding community character-
istics.
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