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Can Flapping Propulsion Boost Airplane Technology?
The Flapping-Tail Concept Airplane
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Flapping propulsion has been deemed inefficient for practical use in thrusting actual
airplanes. In this paper, we revisit this claim in the light of several recent findings on the
unsteady aero/hydro dynamics of natural flyers/swimmers (e.g., birds, insects, cetaceans).
We propose a new airplane concept, called the Flapping-Tail Concept Airplane (FTCA), in
which the horizontal tail is driven by a power shaft into a pitching-plunging-flapping motion
through a flapping mechanism. For such a concept, we show that there is a significant
room for boosting flapping propulsive efficiency that may outperform the current turbofan
engine technologies. We use Garrick’s classical unsteady aerodynamic model for flapping
propulsion to show that allowing for a simultaneous flap deflection with pitching-plunging
may enhance the propulsive efficiency by 20%. Moreover, we propose other promising
interacting flow mechanisms that may enhance the propulsive efficiency even more and
provide a geometric control theoretic formulation to guide such an interaction. We also
show the favorable effect of operating in the stall regime with large amplitudes. Finally,
we study the effect of such an oscillating tail on the flight mechanics of the airplane and
provide recommendations for future investigations necessary to make the proposed vision
come closer to real applications.

I. Introduction

Nature designs of flyers are significantly more efficient than man-made ones. For example, the power-to-
weight ratio of jet airplanes is about 80 kW /ton versus 16 kW /ton for birds and insects.” In fact, mimicking
natural creatures (birds) was the first intuitive way humans proposed to achieve man-made flight, which is
interestingly rekindled by the efforts of DeLaurier” among others. However, the early pioneers, such as Sir
George Cayley, realized the necessity of separating lift from propulsion. Indeed, this concept is one of the
main pillars underpinning the development of modern airplanes, which was learnt in a hard way through the
life-sacrifice of many early explorers. With this lesson in mind, we propose a new airplane concept that is
propelled through flapping its tail while the lift is being generated in the conventional way using stationary
wings. We call it the Flapping-Tail Concept Airplane (FTCA).

Flapping propulsion has been known to the aeronautical engineering community for long time. However,
to the best of our knowledge, it has never been proposed for propelling airplanes; simply because it is
deemed inefficient. However, the recent advances on the unsteady aero/hydro-dynamics of birds, insects,
and fish have revealed optimum operating conditions over which flapping propulsion can be considerably
more efficient than the current state-of-the-art turbo-fan engine technology. Typical values of the propulsive
efficiency of high-bypass ratio turbofan engines range between 0.65-0.75.° Moreover, the recent advances
in turbo engines have lead to 78% propulsive efficiency for the current state-of-the-art technology (e.g., GE
CFM56-7B, which is used on the Boeing 737-600/-700/-800/-900). On the other hand, the recent advances
on flapping propulsion as an unconventional thrust mechanism resulted in higher propulsive efficiency 87% at
relatively high thrust coefficients, even without flow control, as shown experimentally by Triantafyllou and
his colleagues™ on pitching-plunging wings. Moreover, we show in this paper that there is a significant room
for improving such a propulsive efficiency by allowing for more flow interacting mechanisms and exploiting
unsteady phenomena.
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In this paper, we pose an idea rather than tell a full story. The FTCA is investigated from aerodynamic
performance and flight mechanics considerations. For this purpose, we use Garrick’s model for flapping
propulsion,” which is based on Theodorsen’s classical unsteady aerodynamic theory.” Using such a model,
we show that adding a simultaneous flap oscillation to a pitching-plunging wing may enhance the flapping
propulsive efficiency by 20%. The Boeing 737-800 is used as an illustrative example. It is expected that
flapping propulsion can provide up to 25% saving in fuel consumption. This unprecedented enhancement
in propulsive efficiency can be achieved by a novel flapping technique that relies on the interaction between
different motions of the flapping surface (pitching, plunging, and flapping) and flow controls (suction/blowing
and synthetic jets). We propose the geometric control theory to guide such an interaction. Therefore, we
present some of its underpinning concepts.

II. Garrick’s Classical Model of Flapping Propulsion®

Garrick” developed a model for the propulsive thrust and efficiency due to a pitching-plunging-flapping
flat plate, similar to the one shown in Fig. 1. The model is based on Theodorsen’s classical unsteady
aerodynamic theory,” which basically assumes (i) potential flow, (ii) attached flow, (iii) small disturbance,
and (iv) that the Kutta condition is satisfied at the trailing edge. Theodorsen’s theory is for a simple

harmonic motion ' ‘ .
a(t) _ Aaezwt7 h(t) _ Hezwt+¢;L7 and 5(t) _ Agezwt+¢6 (1)

where w is the oscillation frequency, A,, H, and Ay are the motion amplitudes, and ¢;,, ¢s represent the
phase shift between the pitching motion and the plunging and flapping motions, respectively. Only the final
results of Garrick’s model” will be presented below.

Pitching Pivot
Point

Figure 1. A schematic diagram for an oscillating flat plate.

Consider the oscillating flat plate shown in Fig. 1, where U is the free stream velocity, h is the plunging
displacement (positive downward), « is the pitching angle (positive clockwise/pitching up), ¢ is the flap
deflection (positive down), b is the semi-chord length, and ab, eb are the distances from the mid-chord point
to the pitching pivot point and flap hinge location, respectively. The main aerodynamic input is the normal
velocity at the three-quarter-chord point, as recommended by Pistolesi theorem,” pp. 80, which is written

(positive downward) as

v3/4:Ua+h+b(l/2—a)d+%U5+b§%5 (2)

where small « is assumed and the dot refers to a time-derivative. The first three terms are obvious and the
last two terms can be derived in a classical thin airfoil theory fashion. The coefficients T7g, 771 are among a
list of geometric constants that are related to e (representative for the flap-chord ratio), which are given by

1 [ [
T1=—§(2+62) 1—e2+ecoste, Tho=e(l—e*)—(1+¢*) 1—e2cos e+ (cos™te)?
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1— 2 -
T3:7T6(562+4)+Z(7+262) 1—e2cos te— (1/8+e?)(cos ' e)?,

Ty =eV1—e2—cosle, Ts=—(1—-¢€%)+ 2¢v/1 —eZcos™le — (cos™e)?
—e2)3/
T7 = %(74’262)@—(1/8—}—62)(:03—1 e, Tg:_%_fﬂh

Ty=} §0- e +aTu, Tio = VI—e? +cos™te
Ty = (2—e)V1—e2(1—2¢)coste, Tip=2Ty+ Ty, Tz = *W
Ti5 = Ty + Tho, T =Ty —Ts — (e —a)Ty + T11/2, Tir=-2T5 —T1 + (a—0.5)T}
Tig = T5 — TyTho, Tyg = TyTh, Too = To —2V1 —¢?

Based, on this aerodynamic input vs,4, Garrick wrote the total normal force N, pitching moment M, at
the pivot, and hinge moment M;s, corresponding to the three motions h, o and J, as

N = —pp? ﬁ)Uo'z +h — abéi (= TyUS — BTy V- 2mpbUvs 1, C (k)
My = —pi?|mb)(1/2 = a)Ué = ah+ (1/8 + a2)bd(+ TysU26 + TigbUS + 2T15b25 Vi -
+ 27pr2(1/2 +a)Uv3/4C’(k)
My = ot } wb)TwUd ~Tyh + 2Thsbi <+ TysU25 — Db U6 — Tyh23 Ve pTiab?Uvs4C(k)
where k = 2 is the reduced (non-dimensional) frequency and C(k) is Theodorsen function (unsteady lift

deficiency factor), which is given by®
2
H ()
HY (k) + iHy” (k)

Ck) =

where H,(Lm) is the Hankel function of m'™ kind of order n. The Theodorsen function represents the frequency
response of the unsteady lift dynamics. That is, the multiplication v3 s4C (k) is interpreted after writing
v3/4(t) = V3,4€"", where V3, may be complex number, as

v34C(k) =R V3,,C(k)e™"

where $(.) denotes the real part of its complex argument. The first terms, between square brackets, in the
three equations (3) represent the non-circulatory contributions (added/virtual mass) while the other terms,
containing C'(k), represent the circulatory ones. Garrick also provided the force on the flap as

N; = L —TyUé — Tyh + bToév *&US*MS\/JF
- p) 2 (4)

SN )wb(l —e)é+ 2UvT — €25+ b(1 — e)Twé(— 20bU Taovs4C (k)
The thrust force T}, is then given by
T, = 7pbS* + Na + Nsé (5)

where the first term represents the suction force S = lim,_,_;v(x)vx + b with v being the vorticity dis-
tribution, which is known to possess a square root singularity at the leading edge (z = —b). That is, the
suction force S is finite. Garrick showed that S is given by

1 . Pa—— :
S = m}w 20530 (k) = bt (=2 1= e2U6 + bTysV (6)

Finally, the aerodynamic power required to sustain oscillation is given by

P:—)Nh—&—Mad—l—MaS (7)
As such, the thrust coefficient Cr and propulsive efficiency can be defined as
T, .U
Cr = —= d =z
r= ey and e =p
where overbar indicates a cycle-averaged quantity; i.e.,
w 27 /w B 27w
= — T.(t)dt and P = — P(t)dt
2T 0 2 0

3 of 19

American Institute of Aeronautics and Astronautics



Downloaded by UC IRVINE on January 24, 2018 | http://arc.aiaa.org | DOI: 10.2514/6.2018-0547

III. Flapping Propulsion and Enhanced Flow Dynamics

The simplicity of Garrick’s model” allows scrutiny of the flapping propulsion problem, hence drawing
fundamental conclusions about the problem. In particular, plunging is significantly more efficient than
pitching for propulsion. Plunging alone is thrust producing at any frequency while there is a limited range of
frequency corresponding to each pivot location over which positive T, is achievable via pitching oscillations.
For example, if a = 1/2 (pitching about the three-quarter-chord point), T, is negative for all values of w.

Of particular, interest, the case of pure plunging. It can be shown that, for this case, the averaged thrust
force and aerodynamic power required are given by

T, = o> H?|C(K)|? = Cp = 7k*H?|C(k)|? (8)
resulting in the following important relation for propulsive efficiency in the case of pure plunging
__lew)
P cos ZC (k) )

where H = %
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Figure 2. Variations of the thrust coefficient and propulsive efficiency with frequency in the case of pure
plunging.

Equations (8,9), which are represented in Fig. 4, clearly tell the story of classical flapping propulsion.
First, the variation of the propulsive efficiency with frequency is mainly dictated by the flow dynamical
response (i.e., Theodorsen’s frequency response function C'(k) in the small-disturbance attached flow). Since
the angle of C(k) is small and does not vary significantly with frequency (maximum ZC(K) is about 15 de-
grees), the variation of np with k follows that of |C(k)|, as shown in Fig. 2(b). Since, |C(k)| is monotonically
decreasing with k, so does np resulting in maximum efficiency of 100% at zero frequency and approaches
50% as k — oo. In addition, the thrust coefficient Cr increases quadratically with k& and H. Note that
increasing the latter beyond a certain limit will violate the small disturbance assumption and may physically
lead to operation in stall where in either case, Garrick’s model and results are not applicable. That is, if
more thrust is required, it can be achieved via flapping (plunging) at higher frequencies. However, the higher
the frequency is, the lower the propulsive efficiency is. This trade-off between thrust level and efficiency is
the main reason why flapping propulsion was abandoned from practical considerations; the high-frequencies
needed to achieve a required thrust level typically results in a significantly low propulsive efficiency.

While Garrick’s small-disturbance model almost ruled out flapping propulsion from practical applications,
as discussed above, the relatively recent water tunnel experiments by Andersen et al.” at Reynolds number
of 40,000 revealed different (non-monotonic) variations of np with the Strouhal number St = # = %,
as shown in Fig. 3. They considered several cases of pitching-plunging with different amplitudes and
phase differences. An optimum propulsive efficiency of 87% was observed simultaneously with C7 = 0.24 at
H =0.375 (relatively large amplitude), k = 1.17, ¢, = 75°, and a maximum angle of attack of 21° (operating
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in the stall regime). These large amplitude and angles of attack are not applicable to Garrick’s model. Hence,
the deviation from Garrick’s behavior is expected. However, this result indicates the achievement of a decent
thrust level C7 = 0.24 at a high propulsive efficiency (87%) when using large amplitude-plunging in the stall
regime with a specific phase shift between pitch and plunge.

The above finding can be physically explained
by recalling the recent investigations of Choi et al.
and Zakaria et al.” who studied the unsteady flow

dynamics in the stall regime. Choi et al.” used ool
the immersed boundary method to perform a direct -
numerical simulation of Navier Stokes equations on 0sf

a flat plate undergoing a surging motion over the
Reynolds number range of 100-500. The authors
obtained a Fourier transform of the lift coefficient o6t
due to surging at small angles of attack (« = 5°)
that is close to the potential flow theoretical predic-

tion of Greenberg'’ (analogous to Theodorsen for

pitching-plunging). However, they observed a differ-

ent behavior of the lift spectrum in the stall regime o3k
at o = 15°. In particular, a peak in the lift spectrum i
is observed at k = 0.6 — 0.7, as shown in Fig. More 02p
recently, Zakaria et al.” conducted a plunging exper- :

=]
iy
I

. . 0.1f
iment at Re = 80,000 and constructed lift frequency

responses analogous to Theodorsen function C(k) at e L] —— —
the linear, stall, and post-stall regimes. Despite the ' - St ' '

difference in airfoil motion (surging versus or plung-

ing) and the operating Reynolds number (500 versus Figure 3. Variation of the propulsive efficiency with
80, 000) between Choi et al.” and Zakaria et al.,” the Strouhal number St for a pitching-plunging airfoil in a
latter also observed an enhanced lift dynamics (fre- ?’ater tunnel at Reynolds number of 40,000. Adopted

. . rom Andersen et al.

quency response) in the stall regime near k = 0.7,

as shown in Fig. 4(b). In fact, the authors of both

efforts attributed such enhancement in the lift amplitude to the same reason; to synchronization between the
motion frequency and leading edge vortex (LEV) shedding time-scale such that the changes in the LEV lift
and the quasi-steady lift are coincident. It is interesting to note that this optimum range of frequency closely
matches the results of Wang."~ She performed a numerical simulation for the Navier-Stokes equations to
study impulsively started flows and plunging oscillations of a two dimensional wing section. Similar to the
experimental results of Dickinson and Gotz, © her numerical simulations showed that the steady-state lift,
reached after the impulsive start, cannot remain indefinitely constant at high angles of attack because of the
well known LEV instability for two-dimensional flows (i.e., in the absence of a stabilizing axial or spanwise
flow); a Von Karman street starts to emerge after about 10 chord lengths of travel. Wang'' concluded
that there is a lift-optimum time interval for plunging; between the instant at which the steady state lift is
reached (after the Wagner’s transient response dies out'”’) and before the spawn of the first Von Karman
street vortex pair. It is also noteworthy to mention other efforts that pointed to similar lift enhancement
mechanisms.

Recall that the propulsive efficiency due to flapping is mainly dictated by the unsteady flow dynamical
response (C(k) in the linear range), as shown in Fig. 2(b). Consequently, the recent advances on unsteady
aerodynamics, presented above, that showed enhanced flow dynamical response near stall, may suggest an
optimum flapping propulsion in that region. In fact, it may also explain the enhanced flapping propulsion
observed by Anderson et al.” when operating in the stall regime.

IV. An Illustrative Example: Boeing 737-800

Consider the Boeing 737-800 during cruise. Assume that there exists a mechanical transformer converting
the engine power into an oscillating mechanism connected to a wing-shaped surface (e.g., the horizontal
tail). Aside from the skeptical questions that may arise about the feasibility of such a high-risk idea, the
two imperative questions that need to be addressed immediately are (i) Can it generate enough thrust to
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Figure 4. Enhanced flow dynamics in the stall regime for surging flat plate at small Reynolds numbers® and
for plunging NACA 0012 at Re = 80,000.

overcome the whole airplane drag? and (ii) Is it more efficient than the best-in-class technology? Recalling
the specifications and some of the aerodynamic performance characteristics of the Boeing 737-800, as given
by Perkins et al.'” and presented here in Table 1, the first question can be easily answered through the
following rough calculations. The cruise lift and drag coefficients are simply given by

2Wwyrro

Cr = pU2S

=0.51 and Cp = Cp, + KC} = 0.0331

where Table 1 provides values of the maximum take-off weight Wj,ro, the wing reference area S, and the
drag polar parameters Cp,, K. At an altitude of 30,000ft, the air density is 0.4592kg/m? and speed of
sound is 303.1m/s resulting in a forward speed U = 238m/s. As such, the required thrust coefficient Crp
based on the oscillating surface area (i.e., horizontal tail in this example) is given by

Cr = SS (Cp —Cp,) = SECD (1-Cp,/Cp)=0.12
t t

where S; is the horizontal tail reference area and Cp,/Cp is the horizontal tail drag contribution to the
whole airplane drag in cruise; both are given in Table 1. Hence, the required thrust coefficient (0.12) is
quite achievable by pitching-plunging surfaces, as shown in many results in literature (see the review of
Rozhdestvensky and Ryzhov'): Maximum experimentally-verified flapping Cr values range between 1.0-1.5,
which is significantly higher than the 0.12 requirement. In fact, the thrust coefficient corresponding to the
optimum propulsive efficiency obtained by Anderson et al.” was 0.24, which is double the required value.

As for the efficiency question, we use Garrick’s classical model of flapping propulsion,” presented in Sec.
IT above, to solve the following optimization problem

m;xnp : subjet to Cpr =0.12 and x € X

where x is a vector of design variables and X is the optimization set (set of admissible variables). That is, the
problem is to maximize the propulsive efficiency np subject the thrust constraint C' = 0.12, which is enough
to overcome the whole airplane drag during cruise. The second constraint is to ensure the design variables are
within the physical bounds and/or abiding by the small-disturbance assumption to ensure the validity of the
used model of Garrick. Note that confining the search for such a narrow region using this linearized model,
it is not expected to obtain a high propulsive efficiency at this thrust level; the high propulsive efficiency
observed by Anderson et al." was by operating in the stall regime with a large plunging amplitude, which
are outside of our feasible search domain (set of admissible variables) because of the limitation of Garrick’s
model.
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Figure 5. Variations of np and Cr with the design variables near the optimum point for the pitching-plunging
case. The optimum design point is marked in a red star.
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Specification/Performance Characteristic Value

Cruise Mach number & altitude 0.785 & 30,000 ft

Wing reference area S & mean aerodynamic chord chord ¢ 1255.16 ft? & 12.39 ft
Horizontal tail reference area S; & mean aerodynamic chord ¢ 352.84 ft% & 8.68 ft
Maximum take off weight Wy;ro 174,200 1b.

Drag Polar Cp, = 0.0241 and K = 0.0376
Horizontal tail drag contribution to the whole airplane drag in cruise Cp,/Cp =5.4%

Lift curve Cr, =013 and Cp_, = 7.71 /rad
Pithing moment of inertia I, 2.76 x 107slug/ ft3
Pitching stability coeflicients Cnm,, = —5.9/rad and C)py, = —106.94.
Horizontal tail moment arm /¢, 55 ft

Table 1. Specifications and aerodynamic performance characteristics of the Boeing 737-800.

We solve two versions of the above optimization problem. The first one is for a pitching-plunging flat
plate where x includes five design variables: x = [A,, H ,®n,a,k]T. The second problem is for pitching-
plunging-flapping flat plate where x includes eight design variables: x = [Aq, H, bn,a,k, As, ¢s, €] subject
to one additional constraint e > a. Matlab sequential quadratic programming is used to solve the posed
optimization problems. Many random initial points in the design space are used to avoid local minima.
Table 2 shows the lower and upper bounds of the design variables and the optimum values for each problem;
X for the pitching-plunging case and x4 for the pitching-plunging-flapping case.

Design Variable Lower Bound | Upper Bound | Optimum Value x} | Optimum Value x5
Pitching Amplitude A, 0 15° 8.9° 15°
Plunging Amplitude H 0 0.2 0.2 0.2
Pitching-Plunging Phase ¢j —180° 180° 31.8° 55.3°
Pitching Pivot Location a -1 1 -1 -1
Reduced Frequency k 0 1 1 1
Flapping Amplitude A§ 0 25° - 17.5°
Pitching-Flapping Phase ¢35 —180° 180° - —174.7°
Flapping Hinge Location e -1 1 - 0.21
Optimum 7p 48.4% 67.0%

Table 2. Lower and upper bounds of the design variables and the optimum solution for each optimization
problem.

The upper limits of the pitching and plunging amplitudes (A, and H ) are set to confine the feasible space
to relatively small amplitudes. The upper limit of the flapping frequency, represented by k, is set to unity
here, where in reality, it will be dictated by practical considerations. The upper limit of the flap deflection
As is set to 25°, which is a typical practical limit for an airplane control surface deflection.

Figure 5 shows variations of the propulsive efficiency and thrust coefficient with the design variables
for the pitching-plunging case. One design variable is considered at a time, while the other variables held
constant at the optimum value from Table 2. The optimum design point is also shown as a red star. Studying
these variations, we observe that the optimizer pushed some of the design variables to their boundaries such
as H , a, and k because of the monotonic variation of np with such variables. Other variables (A, and ¢,)
are dictated by the thrust constraint; i.e., achievable higher values for np are sacrificed to satisfy the thrust
constraint.

Figure 6 shows variations of the propulsive efficiency and thrust coefficient with the design variables for
the pitching-plunging-flapping case. Similar trends to the pitching-plunging case are observed. For example,
some design variables are pushed to their boundaries such as A,, H , a, and k while others are dictated by
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Figure 6. Variations of np and Cr with the design variables near the optimum point for the pitching-plunging-
flapping case. The optimum design point is marked in a red star.

9 of 19

American Institute of Aeronautics and Astronautics



Downloaded by UC IRVINE on January 24, 2018 | http://arc.aiaa.org | DOI: 10.2514/6.2018-0547

the thrust constraint such as ¢,. However, unlike the pitching-plunging case, some design variables are set
by the optimizer to attain a truly local maximum value for np or close, such as As, ¢5 and e; namely the
additional design variables from the flap deflection. That is, it seems as if pitching-plunging design variables
were set to satisfy the thrust constraint while the additional flapping design variables were set free allowing
for true optimization of the objective function np, which explains the significant enhancement in propulsive
efficiency in the flapping case in comparison to the pitching-plunging case; 20% enhancement in 7p.

Several conclusions can be drawn from the solved optimization problems. First, congruent with the
fundamental knowledge on flapping propulsion, the optimizer always saturates the plunging amplitude and
frequencys; i.e., generating most of the thrust by plunging is more efficient. Second, moving the pivot point
towards the leading edge is favorable in both cases, which is also consistent with the well-known aerodynamic
fact that the effective angle of attack is that of the three-quarter-chord point (Pistolesi theorem). Therefore,
in order for the optimizer to maximize the effect of rotational circulation,'™ '’ the pivot point should be the
farthest from the three-quarter-chord point. Third, and more importantly for the theme of this paper is the
fact that, just allowing for an interaction with a flap deflection boosts the maximum propulsive efficiency
by 20%. We also remark that we did not even exploit the enhanced flow dynamics in the stall regime in
this analysis. Therefore, it is expected that allowing for interaction with more flow control mechanisms
while availing of the unconventional unsteady flow dynamics in the stall regime will boost the propulsive
efficiency even more. To shed some light on how interaction with other flow control mechanisms can be
neatly achieved, we present in the next section a quick review on how the mathematically-elegant differential
geometric control theory can be used for such an objective.

V. Flow Interacting Mechanisms and Geometric Control Theory

A. Differential Geometric Control Theory

Geometric control theory is a mathematical control theory concerned with dynamical systems evolving on
curvy spaces (can also be abstract objects) called manifolds. This covers a fairly large class of mechanical
systems (e.g., all systems having rotational degrees of freedom). Adopting this geometric view for these
dynamical systems requires an appropriate mathematical tool to perform calculus on curvy spaces; that is
the differential geometry. One can loosely say that geometric control theory is the intersection of differential
geometry and control theory of dynamical systems. The mathematical abstraction of geometric control
theory has lead to interesting non-intuitive results beyond linear analysis of stability and controllability. We
present below two of these potentials capabilities of the theory.

1. Nonlinear Controllability and Unconventional Force Generation

Controllability of a dynamical system is the ability to steer the system from an initial configuration to an
arbitrary final configuration in finite time. For linear, time-invariant systems

x(t) = Az(t) + Bu(t), x € R" (10)
controllability is quite easy to check. The system (10) is completely controllable if and only if*"
rank B, AB, ..., A"ilB(: n

For nonlinear autonomous systems, controllability is inspected locally at a given point xy. Consider the
following finite-dimensional, nonlinear, control-affine system

(t) = f(x(t)) +/ g;(@(t))u;(t), ® € M" (11)

1

where @ is the state vector evolving on an n-dimensional Manifold M™, f is the drift vector field (uncontrolled
dynamics), g ;'s represent the control vector fields corresponding to the inputs u;’s. One straight forward, and
even sufficient, approach to check controllability of the control-affine nonlinear system (11) at a given point
xo € M" is to linearize the nonlinear dynamics around xy. Then, controllability of the linearized system
can be easily inspected using the controllability check for linear systems. This condition is sufficient; if the
linearized system is controllable, then the nonlinear system is locally controllable from xy. However, this
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condition is not necessary. That is, there exists a class of systems that are not linearly controllable
but nonlinearly controllable. In other words, the linear analysis may deem the system (11) uncontrollable
and, as such, some attainable states might be deceptively considered not reachable. However, the geometric
nonlinear analysis may still prove full controllability for the same system.
The main idea is that there can be no direct actu-
ation leading to motion in a prescribed direction,
| though specific manipulation of the available actu-
x(T) ators/controls may generate forces in that missed
1 direction. This concept is generally referred to as
anholonomy”' or geometric phases.”>?* For exam-
ple, for driftless systems (f = 0), one can generate
motion along the vector g, by turning on the con-
O trol input uy and turning off all other controls. Ge-
ometric control theory provides us with additional
and non-intuitive directions to move along. These
i o . directions are determined through Lie bracket op-
Figure 7. Net motion in the state space due to a Lie . .
bracket operation realized by a periodic change in the €rations between the different control vectors. The
control space U. Lie bracket between the two vectors g, and gy is
defined as

Net locomotion

"
pal
=

[gjagk:} = Z,T,ng - %gk

If the Lie bracket [gj, g;.] of two input vector fields is linearly independent of the two generating vectors
gjs gy, then the implication is that through some manipulation of the corresponding control inputs w;, ug,
one can generate motion along a new direction; unactuated direction (over which there is no direct control
authority). This is particularly useful to recover nonlinear controllability if linear controllability is lost. The
motion along some Lie bracket vector [gj7 g.] can be realized by an out-of-phase periodic signals for the
corresponding inputs u; and uy.”* % A graphical illustration for a net motion in the state space produced
via a Lie bracket operation (periodic changes in the control space) is shown in Fig. 7.

At an operating point of interest x¢, the space spanned by the iterated Lie brackets between f and g,’s
is defined as

A(:EO) = span {f’gl) 3y 9m> [f7gl]7 ey [f7g7n]? [.f7 [.f7gl]]7 } (1130) (12)
Roughly speaking, If A(xg) covers the whole tangent space R™, then the system is accessible from xg;”" !
that is, the system can be driven to some neighborhood around x(; equivalently, the reachable set from x

has a non-empty interior. This condition is referred to as the Lie Algebraic Rank Condition (LARC).

2. Periodic Excitation and Unconventional Force Generation

Another approach for generating forces/motion in unactuated directions is to use high-frequency, oscillatory
control inputs.”? This is based on the geometrical mechanics fact that an oscillatory control input, though
with zero mean, can lead to a net motion.”>*? In fact, by using the pioneering work of Sarychev,** Vela,**
and Bullo?” that combine geometric control and averaging theory by exploiting chronological calculus tools
of Agrachev and Gamkrelidze,”® the author and his colleagues®’ have recently shown that the effects of an
oscillatory control input uy on the averaged dynamics of (11) can be represented by the iterated Lie bracket
91, [ 91l

Following Bullo®” with some sloppiness and passing up many details, the symmetric product < g;:9; >
between the two input vectors g; and g,, is defined as

<g;:9,>=<g;: 9y >=9;[f,9:)] = lgx. ] 9]

Symmetric products can be realized by high-frequency, high-amplitude oscillatory inputs. If u; = wU; coswt
with high enough w, the averaged dynamics of the system (11) is written as®* %77

x = f(z) —j[_l UZU’“ <g;:g;> () (13)
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where over-bar indicates an averaged quantity. The symmetric product vector < g, : g, > associated with
the input uy may have a considerably different structure than the input vector field g,. For example, an
input vector field g, may have a zero component in some direction, indicating lack of control authority along
that direction. However, the corresponding component of < g, : g, > may not vanish indicating the ability
to generate a new nonintuitive motion/acceleration (force) in that direction through periodic oscillation of
the corresponding control input u;. The author and his colleagues®” " have used the above tools to analyze
the nonlinear time-periodic dynamics of hovering insects and flapping-wing micro-air-vehicles. It has been
shown that the symmetric product corresponding to back and forth flapping wing can generate an upward
vertical force (lift) for the whole body and, hence, balance the flapping vehicle/insect at hover, in spite of
the vehicle’s inability to directly generate vertical forces.

B. Geometric Control formulation of Unsteady Aerodynamics and Nonlinear Interactions

The above discussion motivates developing a reduced-order model for the unsteady aerodynamics of oscilla-
tory airfoils in the stall regime in the form of Eq. (11); i.e.,

F@)+9,(T)h+g,(2)d + g;5(x)0(t) + ()05 + gop ()05t (14)

y = H)whab o0

where x is a vector of internal aerodynamic states and y is the vector of output variables (e.g., lift and
drag coefficients). The vectors g, 9., 95, 9s, gsp are the input vector fields associated with plunging,
pitching, flap deflection, synthetic jet 5, and suction/blowing inputs dsp, respectively. The synthetic jet
ds and suction/blowing &g, inputs are added to allow for more interactions between different flow control
mechanisms, as recommended from the previous sections. Then the reduced-order model (14) will allow
using constructive techniques from geometric mechanics and control theory, as presented above, to uncover
potential unconventional mechanisms to generate forces. For example, the Lie bracket [g5, g,] will represent
the effect of an interaction between a flap deflection and a synthetic jet input, that may not be seen directly
in g5 and g, separately or even their linear combinations. Initial efforts that are related to similar, though
linear, reduced order modeling can be found in the work of Zakaria et al.” and Hemati et al.*’

VI. Free Energy in the Wake

Another unsteady phenomena that can be exploited to boost the performance of the FTCA is capturing
the free energy in the wing wake. To shed some light on this potential, we recall the interesting efforts of
Liao and his colleagues.”"»*? Liao et al."! studied how trouts modify their body and tail kinematics to swim
in the wake of a bluff body (e.g., cylinder). They found that the trout body amplitudes and curvatures are
much larger in the presence of Von Karman vortices shed behind a cylinder than those of a trout those of
trout swimming at an equivalent flow velocity in the absence of a cylinder. They called this kinematics the
Krmn gait. They also found that the tail-beat frequency matches the shedding frequency of the cylinder.
It is interesting to note that the trout chose to be in the slower flow velocity offered behind a cylinder and
modified its body kinematics to synchronize with the shed vortices; such a mechanism may not be propulsive
on its own (i.e., in the absence of vortices). These results suggest that fish can capture energy from vortices
generated by the environment.

Liao"” found that the trout muscle activities are reduced when swimming in the wake of a bluff body
(i.e., Karman gait). To further investigate this behavior, he placed a dead trout in the wake of a bluff
body. He found that the dead trout was able to swim with zero input energy. The Von Karman vortices
shed behind the bluff body naturally excites the flexible body of the trout and results in kinematics that
are thrust producing. As a result, the trout swims forward with zero input energy. This behavior implies
a propulsive efficiency that is more than 100%; due to capturing the free energy in the wake. In other
words, this result provides a passive thrust generation mechanism in oscillating flows, which can be seen in
the interesting video in Ref."® Projecting on the proposed FTCA, the tail is oscillating in the wing walke.
Therefore, the tail kinematics may be designed to exploit the free energy in the wing wake similar to the
Karman gait observed by Liao and his colleagues.*' **
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VII. Effect on Flight Mechanics

The proposed propulsion mechanism is expected to have a significant effect on flight mechanics, although
the oscillation occurs at very high frequencies in comparison to the the airplane flight mechanics modes (e.g.,
short period and Dutch roll modes). However, such an effect has to be studied. In this section, we adapt
Garrick’s model, presented in Sec. II, to couple the unsteady aerodynamics of the oscillating horizontal tail
with a quasi-steady aerodynamic model for the body flight dynamics. Only longitudinal flight dynamics is
considered here.

A. Quasi-Steady Rigid-Body Longitudinal Flight Dynamics

The well-known set of equations governing the longitudinal rigid-body flight dynamics of conventional aircraft
is written as™*

U —qw — gsinf Lx

. 1

w qu + g cos 6 —Z

' g ; (15)
0 q 0

where g is the gravitational acceleration; m and I, represent the body mass and moment of inertia about the
pitching axis, respectively. The state variables include the forward and normal (positive downward) velocity
components (u and w) of the body center of mass, the body pithing angular velocity ¢, and pitching angle 6.
The generalized forces X, Z, and M are the forward and normal forces and pitching moment, respectively,

which are given by
X Lsinay — Dcosap + T,
Z = —Lcosap — Dsinay + Niot (16)
M Ma + Ntotft

where L and D are the lift and drag forces on the airplane without the horizontal tail, which are given by

L= %pV%SCL, Cr = CLO + CLQva (17)
D = %pV%SCD, Cp= CDO +KC%

where Vi = vu? + w? is the total airspeed and a;, = tan™! % is the body angle of attack. In Eq. (16), T,

and Niot represent the total unsteady thrust and normal forces delivered by the oscillating horizontal tail,
which are given by

1 TS NS
Tltot = ipVT%SCT = :Ii t and Ntot = !
Ct Ct
where T}, is the thrust per unit span on the oscillating tail given in Eq. (5), Cr is the thrust coefficient, and
N is the normal force (positive downward) per unit span on the oscillating tail, which will be given below.

Finally, the aerodynamic pitching moment M, is given by
1 2U
Ma = QpVI%SE)CMaOZb + Cchq<

where the wing and tail aerodynamic moments at their respective aerodynamic centers are fairly neglected
with respect the significant term Nyo¢f; in this preliminary study.

B. Unsteady Aerodynamic Model of the Oscillating Tail

Garrick’s potential-flow model, presented in Sec. II, is used to to couple the unsteady aerodynamics of the
oscillating horizontal tail with the quasi-steady rigid-body flight dynamic model presented above. However,
the inputs to Garrick model have to be modified to account for the aerodynamic-dynamic interaction; i.e.,
the effect of the body motion on the aerodynamics of the oscillating tail. As such, we have the following
kinematics of the oscillating tail

aft) = Agsinwt + ap,  &(t) = Aaw coswt + g, G(t) = —Asw? sinwt
h(t) = Hsin(wt + ¢p,), h(t) = Hwcos(wt + ¢p) +w + qly, h(t) = —Hw? sin(wt + ¢p,) (18)
5(t) = Assin(wt + ¢5), () = Asw cos(wt + ¢s), 6(t) = —Asw? sin(wt + ¢5)
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That is, the body motion (represented by w, w, and ¢) induces an angle of attack on the horizontal tail
ap = tan~! “ a plunging effect (i.e., h effect) of w + gf;, where the body acceleration terms, w and ¢, are
definitely neglected with respect to the oscillatory acceleration terms d, h, & of the horizontal tail.

Adopting the definitions in Eq. (18), the tail kinematic variables lose periodicity, as the body motion vari-
ables are not necessarily periodic, particularly during maneuvering or transient periods. Therefore Garrick’s
model needs to be generalized for arbitrary time-variation of the aerodynamic inputs (motion variables). The
non-circulatory terms in Garrick’s model are algebraic; that is, applicable to any set of kinematics. However,
the circulatory terms (multiplying C(k)) are necessarily for a harmonic input (vs,4). As such, these terms
have to be generalized for an arbitrary time-varying vs/4(t). Several efforts have been exerted in literature
to achieve such an objective; i.e., develop a state space representation of Theodorsen’s or Wagner’s function,
particularly for the latter because, unlike Theodorsen’s, it does not even have a closed-form expression. We
adopt here Jones approximation”” for Wagner’s function ¢(s)

qb(t) = 1 — Aleiclt — Ageicﬁ (19)
where the constants Ay, As, ¢1, and ¢y are given by

U U
A; =0.165, Ay =0.335, ¢ = 0.045537 and cp = 0.33

Wagner function represents the lift response due to a unit step change in the angle of attack, or vz/,. As
such, a transfer function can be constructed by taking the Laplace transform of ¢(¢) and dividing by 1/s,
which yields a two-state approximation for Theodorsen function in the Laplace domain as

b282 —+ bls —+ bo
Cs) = 5¥———— 20
) = o as (20)
where the transfer function coefficients are given by
bg = l—Al —AQ, bl =C1 +02—A102—A2017 bozclcg, a; = c1 + ca, and ap = C1Co

As such, a two-state unsteady aerodynamic representation is written as

a4\ Ta,(t) 0 1 Za, ()
a Lay (t) —ap —m Lay (t)

Ya(?) } bo — baag by — baay

+ > (1) v3/4(t)

La,y (t)
Lay (t)

(21)

+ bavg/4(t)

where x4, , 74, are internal acrodynamic states, y, is the aerodynamic output, and vs,, is the aerodynamic
input, which is given in Eq. (2) with replacing U by V.

Based on the unsteady aerodynamic state space model in Eq. (21), the unsteady aerodynamic loads N,
N5, and S acting on the oscillating tail due to the kinematics given in Eq. (18) are given by

)
N 0 —mpb?Vr  pbPTaVp  mpab®  pb*Ty  —mph? @ —2mpbVir
_wbh_ 22 C c BT, 2T 0
Ns = p ( e V7 22 23 po~Llg o - —2pbT5Vp a
V2(1—¢?) b bT, @
s B —5 o 0 0 0 § V2
h
(22)
where 2
022 = pr(T4 — (1 — 6) 1-— GZ)VT and 023 = %(T{, — 2T10(1 — 6) 1-— 62)VT
s

and T, still follows the same definition given in Eq. (5).
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Figure 8. A schematic diagram for the coupled unsteady aero-flight dynamics.

C. Simulation Results

We first consider trim for a straight and level horizontal flight at v = U and zero w, g, and 6. That is, the
airplane axes are set such that w = 0 at a body angle of attack «g that is required to achieve the cruise lift
coefficient C, = 0.51. As such, «p, in Eq. (17) is replaced by ag + . Then, the averaged trim equations at
u=U,w=0,qg=0, 0 =0 are given by

T, 105 Cp, + KC2
Nt = 5pU*SCL —Wyro (23)
Ntotgt = O

Note that at pure cruise (v = U, w = 0, ¢ = 0, and § = 0), the harmonic kinematics (1) yields N;,; = 0.
Consequently, the third equation is automatically satisfied and the second equation results in the cruise lift
coefficient Cp, = 0.51 whose drag coefficient is balanced by the averaged thrust due to the oscillating tail.
That is, averaged trim is ensured when using the kinematic variables coming from the solved optimization
problem. Figure 8 shows a schematic diagram for the tight coupling between the unsteady aerodynamics of
the oscillating tail and body flight dynamics (i.e., aerodynamic-dynamic interactions).

Figure 9 shows the response of the coupled unsteady aero-flight dynamic model described above when
starting from the initial point u = U, w = 0, ¢ = 0, and § = 0. One may conclude that the averaged trim
is not sufficient as the airplane finally and slowly reached an ascent equilibrium. This deviation from cruise
is not attributed to the lack of generated thrust. In fact, more thrust is generated than required, which is
evident from the initial increase in the speed followed by final climb. Therefore, the deviation from cruise is
attributed to the aerodynamic-dynamic interaction between the body motion and the unsteady aerodynamic
loads, which leads to a shift in the equilibrium state. In fact, this phenomenon was also observed by the
authors and his colleagues®” "% "7 when studying the time-periodic flight dynamics of insects and flapping-
wing micro-air-vehicles; the periodic forcing interacts with the time-varying dynamics resulting in a constant
drift in the higher-order averaged dynamics. This constant drift, in turn, changes the equilibrium state of
the system. This phenomenon is referred to as direct/parametric interaction by Nayfeh and Mook.*® The
resolution of such an issue necessitates periodic shooting algorithms to capture the equilibrium periodic orbit,
as shown by Hassan and Taha.*”>*" Having said that, it is noteworthy to point to the smooth slowly-varying
(low-frequency) response of the airplane despite the applied periodic forcing. The variations shown in Fig.
9 give no clue that they come from periodic forcing. Indeed, the oscillating frequency of the tail is too high
to affect the flight mechanics of the airplane beyond the trim issue discussed above.

VIII. Future Recommendations and Impact on Economic Prosperity

The potential of flapping propulsion to advance airplane technology has been discussed. In particular,
light has been shed on how a flapping system can boost the propulsive efficiency through (i) large amplitude
oscillations in the stall regime, (ii) allowing for more interactions with flow control mechanisms and using
the geometric control theory to guide such nonlinear interactions, (iii) capturing the free energy in the
wing wake. However, these concepts have been demonstrated for low Reynolds number flight far below
the operating range of actual airplanes or even mini unmanned air vehicles. Therefore, first, the presented
concepts have to be studied at higher Reynolds number and in the transonic regime. In fact, this study
will worth for its own scientific merit. Second, the whole premise, particularly the second point, heavily
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Figure 9. Coupled unsteady aero-flight dynamic simulations.
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relies on the development of the reduced-order model (14), which seems to be elusive, particularly in the
transonic regime. Therefore, more efforts from the community should be directed towards such an objective
as it does not only serve unsteady flapping propulsion but also proper aeroelasticity, flight dynamics, and
control analyses, in addition to preliminary design of unconventional airplanes that make use of unsteady
aerodynamics. Third, a significant challenge, which is skipped in this initiatory paper, is the structural
dynamics of the oscillating tail and the concomitant structural penalty. This study is instrumental for the
practicality of the proposed FTCA.

If Triantafyllou and his colleagues” managed to demonstrate 87% propulsive efficiency by just flapping
in the stall regime with large amplitudes (i.e., only making use of the first point above), then by performing
kinematic optimization, allowing for more flow interactions, and capturing energy from the wing wake, one
can boost the flapping propulsive efficiency even beyond. It is expected that a flapping propulsive efficiency
of 90-95% can be demonstrated by exploiting the unsteady phenomena mentioned above. This enhancement
in propulsive efficiency will simply lead to a 20-25% saving in fuel consumption according to the rough
estimate

mr  Cp—Cp,nprF
mrr Cp npr

where the left hand side represents the ratio of the fuel consumption in the FTCA to that of a conventional
airplane powered by a turbo-fan engine and K—TFF is the ratio between the turbo-fan engine propulsive

efficiency (taken here to be 78% of the state-of-the-art engine GE CFM56-7B) and flapping propulsive
efficiency.

This significant splash (25% fuel saving) is not expected in the very saturated aeronautical engineering
domain. In fact, saving fuel consumption by one or two percent is already a formidable challenge that, if
successfully overcome, will save billions of dollars for airliners as well as saving our environment. Just to
give the reader an idea about how saturated airplane designs are and how effective “little” savings can be,
the American Airlines decided to replace the paper flight manual (35 Ib weight) with an iPad and estimated
a 1.2 million dollar savings per year due to such a decision. The introduction of winglets, which save about
5% in fuel consumption, remarks a revolution in airplane performance that saved more than 5 billion gallons
of jet fuel (equivalent to $8 billion) world wide. Therefore, the proposed thrust mechanism, if successfully
developed, will save $25 billion for US airliners per year.

IX. Conclusion

In this paper, we studied the flapping propulsion problem. We showed several promising techniques
to boost flapping propulsive efficiency beyond the current turbo fan engine technologies. In particular, we
showed how large amplitude flapping in the stall regime may enhance propulsive efficiency. We also showed
that, even in the small-disturbance linear range, allowing for a simultaneous oscillation in the flap deflection
with pitching-plunging may enhance the propulsive efficiency by 20%. Therefore, we recommended allowing
for more interactions with flow control mechanisms and provided a geometric control theoretic formulation
to guide such nonlinear interactions. We also showed a room for capturing the free energy in the wing wake.
Based on these premises, we proposed a new airplane concept, called the Flapping Tail Concept Airplane
(FTCA), which is an airplane that is propelled by flapping its horizontal tail while its lift is generated in the
conventional way using stationary wings. The Boeing 737-800 is used to demonstrate such a concept. The
effect of the oscillating tail on the airplane flight mechanics is investigated and found to be minimal because
of the too high oscillation frequency with respect to the flight mechanics natural modes. The paper serves
as an initiator for several future investigations in the area.
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