
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2664–2675

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

2664

Global Transition-based Non-projective Dependency Parsing

Carlos Gómez-Rodríguez

Universidade da Coruña

carlos.gomez@udc.es

Tianze Shi

Cornell University

tianze@cs.cornell.edu

Lillian Lee

Cornell University

llee@cs.cornell.edu

Abstract

Shi, Huang, and Lee (2017a) obtained

state-of-the-art results for English and

Chinese dependency parsing by com-

bining dynamic-programming implemen-

tations of transition-based dependency

parsers with a minimal set of bidirec-

tional LSTM features. However, their re-

sults were limited to projective parsing.

In this paper, we extend their approach

to support non-projectivity by providing

the first practical implementation of the

MH 4 algorithm, an Opn4q mildly non-

projective dynamic-programming parser

with very high coverage on non-projective

treebanks. To make MH 4 compatible with

minimal transition-based feature sets, we

introduce a transition-based interpretation

of it in which parser items are mapped

to sequences of transitions. We thus ob-

tain the first implementation of global de-

coding for non-projective transition-based

parsing, and demonstrate empirically that

it is more effective than its projective

counterpart in parsing a number of highly

non-projective languages.

1 Introduction

Transition-based dependency parsers are a popu-

lar approach to natural language parsing, as they

achieve good results in terms of accuracy and ef-

ficiency (Yamada and Matsumoto, 2003; Nivre

and Scholz, 2004; Zhang and Nivre, 2011; Chen

and Manning, 2014; Dyer et al., 2015; Andor

et al., 2016; Kiperwasser and Goldberg, 2016).

Until very recently, practical implementations of

transition-based parsing were limited to approx-

imate inference, mainly in the form of greedy

search or beam search. While cubic-time exact in-

ference algorithms for several well-known projec-

tive transition systems had been known since the

work of Huang and Sagae (2010) and Kuhlmann

et al. (2011), they had been considered of theoret-

ical interest only due to their incompatibility with

rich feature models: incorporation of complex fea-

tures resulted in jumps in asymptotic runtime com-

plexity to impractical levels.

However, the recent popularization of bi-

directional long-short term memory networks (bi-

LSTMs; Hochreiter and Schmidhuber, 1997) to

derive feature representations for parsing, given

their capacity to capture long-range information,

has demonstrated that one may not need to use

complex feature models to obtain good accu-

racy (Kiperwasser and Goldberg, 2016; Cross and

Huang, 2016). In this context, Shi et al. (2017a)

presented an implementation of the exact infer-

ence algorithms of Kuhlmann et al. (2011) with

a minimal set of only two bi-LSTM-based feature

vectors. This not only kept the complexity cubic,

but also obtained state-of-the-art results in English

and Chinese parsing.

While their approach provides both accurate

parsing and the flexibility to use any of greedy,

beam, or exact decoding with the same underly-

ing transition systems, it does not support non-

projectivity. Trees with crossing dependencies

make up a significant portion of many treebanks,

going as high as 63% for the Ancient Greek tree-

bank in the Universal Dependencies1 (UD) dataset

version 2.0 and averaging around 12% over all

languages in UD 2.0. In this paper, we ex-

tend Shi et al.’s (2017a) approach to mildly non-

projective parsing in what, to our knowledge, is

the first implementation of exact decoding for a

non-projective transition-based parser.

As in the projective case, a mildly non-

1http://universaldependencies.org/

2665

projective decoder has been known for several

years (Cohen et al., 2011), corresponding to

a variant of the transition-based parser of At-

tardi (2006). However, its Opn7q runtime —

or the Opn6q of a recently introduced improved-

coverage variant (Shi et al., 2018) — is still pro-

hibitively costly in practice. Instead, we seek a

more efficient algorithm to adapt, and thus de-

velop a transition-based interpretation of Gómez-

Rodríguez et al.’s (2011) MH 4 dynamic pro-

gramming parser, which has been shown to pro-

vide very good non-projective coverage in Opn4q
time (Gómez-Rodríguez, 2016). While the MH 4

parser was originally presented as a non-projective

generalization of the dynamic program that later

led to the arc-hybrid transition system (Gómez-

Rodríguez et al., 2008; Kuhlmann et al., 2011), its

own relation to transition-based parsing was not

known. Here, we show that MH 4 can be inter-

preted as exploring a subset of the search space

of a transition-based parser that generalizes the

arc-hybrid system, under a mapping that differs

from the “push computation” paradigm used by

the previously-known dynamic-programming de-

coders for transition systems. This allows us to

extend Shi et al. (2017a)’s work to non-projective

parsing, by implementing MH 4 with a minimal set

of transition-based features.

Experimental results show that our approach

outperforms the projective approach of Shi

et al. (2017a) and maximum-spanning-tree non-

projective parsing on the most highly non-

projective languages in the CoNLL 2017 shared-

task data that have a single treebank. We also

compare with the third-order 1-Endpoint-Crossing

(1EC) parser of Pitler (2014), the only other

practical implementation of an exact mildly non-

projective decoder that we know of, which also

runs in Opn4q but without a transition-based in-

terpretation. We obtain comparable results for

these two algorithms, in spite of the fact that

the MH 4 algorithm is notably simpler than 1EC.

The MH 4 parser remains effective in parsing pro-

jective treebanks, while our baseline parser, the

fully non-projective maximum spanning tree al-

gorithm, falls behind due to its unnecessarily

large search space in parsing these languages.

Our code, including our re-implementation of the

third-order 1EC parser with neural scoring, is

available at https://github.com/tzshi/

mh4-parser-acl18.

....Jack ..Dempseys ..are ..not ..an ..easy ..cichlid ..to ..breed.

compound

.

nsubj

.

cop

.

advmod

.

det

.

amod

.

root

.

mark

.

advcl

Figure 1: A non-projective dependency parse from

the UD 2.0 English treebank.

2 Non-projective Dependency Parsing

In dependency grammar, syntactic structures are

modeled as word-word asymmetrical subordinate

relations among lexical entries (Kübler et al.,

2009). These relations can be represented in a

graph. For a sentence w “ w1, ..., wn, we first de-

fine a corresponding set of nodes t0, 1, 2, ..., nu,

where 0 is an artificial node denoting the root of

the sentence. Dependency relations are encoded

by edges of the form ph,mq, where h is the head

and m the modifier of the bilexical subordinate re-

lation.2

As is conventional, we assume two more prop-

erties on dependency structures. First, each word

has exactly one syntactic head, and second, the

structure is acyclic. As a consequence, the edges

form a directed tree rooted at node 0.

We say that a dependency structure is projec-

tive if it has no crossing edges. While in the

CoNLL and Stanford conversions of the English

Penn Treebank, over 99% of the sentences are pro-

jective (Chen and Manning, 2014) — see Fig. 1 for

a non-projective English example — for other lan-

guages’ treebanks, non-projectivity is a common

occurrence (see Table 3 for some statistics). This

paper is targeted at learning parsers that can han-

dle non-projective dependency trees.

3 MH 4 Deduction System and Its

Underlying Transition System

3.1 The MH 4 Deduction System

The MH 4 parser is the instantiation for k “ 4

of Gómez-Rodríguez et al.’s (2011) more general

MH k parser. MH k stands for “multi-headed with

at most k heads per item”: items in its deduc-

tion system take the form rh1, . . . , hps for p ď k,

indicating the existence of a forest of p depen-

dency subtrees headed by h1, . . . , hp such that

their yields are disjoint and the union of their

2To simplify exposition here, we only consider the unla-
beled case. We use a separately-trained labeling module to
obtain labeled parsing results in §5.

2666

Axiom:

r0, 1s
SHIFT:

rh1, . . . , hms

rhm, hm ` 1s
phm ď nq COMBINE:

rh1, . . . , hms rhm, hm`1, . . . , hps

rh1, . . . , hps
pp ď kq

Goal:

r0, n ` 1s
LINK:

rh1, . . . , hms

rh1, . . . , hj´1, hj`1, . . . , hms
hi Ñ hjp1 ď i ď m ^ 1 ă j ă m ^ j ‰ iq

Figure 2: MH k’s deduction steps.

yields is the contiguous substring h1 . . . hp of the

input. Deduction steps, shown in Figure 2, can be

used to join two such forests that have an endpoint

in common via graph union (COMBINE); or to add

a dependency arc to a forest that attaches an inte-

rior head as a dependent of any of the other heads

(LINK).

In the original formulation by Gómez-

Rodríguez et al. (2011), all valid items of the form

ri, i ` 1s are considered to be axioms. In contrast,

we follow Kuhlmann et al.’s (2011) treatment

of MH 3: we consider r0, 1s as the only axiom

and include an extra SHIFT step to generate the

rest of the items of that form. Both formulations

are equivalent, but including this SHIFT rule

facilitates giving the parser a transition-based

interpretation.

Higher values of k provide wider coverage of

non-projective structures at an asymptotic runtime

complexity of Opnkq. When k is at its minimum

value of 3, the parser covers exactly the set of pro-

jective trees, and in fact, it can be seen as a trans-

formation3 of the deduction system described in

Gómez-Rodríguez et al. (2008) that gave rise to

the projective arc-hybrid parser (Kuhlmann et al.,

2011). For k ě 4, the parser covers an increas-

ingly larger set of non-projective structures. While

a simple characterization of these sets has been

lacking4, empirical evaluation on a large number

of treebanks (Gómez-Rodríguez, 2016) has shown

MH k to provide the best known tradeoff between

asymptotic complexity and efficiency for k ą 4.

When k “ 4, its coverage is second only to the

1-Endpoint-Crossing parser of Pitler et al. (2013).

Both parsers fully cover well over 80% of the non-

projective trees observed in the studied treebanks.

3Formally, it is a step refinement; see Gómez-Rodríguez
et al. (2011).

4This is a common issue with parsers based on the general
idea of arcs between non-contiguous heads, such as those de-
riving from Attardi (2006).

3.2 The MH 4 Transition System

Kuhlmann et al. (2011) show how the items of a

variant of MH 3 can be given a transition-based in-

terpretation under the “push computation” frame-

work, yielding the arc-hybrid projective transi-

tion system. However, such a derivation has not

been made for the non-projective case (k ą 3),

and the known techniques used to derive previous

associations between tabular and transition-based

parsers do not seem to be applicable in this case.

The specific issue is that the deduction systems of

Kuhlmann et al. (2011) and Cohen et al. (2011)

have in common that the structure of their deriva-

tions is similar to that of a Dyck (or balanced-

brackets) language, where steps corresponding to

shift transitions are balanced with those corre-

sponding to reduce transitions. This makes it pos-

sible to group derivation subtrees, and the transi-

tion sequences that they yield, into “push compu-

tations” that increase the length of the stack by

a constant amount. However, this does not seem

possible in MH 4.

Instead, we derive a transition-based interpreta-

tion of MH 4 by a generalization of that of MH 3

that departs from push computations.

To do so, we start with the MH 3 interpretation

of an item ri, js given by Kuhlmann et al. (2011).

This item represents a set of computations (tran-

sition sequences) that start from a configuration

of the form pσ, i|β,Aq (where σ is the stack and

i|β is the buffer, with i being the first buffer node)

and take the parser to a configuration of the form

pσ|i, j|β1, Aq. That is, the computation has the net

effect of placing node i on top of the previous con-

tents of the stack, and it ends in a state where the

first buffer element is j.

Under this item semantics, the COMBINE de-

duction step of the MH 3 parser (i.e., the instantia-

tion of the one in Fig. 2 for k “ 3) simply con-

catenates transition sequences. The SHIFT step

generates a sequence with a single arc-hybrid sh

2667

transition:

sh : pσ, hm|β,Aq $ pσ|hm, β, Aq

and the two possible instantiations of the COM-

BINE step when k “ 3 take the antecedent tran-

sition sequence and add a transition to it, namely,

one of the two arc-hybrid reduce transitions. Writ-

ten in the context of the node indexes used in Fig-

ure 2, these are the following:

pσ|h1|h2, h3|β,Aq $ pσ|h1, h3|β,A Y th3 Ñ h2uq

pσ|h1|h2, h3|β,Aq $ pσ|h1, h3|β,A Y th1 Ñ h2uq

where h1 and h3 respectively can be simplified out

to obtain the well-known arc-hybrid transitions:

la : pσ|h2, h3|β,Aq $ pσ, h3|β,A Y th3 Ñ h2uq

ra : pσ|h1|h2, β, Aq $ pσ|h1, β, A Y th1 Ñ h2uq

Now, we assume the following generalization

of the item semantics: an item rh1, . . . , hms
represents a set of computations that start

from a configuration of the form pσ, h1|β,Aq
and lead to a configuration of the form

pσ|h1| . . . |hm´1, hm|β1, Aq. Note that this

generalization no longer follows the “push com-

putation” paradigm of Kuhlmann et al. (2011) and

Cohen et al. (2011) because the number of nodes

pushed onto the stack depends on the value of m.

Under this item semantics, the SHIFT and COM-

BINE steps have the same interpretation as for

MH 3. In the case of the LINK step, following the

same reasoning as for the MH 3 case, we obtain

the following transitions:

la : pσ|h3, h4|β,Aq $ pσ, h4|β,A Y th4 Ñ h3uq

ra : pσ|h2|h3, β, Aq $ pσ|h2, β, A Y th2 Ñ h3uq

la
1 : pσ|h2|h3, h4|β,Aq $

pσ|h3, h4|β,A Y th3 Ñ h2uq

ra
1 : pσ|h1|h2|h3, β, Aq $

pσ|h1|h3, β, A Y th1 Ñ h2uq

la2 : pσ|h2|h3, h4|β,Aq $

pσ|h3, h4|β,A Y th4 Ñ h2uq

ra2 : pσ|h1|h2|h3, β, Aq $

pσ|h1|h2, β, A Y th1 Ñ h3uq

These transitions give us the MH 4 transition sys-

tem: a parser with four projective reduce tran-

sitions (la,ra,la1,ra1) and two Attardi-like, non-

adjacent-arc reduce transitions (la2 and ra2).

It is worth mentioning that this MH 4 transition

system we have obtained is the same as one of

the variants of Attardi’s algorithm introduced by

Shi et al. (2018), there called ALLs0s1. However,

in that paper they show that it can be tabularized

in Opn6q using the push computation framework.

Here, we have derived it as an interpretation of the

Opn4q MH 4 parser.

However, in this case the dynamic program-

ming algorithm does not cover the full search

space of the transition system: while each item in

the MH 4 parser can be mapped into a computation

of this MH 4 transition-based parser, the opposite

is not true. This tree:

....0 ..1 ..2 ..3 ..4 ..5.....

can be parsed by the transition system using the

computation

shp0q; shp1q; shp2q; la2p3Ñ1q; shp3q; shp4q;

la2p5Ñ3q; shp5q; rap4Ñ5q; rap2Ñ4q; rap0Ñ2q

but it is not covered by the dynamic programming

algorithm, as no deduction sequence will yield an

item representing this transition sequence. As we

will see, this issue will not prevent us from im-

plementing a dynamic-programming parser with

transition-based scoring functions, or from achiev-

ing good practical accuracy.

4 Model

Given the transition-based interpretation of the

MH 4 system, the learning objective becomes to

find a computation that gives the gold-standard

parse. For each sentence w1, . . . , wn, we train

parsers to produce the transition sequence t˚ that

corresponds to the annotated dependency struc-

ture. Thus, the model consists of two components:

a parameterized scorer Sptq, and a decoder that

finds a sequence t̂ as prediction based on the scor-

ing.

As discussed by Shi et al. (2017a), there exists

some tension between rich-feature scoring mod-

els and choices of decoders. Ideally, a globally-

optimal decoder finds the maximum-scoring tran-

sition sequence t̂ without brute-force searching

the exponentially-large output space. To keep the

runtime of our exact decoder at a practical low-

order polynomial, we want its feature set to be

2668

Features ts0,b0u ts1, s0,b0u ts2, s1, s0,b0u

UAS 49.83 85.17 85.27

Table 1: Performance of local parsing models with

varying number of features. We report average

UAS over 10 languages on UD 2.0.

minimal, consulting as few stack and buffer po-

sitions as possible. In what follows, we use s0 and

s1 to denote the top two stack items and b0 and b1
to denote the first two buffer items.

4.1 Scoring and Minimal Features

This section empirically explores the lower limit

on the number of necessary positional features.

We experiment with both local and global de-

coding strategies. The parsers take features ex-

tracted from parser configuration c, and score each

valid transition t with Spt; cq. The local parsers

greedily take transitions with the highest score un-

til termination, while the global parsers use the

scores to find the globally-optimal solutions t̂ “
argmaxt Sptq, where Sptq is the sum of scores

for the component transitions.

Following prior work, we employ bi-LSTMs for

compact feature representation. A bi-LSTM runs

in both directions on the input sentence, and as-

signs a context-sensitive vector encoding to each

token in the sentence: w1, . . . ,wn. When we need

to extract features, say, s0, from a particular stack

or buffer position, say s0, we directly use the bi-

LSTM vector wis0
, where is0 gives the index of

the subroot of s0 into the sentence.

Shi et al. (2017a) showed that feature vectors

ts0,b0u suffice for MH 3. Table 1 and Table 2

show the use of small feature sets for MH 4, for

local and global parsing models, respectively. For

a local parser to exhibit decent performance, we

need at least ts1, s0,b0u, but adding s2 on top of

that does not show any significant impact on the

performance. Interestingly, in the case of global

models, the two-vector feature set ts0,b0u already

suffices. Adding s1 to the global setting (column

“Hybrid” in Table 2) seems attractive, but entails

resolving a technical challenge that we discuss in

the following section.

4.2 Global Decoder

In our transition-system interpretation of MH k, sh

transitions correspond to SHIFT and reduce tran-

sitions reflect the LINK steps. Since the SHIFT

Features ts0,b0u Hybrid

UAS 86.79 87.27

Table 2: Performance of global parsing models

with varying number of features.

conclusions lose the contexts needed to score the

transitions, we set the scores for all SHIFT rules to

zero and delegate the scoring of the sh transitions

to the COMBINE steps, as as in Shi et al. (2017a);

for example,

rh1, h2s : v1 rh2, h3, h4s : v2

rh1, h2, h3, h4s : v1 ` v2 ` Spsh; th1,h2uq

Here the transition sequence denoted by

rh2, h3, h4s starts from a sh, with h1 and

h2 taking the s0 and b0 positions. If we further

wish to access s1, such information is not readily

available in the deduction step, apparently re-

quiring extra bookkeeping that pushes the space

and time complexity to an impractical Opn4q and

Opn5q, respectively. But, consider the scoring for

the reduce transitions in the LINK steps:

rh1, h2, h3, h4s : v

rh1, h2, h4s : v ` Spla; th2,h3,h4uq

rh1, h2, h3s : v

rh1, h3s : v ` Spla; th1,h2,h3uq

The deduction steps already keep indices for s1
(h2 in the first rule, h1 in the second) and thus pro-

vide direct access without any modification. To re-

solve the conflict between including s1 for richer

representations and the unavailability of s1 in scor-

ing the sh transitions in the COMBINE steps, we

propose a hybrid scoring approach — we use fea-

tures ts0,b0u when scoring a sh transition, and

features ts1, s0,b0u for consideration of reduce

transitions. We call this method MH 4-hybrid,

in contrast to MH 4-two, where we simply take

ts0,b0u for scoring all transitions.

4.3 Large-Margin Training

We train the greedy parsers with hinge loss,

and the global parsers with its structured version

(Taskar et al., 2005). The loss function for each

sentence is formally defined as:

max
t̂

`

Sp̂tq ` costpt˚, t̂q ´ Spt˚q
˘

2669

where the margin costpt˚, t̂q counts the number of

mis-attached nodes for taking sequence t̂ instead

of t˚. Minimizing this loss can be thought of as

optimizing for the attachment scores.

The calculation of the above loss function can

be solved as efficiently as the deduction system

if the cost function decomposes into the dynamic

program. We achieve this by replacing the scoring

of each reduce step by its cost-augmented version:

rh1, h2, h3, h4s : v

rh1, h2, h4s : v ` Spla2; th2,h3,h4uq ` ∆

where ∆ “ 1pheadpwh3
q ‰ wh4

q. This loss

function encourages the model to give higher con-

trast between gold-standard and wrong predic-

tions, yielding better generalization results.

5 Experiments

Data and Evaluation We experiment with the

Universal Dependencies (UD) 2.0 dataset used for

the CoNLL 2017 shared task (Zeman et al., 2017).

We restrict our choice of languages to be those

with only one training treebank, for a better com-

parison with the shared task results.5 Among these

languages, we pick the top 10 most non-projective

languages. Their basic statistics are listed in Ta-

ble 3. For all development-set results, we assume

gold-standard tokenization and sentence delimita-

tion. When comparing to the shared task results

on test sets, we use the provided baseline UDPipe

(Straka et al., 2016) segmentation. Our models do

not use part-of-speech tags or morphological tags

as features, but rather leverage such information

via stack propagation (Zhang and Weiss, 2016),

i.e., we learn to predict them as a secondary train-

ing objective. We report unlabeled attachment F1-

scores (UAS) on the development sets for better

focus on comparing our (unlabeled) parsing mod-

ules. We report its labeled variant (LAS), the main

metric of the shared task, on the test sets. For each

experiment setting, we ran the model with 5 dif-

ferent random initializations, and report the mean

and standard deviation. We detail the implementa-

tion details in the supplementary material.

Baseline Systems For comparison, we include

three baseline systems with the same underlying

feature representations and scoring paradigm. All

5When multiple treebanks are available, one can develop
domain transfer strategies, which is not the focus of this work.

the following baseline systems are trained with the

cost-augmented large-margin loss function.

The MH 3 parser is the projective instantiation

of the MH k parser family. This corresponds to

the global version of the arc-hybrid transition sys-

tem (Kuhlmann et al., 2011). We adopt the mini-

mal feature representation ts0,b0u, following Shi

et al. (2017a). For this model, we also implement

a greedy incremental version.

The edge-factored non-projective maximal

spanning tree (MST) parser allows arbitrary

non-projective structures. This decoding approach

has been shown to be very competitive in parsing

non-projective treebanks (McDonald et al., 2005),

and was deployed in the top-performing system at

the CoNLL 2017 shared task (Dozat et al., 2017).

We score each edge individually, with the features

being the bi-LSTM vectors th,mu, where h is

the head, and m the modifier of the edge.

The crossing-sensitive third-order 1EC parser

provides a hybrid dynamic program for parsing

1-Endpoint-Crossing non-projective dependency

trees with higher-order factorization (Pitler, 2014).

Depending on whether an edge is crossed, we can

access the modifier’s grandparent g, head h, and

sibling si. We take their corresponding bi-LSTM

features tg,h,m, siu for scoring each edge. This

is a re-implementation of Pitler (2014) with neural

scoring functions.

Main Results Table 4 shows the development-

set performance of our models as compared with

baseline systems. MST considers non-projective

structures, and thus enjoys a theoretical advan-

tage over projective MH 3, especially for the

most non-projective languages. However, it has

a vastly larger output space, making the selection

of correct structures difficult. Further, the scoring

is edge-factored, and does not take any structural

contexts into consideration. This tradeoff leads

to the similar performance of MST comparing to

MH 3. In comparison, both 1EC and MH 4 are

mildly non-projective parsing algorithms, limiting

the size of the output space. 1EC includes higher-

order features that look at tree-structural contexts;

MH 4 derives its features from parsing configura-

tions of a transition system, hence leveraging con-

texts within transition sequences. These consider-

ations explain their significant improvements over

MST. We also observe that MH 4 recovers more

short dependencies than 1EC, while 1EC is better

at longer-distance ones.

2670

Language Code # Sent. # Words
Sentence Coverage (%) Edge Coverage (%)

Proj. Ó MH 4 1EC Proj. MH 4 1EC

Basque eu 5,396 72,974 66.48 91.48 93.29 95.98 99.27 99.42
Urdu ur 4,043 108,690 76.97 95.89 95.77 98.89 99.83 99.81

Gothic got 3,387 35,024 78.42 97.25 97.58 97.04 99.73 99.75
Hungarian hu 910 20,166 79.01 98.35 97.69 98.51 99.92 99.89

Old Church Slavonic cu 4,123 37,432 80.16 98.33 98.74 97.22 99.80 99.85
Danish da 4,383 80,378 80.56 97.70 98.97 98.60 99.87 99.94
Greek el 1,662 41,212 85.98 99.52 99.40 99.32 99.98 99.98
Hindi hi 13,304 281,057 86.16 98.38 98.95 99.26 99.92 99.94

German de 14,118 269,626 87.07 99.19 99.27 99.15 99.95 99.96
Romanian ro 8,043 185,113 88.61 99.42 99.52 99.42 99.97 99.98

Table 3: Statistics of selected training treebanks from Universal Dependencies 2.0 for the CoNLL 2017

shared task (Zeman et al., 2017), sorted by per-sentence projective ratio.

Global Models Greedy Models
Lan. MH 3 MST MH 4-two MH 4-hybrid 1EC MH 3 MH 4

eu 82.07˘0.17 83.61˘0.16 82.94˘0.24 84.13˘0.13 84.09˘0.19 81.27˘0.20 81.71˘0.33

ur 86.89˘0.18 86.78˘0.13 86.84˘0.26 87.06˘0.24 87.11˘0.11 86.40˘0.16 86.05˘0.18

got 83.72˘0.19 84.74˘0.28 83.85˘0.19 84.59˘0.38 84.77˘0.27 82.28˘0.18 81.40˘0.45

hu 83.05˘0.17 82.81˘0.49 83.69˘0.20 84.59˘0.50 83.48˘0.27 81.75˘0.47 80.75˘0.54

cu 86.70˘0.30 88.02˘0.25 87.57˘0.14 88.09˘0.28 88.27˘0.32 86.05˘0.23 86.01˘0.11

da 85.09˘0.16 84.68˘0.36 85.45˘0.43 85.77˘0.39 85.77˘0.16 83.90˘0.24 83.59˘0.06

el 87.82˘0.24 87.27˘0.22 87.77˘0.20 87.83˘0.36 87.95˘0.23 87.14˘0.25 86.95˘0.25

hi 93.75˘0.14 93.91˘0.26 93.99˘0.15 94.27˘0.08 94.24˘0.04 93.44˘0.09 93.02˘0.10

de 86.46˘0.13 86.34˘0.24 86.53˘0.22 86.89˘0.17 86.95˘0.32 84.99˘0.26 85.27˘0.32

ro 89.34˘0.27 88.79˘0.43 89.25˘0.15 89.53˘0.20 89.52˘0.25 88.76˘0.30 87.97˘0.31

Avg. 86.49 86.69 86.79 87.27 87.21 85.60 85.27

Table 4: Experiment results (UAS, %) on the UD 2.0 development set. Bold: best result per language.

In comparison to MH 4-two, the richer feature

representation of MH 4-hybrid helps in all our lan-

guages.

Interestingly, MH 4 and MH 3 react differently

to switching from global to greedy models. MH 4

covers more structures than MH 3, and is naturally

more capable in the global case, even when the

feature functions are the same (MH 4-two). How-

ever, its greedy version is outperformed by MH 3.

We conjecture that this is because MH 4 explores

only the same number of configurations as MH 3,

despite the fact that introducing non-projectivity

expands the search space dramatically.

Comparison with CoNLL Shared Task Results

(Table 5) We compare our models on the test

sets, along with the best single model (#1; Dozat

et al., 2017) and the best ensemble model (#2; Shi

et al., 2017b) from the CoNLL 2017 shared task.

MH 4 outperforms 1EC in 7 out of the 10 lan-

guages. Additionally, we take our non-projective

parsing models (MST, MH 4-hybrid, 1EC) and

combine them into an ensemble. The average re-

sult is competitive with the best CoNLL submis-

sions. Interestingly, Dozat et al. (2017) uses fully

non-projective parsing algorithms (MST), and our

ensemble system sees larger gains in the more

non-projective languages, confirming the potential

benefit of global mildly non-projective parsing.

Results on Projective Languages (Table 6) For

completeness, we also test our models on the

10 most projective languages that have a single

treebank. MH 4 remains the most effective, but

by a much smaller margin. Interestingly, MH 3,

which is strictly projective, matches the perfor-

mance of 1EC; both outperform the fully non-

projective MST by half a point.

6 Related Work

Exact inference for dependency parsing can be

achieved in cubic time if the model is restricted

to projective trees (Eisner, 1996). However, non-

projectivity is needed for natural language parsers

to satisfactorily deal with linguistic phenomena

like topicalization, scrambling and extraposition,

which cause crossing dependencies. In UD 2.0,

68 out of 70 treebanks were reported to contain

2671

Same Model Architecture For Reference
Lan. MH 3 MST MH 4-hybrid 1EC Ensemble CoNLL #1 CoNLL #2

eu 78.17˘0.33 79.90˘0.08 80.22˘0.48 ą 80.17˘0.32 81.55 81.44 79.61
ur 80.91˘0.10 80.05˘0.13 80.69˘0.19 ą 80.59˘0.19 81.37 82.28 81.06

got 67.10˘0.10 67.26˘0.45 67.92˘0.29 ą 67.66˘0.20 69.83 66.82 68.34
hu 76.09˘0.25 75.79˘0.36 76.90˘0.31 ą 76.07˘0.20 79.35 77.56 76.55
cu 71.28˘0.29 72.18˘0.20 72.51˘0.23 ă 72.53˘0.27 74.38 71.84 72.35
da 80.00˘0.15 79.69˘0.24 80.89˘0.17 ą 80.83˘0.27 82.09 82.97 81.55
el 85.89˘0.29 85.48˘0.25 86.28˘0.44 ą 86.07˘0.37 87.06 87.38 86.90
hi 89.88˘0.18 89.93˘0.12 90.22˘0.12 ă 90.28˘0.21 90.78 91.59 90.40
de 76.23˘0.21 75.99˘0.23 76.46˘0.20 ą 76.42˘0.35 77.38 80.71 77.17
ro 83.53˘0.35 82.73˘0.36 83.67˘0.21 ă 83.83˘0.18 84.51 85.92 84.40

Avg. 78.91 78.90 79.57 ą 79.44 80.83 80.85 79.83

Table 5: Evaluation results (LAS, %) on the test set using the CoNLL 2017 shared task setup. The best

results for each language within each block are highlighted in bold.

Same Model Architecture For Reference
Lan. MH 3 MST MH 4-hybrid 1EC Ensemble CoNLL #1 CoNLL #2

ja 74.29˘0.10 73.93˘0.16 74.23˘0.11 74.12˘0.12 74.51 74.72 74.51
zh 63.54˘0.13 62.71˘0.17 63.48˘0.33 63.54˘0.26 64.65 65.88 64.14
pl 86.49˘0.19 85.76˘0.31 86.60˘0.26 86.36˘0.28 87.38 90.32 87.15
he 61.47˘0.24 61.28˘0.24 61.93˘0.22 61.75˘0.22 62.40 63.94 62.33
vi 41.26˘0.39 41.04˘0.19 41.33˘0.32 40.96˘0.36 42.95 42.13 41.68
bg 87.50˘0.20 87.03˘0.17 87.63˘0.17 87.56˘0.14 88.22 89.81 88.39
sk 80.48˘0.22 80.25˘0.32 81.27˘0.14 80.94˘0.25 82.38 86.04 81.75
it 87.90˘0.07 87.26˘0.23 88.06˘0.27 87.98˘0.19 88.74 90.68 89.08
id 77.66˘0.13 76.95˘0.32 77.64˘0.17 77.60˘0.18 78.27 79.19 78.55
lv 69.62˘0.55 69.33˘0.51 70.54˘0.51 69.52˘0.29 72.34 74.01 71.35

Avg. 73.02 72.55 73.27 73.03 74.18 75.67 73.89

Table 6: CoNLL 2017 test set results (LAS, %) on the most projective languages (sorted by projective

ratio; ja (Japanese) is fully projective).

non-projectivity (Wang et al., 2017).

However, exact inference has been shown to be

intractable for models that support arbitrary non-

projectivity, except under strong independence as-

sumptions (McDonald and Satta, 2007). Thus,

exact inference parsers that support unrestricted

non-projectivity are limited to edge-factored mod-

els (McDonald et al., 2005; Dozat et al., 2017).

Alternatives include treebank transformation and

pseudo-projective parsing (Kahane et al., 1998;

Nivre and Nilsson, 2005), approximate infer-

ence (e.g. McDonald and Pereira (2006); At-

tardi (2006); Nivre (2009); Fernández-González

and Gómez-Rodríguez (2017)) or focusing on sets

of dependency trees that allow only restricted

forms of non-projectivity. A number of such

sets, called mildly non-projective classes of trees,

have been identified that both exhibit good em-

pirical coverage of the non-projective phenom-

ena found in natural languages and are known to

have polynomial-time exact parsing algorithms;

see Gómez-Rodríguez (2016) for a survey.

However, most of these algorithms have not

been implemented in practice due to their pro-

hibitive complexity. For example, Corro et al.

(2016) report an implementation of the WG1

parser, a Opn7q mildly non-projective parser in-

troduced in Gómez-Rodríguez et al. (2009), but

it could not be run for real sentences of length

greater than 20. On the other hand, Pitler et al.

(2012) provide an implementation of an Opn5q
parser for a mildly non-projective class of struc-

tures called gap-minding trees, but they need to

resort to aggressive pruning to make it practical,

exploring only a part of the search space in Opn4q
time.

To the best of our knowledge, the only practi-

cal system that actually implements exact infer-

ence for mildly non-projective parsing is the 1-

Endpoint-Crossing (1EC) parser of Pitler (2013;

2014), which runs in Opn4q worst-case time like

the MH 4 algorithm used in this paper. Thus, the

system presented here is the second practical im-

plementation of exact mildly non-projective pars-

2672

ing that has successfully been executed on real

corpora.6

Comparing with Pitler (2014)’s 1EC, our parser

has the following disadvantages: (´1) It has

slightly lower coverage, at least on the treebanks

considered by Gómez-Rodríguez (2016). (´2)

The set of trees covered by MH 4 has not been

characterized with a non-operational definition,

while the set of 1-Endpoint-Crossing trees can be

simply defined.

However, it also has the following advantages:

(+1) It can be given a transition-based interpre-

tation, allowing us to use transition-based scor-

ing functions and to implement the analogous al-

gorithm with greedy or beam search apart from

exact inference. No transition-based interpreta-

tion is known for 1EC. While a transition-based

algorithm has been defined for a strict subset of

1-Endpoint-Crossing trees, called 2-Crossing In-

terval trees (Pitler and McDonald, 2015), this is

a separate algorithm with no known mapping or

relation to 1EC or any other dynamic program-

ming model. Thus, we provide the first exact in-

ference algorithm for a non-projective transition-

based parser with practical complexity. (+2) It is

conceptually much simpler, with one kind of item

and two deduction steps, while the 1-Endpoint-

Crossing parser has five classes of items and sev-

eral dozen distinct deduction steps. It is also a

purely bottom-up parser, whereas the 1-Endpoint-

Crossing parser does not have the bottom-up prop-

erty. This property is necessary for models that

involve compositional representations of subtrees

(Dyer et al., 2015), and facilitates parallelization

and partial parsing. (+3) It can be easily gener-

alized to MH k for k ą 4, providing higher cov-

erage, with time complexity Opnkq. Out of the

mildly non-projective parsers studied in Gómez-

Rodríguez (2016), MH 4 provides the maximum

coverage with respect to its complexity for k ą 4.

(+4) As shown in §5, MH 4 obtains slightly higher

accuracy than 1EC on average, albeit not by a con-

clusive margin.

It is worth noting that 1EC has recently been ex-

6Corro et al. (2016) describe a parser that enforces mildly
non-projective constraints (bounded block degree and well-
nestedness), but it is an arc-factored model, so it is subject
to the same strong independence assumptions as maximum-
spanning-tree parsers like McDonald et al. (2005) and does
not support the greater flexibility in scoring that is the main
advantage of mildly non-projective parsers over these. In-
stead, mild non-projectivity is exclusively used as a criterion
to discard nonconforming trees.

tended to graph parsing by Kurtz and Kuhlmann

(2017), Kummerfeld and Klein (2017), and Cao

et al. (2017a,b), with the latter providing a prac-

tical implementation of a parser for 1-Endpoint-

Crossing, pagenumber-2 graphs.

7 Conclusion

We have extended the parsing architecture of Shi

et al. (2017a) to non-projective dependency pars-

ing by implementing the MH 4 parser, a mildly

non-projective Opn4q chart parsing algorithm, us-

ing a minimal set of transition-based bi-LSTM

features. For this purpose, we have estab-

lished a mapping between MH 4 items and tran-

sition sequences of an underlying non-projective

transition-based parser.

To our knowledge, this is the first practical im-

plementation of exact inference for non-projective

transition-based parsing. Empirical results on a

collection of highly non-projective datasets from

Universal Dependencies show improvements in

accuracy over the projective approach of Shi

et al. (2017a), as well as edge-factored maximum-

spanning-tree parsing. The results are on par with

the 1-Endpoint-Crossing parser of Pitler (2014)

(re-implemented under the same neural frame-

work), but our algorithm is notably simpler and

has additional desirable properties: it is purely

bottom-up, generalizable to higher coverage, and

compatible with transition-based semantics.

Acknowledgments

We thank the three anonymous reviewers for their

helpful comments. CG has received funding

from the European Research Council (ERC), un-

der the European Union’s Horizon 2020 research

and innovation programme (FASTPARSE, grant

agreement No 714150), from the TELEPARES-

UDC project (FFI2014-51978-C2-2-R) and the

ANSWER-ASAP project (TIN2017-85160-C2-1-

R) from MINECO, and from Xunta de Galicia

(ED431B 2017/01). TS and LL were supported in

part by a Google Focused Research Grant to Cor-

nell University. LL was also supported in part by

NSF grant SES-1741441. Any opinions, findings,

and conclusions or recommendations expressed in

this material are those of the author(s) and do not

necessarily reflect the views of the National Sci-

ence Foundation or other sponsors.

2673

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2442–2452, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Pro-
ceedings of the Tenth Conference on Computational
Natural Language Learning (CoNLL-X), pages 166–
170, New York City, New York, USA.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-
jun Wan. 2017a. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
2110–2120, Vancouver, Canada. Association for
Computational Linguistics.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiaojun
Wan. 2017b. Quasi-second-order parsing for 1-
endpoint-crossing, pagenumber-2 graphs. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 24–34,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
740–750, Doha, Qatar.

Shay B. Cohen, Carlos Gómez-Rodríguez, and Giorgio
Satta. 2011. Exact inference for generative proba-
bilistic non-projective dependency parsing. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1234–1245, Edinburgh, Scotland, UK.

Caio Corro, Joseph Le Roux, Mathieu Lacroix, An-
toine Rozenknop, and Roberto Wolfler Calvo. 2016.
Dependency parsing with bounded block degree
and well-nestedness via Lagrangian relaxation and
branch-and-bound. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 355–
366, Berlin, Germany. Association for Computa-
tional Linguistics.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
LSTM. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 32–37.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual

Parsing from Raw Text to Universal Dependencies,
pages 20–30, Vancouver, Canada. Association for
Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343.

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Com-
putational Linguistics (COLING-96), pages 340–
345, Copenhagen.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2017. A full non-monotonic transition
system for unrestricted non-projective parsing. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 288–298, Vancouver,
Canada. Association for Computational Linguistics.

Carlos Gómez-Rodríguez. 2016. Restricted non-
projectivity: Coverage vs. efficiency. Computa-
tional Linguistics, 42(4):809–817.

Carlos Gómez-Rodríguez, John Carroll, and David
Weir. 2008. A deductive approach to dependency
parsing. In Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technology, pages 968–976.

Carlos Gómez-Rodríguez, John Carroll, and David
Weir. 2011. Dependency parsing schemata and
mildly non-projective dependency parsing. Compu-
tational Linguistics, 37(3):541–586.

Carlos Gómez-Rodríguez, David Weir, and John Car-
roll. 2009. Parsing mildly non-projective depen-
dency structures. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL (EACL
2009), pages 291–299, Athens, Greece. Association
for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1077–1086, Uppsala, Sweden.

Sylvain Kahane, Alexis Nasr, and Owen Rambow.
1998. Pseudo-projectivity: A polynomially parsable
non-projective dependency grammar. In Proceed-
ings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics - Volume 1, pages 646–652, Montreal, Quebec,
Canada. Association for Computational Linguistics.

2674

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing, volume 2 of Synthesis
Lectures on Human Language Technologies. Mor-
gan & Claypool Publishers.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (ACL-HLT), pages 673–682,
Portland, Oregon, USA.

Jonathan K. Kummerfeld and Dan Klein. 2017. Pars-
ing with traces: An Opn4q algorithm and a structural
representation. Transactions of the Association for
Computational Linguistics, 5:441–454.

Robin Kurtz and Marco Kuhlmann. 2017. Exploiting
structure in parsing to 1-endpoint-crossing graphs.
In Proceedings of the 15th International Conference
on Parsing Technologies, pages 78–87, Pisa, Italy.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523–530, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. In Proceedings of the Tenth International
Conference on Parsing Technologies (IWPT), pages
121–132, Prague, Czech Republic. Association for
Computational Linguistics.

Ryan T. McDonald and Fernando C. N. Pereira. 2006.
Online learning of approximate dependency parsing
algorithms. In Proceedings of the 11th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 81–88, Trento, Italy.
Association for Computational Linguistics.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351–359, Suntec, Singapore. Association for Com-
putational Linguistics.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for

Computational Linguistics, pages 99–106, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proceedings
of the 20th International Conference on Computa-
tional Linguistics, pages 64–70, Geneva, Switzer-
land. COLING.

Emily Pitler. 2014. A crossing-sensitive third-order
factorization for dependency parsing. Transactions
of the Association for Computational Linguistics,
2:41–54.

Emily Pitler, Sampath Kannan, and Mitchell Marcus.
2012. Dynamic programming for higher order pars-
ing of gap-minding trees. In Proceedings of the
2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational
Natural Language Learning, pages 478–488. Asso-
ciation for Computational Linguistics.

Emily Pitler, Sampath Kannan, and Mitchell Marcus.
2013. Finding optimal 1-endpoint-crossing trees.
Transactions of the Association of Computational
Linguistics, 1:13–24.

Emily Pitler and Ryan McDonald. 2015. A linear-time
transition system for crossing interval trees. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
662–671, Denver, Colorado. Association for Com-
putational Linguistics.

Tianze Shi, Carlos Gómez-Rodríguez, and Lillian Lee.
2018. Improving coverage and runtime complex-
ity for exact inference in non-projective transition-
based dependency parsers. In Proceedings of the
16th Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, page (in
press), New Orleans, Louisiana. Association for
Computational Linguistics.

Tianze Shi, Liang Huang, and Lillian Lee. 2017a.
Fast(er) exact decoding and global training for
transition-based dependency parsing via a minimal
feature set. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 12–23, Copenhagen, Den-
mark.

Tianze Shi, Felix G. Wu, Xilun Chen, and Yao Cheng.
2017b. Combining global models for parsing Uni-
versal Dependencies. In Proceedings of the CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 31–39, Van-
couver, Canada. Association for Computational Lin-
guistics.

Milan Straka, Jan Hajic, and Jana Straková. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings

2675

of the Tenth International Conference on Language
Resources and Evaluation (LREC 2016), Paris,
France. European Language Resources Association
(ELRA).

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured predic-
tion models: A large margin approach. In Proceed-
ings of the 22nd International Conference on Ma-
chine Learning, pages 896–903.

Hao Wang, Hai Zhao, and Zhisong Zhang. 2017. A
transition-based system for universal dependency
parsing. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 191–197, Vancouver,
Canada. Association for Computational Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with Support Vector Ma-
chines. In Proceedings of the 8th International
Workshop on Parsing Technologies, pages 195–206.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martínez Alonso,
Çağrı Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonca, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. CoNLL 2017 shared task: Multi-
lingual parsing from raw text to Universal Depen-
dencies. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–19, Vancouver, Canada.
Association for Computational Linguistics.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1557–1566, Berlin,
Germany. Association for Computational Linguis-
tics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

