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Abstract

The inverse covariance matrix provides considerable insight for understanding
statistical models in the multivariate setting. In particular, when the distribution over
variables is assumed to be multivariate normal, the sparsity pattern in the inverse
covariance matrix, commonly referred to as the precision matrix, corresponds to
the adjacency matrix representation of the Gauss-Markov graph, which encodes
conditional independence statements between variables. Minimax results under the
spectral norm have previously been established for covariance matrices, both sparse
and banded, and for sparse precision matrices. We establish minimax estimation
bounds for estimating banded precision matrices under the spectral norm. Our
results greatly improve upon the existing bounds; in particular, we find that the
minimax rate for estimating banded precision matrices matches that of estimating
banded covariance matrices. The key insight in our analysis is that we are able to
obtain barely-noisy estimates of k×k subblocks of the precision matrix by inverting
slightly wider blocks of the empirical covariance matrix along the diagonal. Our
theoretical results are complemented by experiments demonstrating the sharpness
of our bounds.

1 Introduction

Imposing structure is crucial to performing statistical estimation in the high-dimensional regime
where the number of observations can be much smaller than the number of parameters. In estimating
graphical models, a long line of work has focused on understanding how to impose sparsity on the
underlying graph structure.

Sparse edge recovery is generally not easy for an arbitrary distribution. However, for Gaussian
graphical models, it is well-known that the graphical structure is encoded in the inverse of the
covariance matrix Σ−1 = Ω, commonly referred to as the precision matrix [12, 14, 3]. Therefore,
accurate recovery of the precision matrix is paramount to understanding the structure of the graphical
model. As a consequence, a great deal of work has focused on sparse recovery of precision matrices
under the multivariate normal assumption [8, 4, 5, 17, 16]. Beyond revealing the graph structure, the
precision matrix also turns out to be highly useful in a variety of applications, including portfolio
optimization, speech recognition, and genomics [12, 23, 18].

Although there has been a rich literature exploring the sparse precision matrix setting for Gaussian
graphical models, less work has emphasized understanding the estimation of precision matrices
under additional structural assumptions, with some exceptions for block structured sparsity [10] or
bandability [1]. One would hope that extra structure should allow us to obtain more statistically
efficient solutions. In this work, we focus on the case of bandable precision matrices, which capture
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a sense of locality between variables. Bandable matrices arise in a number of time-series contexts
and have applications in climatology, spectroscopy, fMRI analysis, and astronomy [9, 20, 15]. For
example, in the time-series setting, we may assume that edges between variables Xi, Xj are more
likely when i is temporally close to j, as is the case in an auto-regressive process. The precision and
covariance matrices corresponding to distributions with this property are referred to as bandable, or
tapering. We will discuss the details of this model in the sequel.

Past work: Previous work has explored the estimation of both bandable covariance and precision
matrices [6, 15]. Closely related work includes the estimation of sparse precision and covariance
matrices [3, 17, 4]. Asymptotically-normal entrywise precision estimates as well as minimax rates
for operator norm recovery of sparse precision matrices have also been established [16]. A line of
work developed concurrently to our own establishes a matching minimax lower bound [13].

When considering an estimation technique, a powerful criterion for evaluating whether the technique
performs optimally in terms of convergence rate is minimaxity. Past work has established minimax
rates of convergence for sparse covariance matrices, bandable covariance matrices, and sparse
precision matrices [7, 6, 4, 17].

The technique for estimating bandable covariance matrices proposed in [6] is shown to achieve the
optimal rate of convergence. However, no such theoretical guarantees have been shown for the
bandable precision estimator proposed in recent work for estimating sparse and smooth precision
matrices that arise from cosmological data [15].

Of note is the fact that the minimax rate of convergence for estimating sparse covariance matrices
matches the minimax rate of convergence of estimating sparse precision matrices. In this paper,
we introduce an adaptive estimator and show that it achieves the optimal rate of convergence when
estimating bandable precision matrices from the banded parameter space (3). We find, satisfyingly,
that analogous to the sparse case, in which the minimax rate of convergence enjoys the same rate for
both precision and covariance matrices, the minimax rate of convergence for estimating bandable
precision matrices matches the minimax rate of convergence for estimating bandable covariance
matrices that has been established in the literature [6].

Our contributions: Our goal is to estimate a banded precision matrix based on n i.i.d. observations.
We consider a parameter space of precision matrices Ω with a power law decay structure nearly
identical to the bandable covariance matrices considered for covariance matrix estimation [6]. We
present a simple-to-implement algorithm for estimating the precision matrix. Furthermore, we show
that the algorithm is minimax optimal with respect to the spectral norm. The upper and lower bounds
given in Section 3 together imply the following optimal rate of convergence for estimating bandable
precision matrices under the spectral norm. Informally, our results show the following bound for
recovering a banded precision matrix with bandwidth k.
Theorem 1.1 (Informal). The minimax risk for estimating the precision matrix Ω over the class Pα
given in (3) satisfies:

inf
Ω̂

sup
Pα

E
∥∥∥Ω̂− Ω

∥∥∥2

≈ k + log p

n
(1)

where this bound is achieved by the tapering estimator Ω̂k as defined in Equation (7).

An important point to note, which is shown more precisely in the sequel, is that the rate of convergence
as compared to sparse precision matrix recovery is improved by a factor of min(k log(p), k2).

We establish a minimax upper bound by detailing an algorithm for obtaining an estimator given
observations x1, . . . ,xn and a pre-specified bandwidth k, and studying the resultant estimator’s risk
properties under the spectral norm. We show that an estimator using our algorithm with the optimal
choice of bandwidth attains the minimax rate of convergence with high probability.

To establish the optimality of our estimation routine, we derive a minimax lower bound to show
that the rate of convergence cannot be improved beyond that of our estimator. The lower bound is
established by constructing subparameter spaces of (3) and applying testing arguments through Le
Cam’s method and Assouad’s lemma [22, 6].

To supplement our analysis, we conduct numerical experiments to explore the performance of our
estimator in the finite sample setting. The numerical experiments confirm that even in the finite
sample case, our proposed estimator exhibits the minimax rate of convergence.
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The remainder of the paper is organized as follows. In Section 2, we detail the exact model setting
and introduce a blockwise inversion technique for precision matrix estimation. In Section 3, theorems
establishing the minimaxity of our estimator under the spectral norm are presented. An upper bound
on the estimator’s risk is given in high probability with the help of a result from set packing. The
minimax lower bound is derived by way of a testing argument. Both bounds are accompanied by
their proofs. Finally, in Section 4, our estimator is subjected to numerical experiments. Formal proofs
of the theorems may be found in the longer version of the paper [11].

Notation: We will now collect notation that will be used throughout the remaining sections. Vectors
will be denoted as lower-case x while matrices are upper-case A. The spectral or operator norm of a
matrix is defined to be ‖A‖ = supx6=0,y 6=0〈Ax,y〉 while the matrix `1 norm of a symmetric matrix
A ∈ Rm×m is defined to be ‖A‖1 = maxj

∑m
i=1 |Aij |.

2 Background and problem set-up

In this section we present details of our model and the estimation procedure. If one considers
observations of the form x1, . . . ,xn ∈ Rp drawn from a distribution with precision matrix Ωp×p and
zero mean, the goal then is to estimate the unknown matrix Ωp×p based on the observations {xi}ni=1.
Given a random sample of p-variate observations x1, . . . ,xn drawn from a multivariate distribution
with population covariance Σ = Σp×p, our procedure is based on a tapering estimator derived from
blockwise estimates for estimating the precision matrix Ωp×p = Σ−1.

The maximum likelihood estimator of Σ is

Σ̂ = (σ̂ij)1≤i,j≤p =
1

n

n∑
l=1

(xl − x̄)(xl − x̄)> (2)

where x̄ is the empirical mean of the vectors xi. We will construct estimators of the precision matrix
Ω = Σ−1 by inverting blocks of Σ̂ along the diagonal, and averaging over the resultant subblocks.

Throughout this paper we adhere to the convention that ωij refers to the ijth element in a matrix Ω.
Consider the parameter space Fα, with associated probability measure Pα, given by:

Fα = Fα(M0,M) =

{
Ω : max

j

∑
i

{|ωij | : |i− j| ≥ k} ≤Mk−α for all k, λi(Ω) ∈ [M−1
0 ,M0]

}
(3)

where λi(Ω) denotes the ith eigenvalue of Ω, with λi ≥ λj for all i ≤ j. We also constrain
α > 0,M > 0,M0 > 0. Observe that this parameter space is nearly identical to that given in
Equation (3) of [6]. We take on an additional assumption on the minimum eigenvalue of Ω ∈ Fα,
which is used in the technical arguments where the risk of estimating Ω under the spectral norm is
bounded in terms of the error of estimating Σ = Ω−1.

Observe that the parameter space intuitively dictates that the magnitude of the entries of Ω decays in
power law as we move away from the diagonal. As with the parameter space for bandable covariance
matrices given in [6], we may understand α in (3) as a rate of decay for the precision entries ωij as
they move away from the diagonal; it can also be understood in terms of the smoothness parameter in
nonparametric estimation [19]. As will be discussed in Section 3, the optimal choice of k depends on
both n and the decay rate α.

2.1 Estimation procedure

We now detail the algorithm for obtaining minimax estimates for bandable Ω, which is also given as
pseudo-code2 in Algorithm 1.

The algorithm is inspired by the tapering procedure introduced by Cai, Zhang, and Zhou [6] in the
case of covariance matrices, with modifications in order to estimate the precision matrix. Estimating

2 In the pseudo-code, we adhere to the NumPy convention (1) that arrays are zero-indexed, (2) that slicing an
array arr with the operation arr[a:b] includes the element indexed at a and excludes the element indexed at
b, and (3) that if b is greater than the length of the array, only elements up to the terminal element are included,
with no errors.
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the precision matrix introduces new difficulties as we do not have direct access to the estimates of
elements of the precision matrix. For a given integer k, 1 ≤ k ≤ p, we construct a tapering estimator
as follows. First, we calculate the maximum likelihood estimator for the covariance, as given in
Equation (2). Then, for all integers 1−m ≤ l ≤ p and m ≥ 1, we define the matrices with square
blocks of size at most 3m along the diagonal:

Σ̂
(3m)
l−m = (σ̂ij1{l −m ≤ i < l + 2m, l −m ≤ j < l + 2m})p×p (4)

For each Σ̂
(3m)
l−m , we replace the nonzero block with its inverse to obtain Ω̆

(3m)
l−m . For a given l, we

refer to the individual entries of this intermediate matrix as follows:

Ω̆
(3m)
l−m = (ω̆lij1{l −m ≤ i < l + 2m, l −m ≤ j < l + 2m})p×p (5)

For each l, we then keep only the central m×m subblock of Ω̆
(3m)
l−m to obtain the blockwise estimate

Ω̂
(m)
l :

Ω̂
(m)
l = (ω̆lij1{l ≤ i < l +m, l ≤ j < l +m})p×p (6)

Note that this notation allows for l < 0 and l + m > p; in each case, this out-of-bounds indexing
allows us to cleanly handle corner cases where the subblocks are smaller than m×m.

For a given bandwidth k (assume k is divisible by 2), we calculate these blockwise estimates for both
m = k and m = k

2 . Finally, we construct our estimator by averaging over the block matrices:

Ω̂k =
2

k
·

 p∑
l=1−k

Ω̂
(k)
l −

p∑
l=1−k/2

Ω̂
(k/2)
l

 (7)

We note that within k
2 entries of the diagonal, each entry is effectively the sum of k2 estimates, and as

we move from k
2 to k from the diagonal, each entry is progressively the sum of one fewer entry.

Therefore, within k
2 of the diagonal, the entries are not tapered; and from k

2 to k of the diagonal, the
entries are linearly tapered to zero. The analysis of this estimator makes careful use of this tapering
schedule and the fact that our estimator is constructed through the average of block matrices of size
at most k × k.

2.2 Implementation details

The naive algorithm performs O(p + k) inversions of square matrices with size at most 3k. This
method can be sped up considerably through an application of the Woodbury matrix identity and
the Schur complement relation [21, 2]. Doing so reduces the computational complexity of the
algorithm fromO(pk3) toO(pk2). We discuss the details of modified algorithm and its computational
complexity below.

Suppose we have Ω̆
(3m)
l−m and are interested in obtaining Ω̆

(3m)
l−m+1. We observe that the nonzero block

of Ω̆
(3m)
l−m+1 corresponds to the inverse of the nonzero block of Σ̂

(3m)
l−m+1, which only differs by one

row and one column from Σ̂
(3m)
l−m , the matrix for which the inverse of the nonzero block corresponds

to Ω̆
(3m)
l−m , which we have already computed. We may understand the movement from Σ̂

(3m)
l−m , Ω̆

(3m)
l−m

to Σ̂
(3m)
l−m+1 (to which we already have direct access) and Ω̆

(3m)
l−m+1 as two rank-1 updates. Let us view

the nonzero blocks of Σ̂
(3m)
l−m , Ω̆

(3m)
l−m as the block matrices:

NonZero(Σ̂
(3m)
l−m ) =

[
A ∈ R1×1 B ∈ R1×(3m−1)

B> ∈ R(3m−1)×1 C ∈ R(3m−1)×(3m−1)

]
NonZero(Ω̆

(3m)
l−m ) =

[
Ã ∈ R1×1 B̃ ∈ R1×(3m−1)

B̃> ∈ R(3m−1)×1 C̃ ∈ R(3m−1)×(3m−1)

]
The Schur complement relation tells us that given Σ̂3m

l−m, Ω̆
(3m)
l−m , we may trivially compute C−1 as

follows:

C−1 =
(
C̃−1 +B>A−1B

)−1

= C̃ − C̃B>BC̃

A+BC̃B>
(8)
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Algorithm 1 Blockwise Inversion Technique

function FITBLOCKWISE(Σ̂, k)
Ω̂← 0p×p
for l ∈ [1− k, p) do

Ω̂← Ω̂ + BLOCKINVERSE(Σ̂, k, l)
end for
for l ∈ [1− bk/2c, p) do

Ω̂← Ω̂− BLOCKINVERSE(Σ̂, bk/2c, l)
end for
return Ω̂

end function

function BLOCKINVERSE(Σ̂, m, l)
. Obtain 3m× 3m block inverse.

s← max{l −m, 0}
f ← min{p, l + 2m}
M ←

(
Σ̂[s:f, s:f]

)−1

. Preserve central m×m block of inverse.
s← m+ min{l −m, 0}
N ←M[s:s+m, s:s+m]

. Restore block inverse to appropriate indices.
P ← 0p×p
s← max{l, 0}
f ← min{l +m, p}
P[s:f, s:f] = N
return P

end function

by the Woodbury matrix identity, which gives an efficient algorithm for computing the inverse of
a matrix subject to a low-rank (in this case, rank-1) perturbation. This allows us to move from the
inverse of a matrix in R3m×3m to the inverse of a matrix in R(3m−1)×(3m−1) where a row and column
have been removed. A nearly identical argument allows us to move from the R(3m−1)×(3m−1) matrix
to an R3m×3m matrix where a row and column have been appended, which gives us the desired block
of Ω̆

(3m)
l−m+1.

With this modification to the algorithm, we need only compute the inverse of a square matrix of width
2m at the beginning of the routine; thereafter, every subsequent block inverse may be computed
through simple rank one matrix updates.

2.3 Complexity details

We now detail the factor of k improvement in computational complexity provided through the
application of the Woodbury matrix identity and the Schur complement relation introduced in Section
2.2. Recall that the naive implementation of Algorithm 1 involves O(p + k) inversions of square
matrices of size at most 3k, each of which cost O(k3). Therefore, the overall complexity of the naive
algorithm is O(pk3), as k < p.

Now, consider the Woodbury-Schur-improved algorithm. The initial single inversion of a 2k × 2k
matrix costs O(k3). Thereafter, we perform O(p + k) updates of the form given in Equation (8).
These updates simply require vector matrix operations. Therefore, the update complexity on each
iteration is O(k2). It follows that the overall complexity of the amended algorithm is O(pk2).

3 Rate optimality under the spectral norm

Here we present the results that establish the rate optimality of the above estimator under the spectral
norm. For symmetric matrices A, the spectral norm, which corresponds to the largest singular value
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of A, coincides with the `2-operator norm. We establish optimality by first deriving an upper bound
in high probability using the blockwise inversion estimator defined in Section 2.1. We then give
a matching lower bound in expectation by carefully constructing two sets of multivariate normal
distributions and then applying Assouad’s lemma and Le Cam’s method.

3.1 Upper bound under the spectral norm

In this section we derive a risk upper bound for the tapering estimator defined in (7) under the operator
norm. We assume the distribution of the xi’s is subgaussian; that is, there exists ρ > 0 such that:

P
{
|v>(xi −Exi)| > t

}
≤ e−

t2ρ
2 (9)

for all t > 0 and ‖v‖2 = 1. Let Pα = Pα(M0,M, ρ) denote the set of distributions of xi that satisfy
(3) and (9).
Theorem 3.1. The tapering estimator Ω̂k, defined in (7), of the precision matrix Ωp×p with p >
n

1
2α+1 satisfies:

sup
Pα

P

{∥∥∥Ω̂k − Ω
∥∥∥2

≥ C k + log p

n
+ Ck−2α

}
= O

(
p−15

)
(10)

with k = o(n), log p = o(n), and a universal constant C > 0.

In particular, the estimator Ω̂ = Ω̂k with k = n
1

2α+1 satisfies:

sup
Pα

P

{∥∥∥Ω̂k − Ω
∥∥∥2

≥ Cn−
2α

2α+1 + C
log p

n

}
= O

(
p−15

)
(11)

Given the result in Equation (10), it is easy to show that setting k = n
1

2α+1 yields the optimal rate by
balancing the size of the inside-taper and outside-taper terms, which gives Equation (11).

The proof of this theorem, which is given in the supplementary material, relies on the fact that when
we invert a 3k × 3k block, the difference between the central k × k block and the corresponding
k× k block which would have been obtained by inverting the full matrix has a negligible contribution
to the risk. As a result, we are able to take concentration bounds on the operator norm of subgaussian
matrices, customarily used for bounding the norm of the difference of covariance matrices, and apply
them instead to differences of precision matrices to obtain our result.

The key insight is that we can relate the spectral norm of a k × k subblock produced by our estimator
to the spectral norm of the corresponding k × k subblock of the covariance matrix, which allows us
to apply concentration bounds from classical random matrix theory. Moreover, it turns out that if we
apply the tapering schedule induced by the construction of our estimator to the population parameter
Ω ∈ Fα, we may express the tapered population Ω as a sum of block matrices in exactly the same
way that our estimator is expressed as a sum of block matrices.

In particular, the tapering schedule is presented next. Suppose a population precision matrix Ω ∈ Fα.
Then, we denote the tapered version of Ω by ΩA, and construct:

ΩA = (ωij · vij)p×p
ΩB = (ωij · (1− vij))p×p

where the tapering coefficients are given by:

vij =


1 for |i− j| < k

2
|i−j|
k/2 for k2 ≤ |i− j| < k

0 for |i− j| ≥ k
We then handle the risk of estimating the inside-taper ΩA and the risk of estimating the outside-taper
ΩB separately.

Because our estimator and the population parameter are both averages over k × k block matrices
along the diagonal, we may then take a union bound over the high probability bounds on the spectral
norm deviation for the k× k subblocks to obtain a high probability bound on the risk of our estimator.
We refer the reader to the longer version of the paper for further details [11].
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3.2 Lower bound under the spectral norm

In Section 3.1, we established Theorem 3.1, which states that our estimator achieves the rate of
convergence n−

2α
2α+1 under the spectral norm by using the optimal choice of k = n

1
2α+1 . Next we

demonstrate a matching lower bound, which implies that the upper bound established in Equation
(11) is tight up to constant factors.

Specifically, for the estimation of precision matrices in the parameter space given by Equation (3),
the following minimax lower bound holds.

Theorem 3.2. The minimax risk for estimating the precision matrix Ω over Pα under the operator
norm satisfies:

inf
Ω̂

sup
Pα

E
∥∥∥Ω̂− Ω

∥∥∥2

≥ cn−
2α

2α+1 + c
log p

n
(12)

As in many information theoretic lower bounds, we first identify a subset of our parameter space that
captures most of the complexity of the full space. We then establish an information theoretic limit
on estimating parameters from this subspace, which yields a valid minimax lower bound over the
original set.

Specifically, for our particular parameter space Fα, we identify two subparameter spaces, F11,F12.
The first, F11, is a collection of 2k matrices with varying levels of density. To this collection, we
apply Assouad’s lemma obtain a lower bound with rate n−

2α
2α+1 . The second, F12, is a collection of

diagonal matrices, to which we apply Le Cam’s method to derive a lower bound with rate log p
n .

The rate given in Theorem 3.2 is therefore a lower bound on minimax rate for estimating the union
(F11 ∪ F12) = F1 ⊂ Fα. The full details of the subparameter space construction and derivation of
lower bounds may be found in the full-length version of the paper [11].

4 Experimental results

We implemented the blockwise inversion technique in NumPy and ran simulations on synthetic
datasets. Our experiments confirm that even in the finite sample case, the blockwise inversion
technique achieves the theoretical rates. In the experiments, we draw observations from a multivariate
normal distribution with precision parameter Ω ∈ Fα, as defined in (3). Following [6], for given
constants ρ, α, p, we consider precision matrices Ω = (ωij)1≤i,j≤p of the form:

ωij =

{
1 for 1 ≤ i = j ≤ p
ρ|i− j|−α−1 for 1 ≤ i 6= j ≤ p (13)

Though the precision matrices considered in our experiments are Toeplitz, our estimator does not
take advantage of this knowledge. We choose ρ = 0.6 to ensure that the matrices generated are
non-negative definite.

In applying the tapering estimator as defined in (7), we choose the bandwidth to be k = bn
1

2α+1 c,
which gives the optimal rate of convergence, as established in Theorem 3.1.

In our experiments, we varied α, n, and p. For our first set of experiments, we allowed α to take
on values in {0.2, 0.3, 0.4, 0.5}, n to take values in {250, 500, 750, 1000}, and p to take values in
{100, 200, 300, 400}. Each setting was run for five trials, and the averages are plotted with error
bars to show variability between experiments. We observe in Figure 1a that the spectral norm error
increases linearly as log p increases, confirming the log p

n term in the rate of convergence.

Building upon the experimental results from the first set of simulations, we provide an additional
sets of trials for the α = 0.2, p = 400 case, with n ∈ {11000, 3162, 1670}. These sample sizes were
chosen so that in Figure 1b, there is overlap between the error plots for α = 0.2 and the other α
regimes3. As with Figure 1a, Figure 1b confirms the minimax rate of convergence given in Theorem
3.1. Namely, we see that plotting the error with respect to n−

2α
2α+1 results in linear plots with almost

3 For the α = 0.2, p = 400 case, we omit the settings where n ∈ {250, 500, 750} from Figure 1b to
improve the clarity of the plot.
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(a) Spectral norm error as log p changes.
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Figure 1: Experimental results. Note that the plotted error grows linearly as a function of log p and
n−

2α
2α+1 , respectively, matching the theoretical results; however, the linear relationship is less clear in

the α = 0.2 case, due to the subtle interplay of the error terms.

identical slopes. We note that in both plots, there is a small difference in the behavior for the case
α = 0.2. This observation can be attributed to the fact that for such a slow decay of the precision
matrix bandwidth, we have a more subtle interplay between the bias and variance terms presented in
the theorems above.

5 Discussion

In this paper we have presented minimax upper and lower bounds for estimating banded precision ma-
trices after observing n samples drawn from a p-dimensional subgaussian distribution. Furthermore,
we have provided a computationally efficient algorithm that achieves the optimal rate of convergence
for estimating a banded precision matrix under the operator norm. Theorems 3.1 and 3.2 together
establish that the minimax rate of convergence for estimating precision matrices over the parameter
space Fα given in Equation (3) is n−

2α
2α+1 + log p

n , where α dictates the bandwidth of the precision
matrix.

The rate achieved in this setting parallels the results established for estimating a bandable covariance
matrix [6]. As in that result, we observe that different regimes dictate which term dominates in the
rate of convergence. In the setting where log p is of a lower order than n

1
2α+1 , the n−

2α
2α+1 term

dominates, and the rate of convergence is determined by the smoothness parameter α. However, when
log p is much larger than n

1
2α+1 , p has a much greater influence on the minimax rate of convergence.

Overall, we have shown the performance gains that may be obtained through added structural
constraints. An interesting line of future work will be to explore algorithms that uniformly exhibit
a smooth transition between fully banded models and sparse models on the precision matrix. Such
methods could adapt to the structure and allow for mixtures between banded and sparse precision
matrices. Another interesting direction would be in understanding how dependencies between the n
observations will influence the error rate of the estimator.

Finally, the results presented here apply to the case of subgaussian random variables. Unfortunately,
moving away from the Gaussian setting in general breaks the connection between precision matrices
and graph structure. Hence, a fruitful line of work will be to also develop methods that can be applied
to estimating the banded graphical model structure with general exponential family observations.
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