

Polymorphic Gate based IC Watermarking Techniques

Abstract - Polymorphic gates are reconfigurable devices whose

functionality may vary in response to the change of execution

environment such as temperature, supply voltage or external

control signals. This feature makes them a perfect candidate for

circuit watermarking. However, polymorphic gates are hard to

find because they do not exhibit the traditional structure. In this

paper, we report four dual-function polymorphic gates that we

have discovered using an evolutionary approach. With these

gates, we propose a circuit watermarking scheme that selectively

replaces certain standard logic gates with the polymorphic gates.

Experimental results on ISCAS and MCNC benchmark circuits

demonstrate that this scheme introduces low overhead. More

specifically, the average overhead in area, speed and power are

4.10%, 2.08% and 1.17% respectively when we embed 30-bit

watermark sequences. These overheads increase to 6.36%, 4.75%

and 2.08% respectively when 10% of the gates in the original

circuits are replaced to embed watermark up to more than 300

bits.

I Introduction

The advances in integrated circuit(IC) technology has led to

demands for efficient ways to implement increasingly

complex electronic systems. Multifunction or reconfiguration

schemes are promising solutions to this problem as they aim

to expand the potential scope and utility of electronic devices

through simplified and minimal number of components [1].

Traditional multifunctional systems are implemented by

multiplexing between multiple stand-alone conventional

subsystems. This straightforward approach satisfies the

required functionality at the cost of larger implementation

overheads.

Recent achievements in the field of digital circuit design

brings another concept – so called polymorphic gates (or

polymorphic circuits), which was introduced by A. Stoica as a

novel type of reconfigurable scheme [2]. Different from the

conventional reconfigurable circuits, polymorphic circuits

need no reconfiguration switch, as the multiple-functionality

is inherently embedded in them. Function transitions are

triggered by changes in temperature, supply voltage or

external signals, etc. For example, one typical polymorphic

gate that has been fabricated using HP 0.5um technology is a

NAND/NOR gate proposed in [3]. It performs as a NAND

gate when Vdd is 3.3V and when Vdd drops to 1.8V, this gate

works as a NOR gate. Many follow-up works have been

reported on designing various types of polymorphic gates

based on evolutionary approach [4][5] and on the design of

polymorphic circuits using polymorphic gates [6][7].

With two or more functions built in one single compact

structure, polymorphic circuits have found many applications

where a few predefined functions have to be implemented and

a global control signal selects the function, such as

multifunctional adaptive systems [8,13], finite impulse

response(FIR) filter [9], self-checking circuits [10], reduction

of test vector volume [11,15], etc. For these scenarios, two

modes are supported in polymorphic circuits, where one mode

is considered the main operation mode and the other mode is

only for special occasions. Notice that the special mode

remains invisible when the circuits delivers normal function.

Therefore, it is feasible to hide secret information and activate

the special mode with specific control factors to reveal the

secret.

In this paper we aim to dig out the potentials of

polymorphic circuits in hardware security and trust related

applications, which hasn’t been comprehensively researched

in previous works. One straightforward and convenient

application of polymorphic gates is to embed circuit

watermark, which is one of the first studied hardware security

problems [12]. In this scheme, the circuit delivers correct

functionality in the normal mode; when it’s necessary to

demonstrate the watermark, the circuit is transitioned to the

special mode by activating the external control so that the

circuit can change its functionality and produce different

outputs. In this case, the hidden “secret” is the hardware-level

watermark, which proves the ownership of the circuits and

gives the circuits legal protection against piracy, overbuilding

and counterfeiting.

Based on above considerations, we have put forward a

watermarking scheme by replacing the standard logic gates in

the design netlist with polymorphic gates. Our works and

contributions are specified as follows:

 After making a second visit to the design approaches of

polymorphic gates, we optimize the most widely used

genetic algorithm and implement an automatic design tool;

with this tool, we have successfully constructed four

polymorphic gates.

 We propose a polymorphic logic based circuit watermarking

scheme by replacing standard library cells with polymorphic

gates. The scheme features easy detectability [14] which is

achieved by a justifiability and observability checking

algorithm.

 We evaluate the area, delay and power overhead introduced

by our proposed watermarking schemes on ISCAS 85 and

MCNC benchmark circuits using 0.13um SMIC technology.

Tian Wang, Xiaoxin

Cui, Dunshan Yu

Institute of Microelectronics,

Peking University

Beijing, China 100871

e-mail: cuixx@pku.edu.cn

Omid Aramoon,

Timothy Dunlap, Gang Qu

Department of Electrical and Computer

Engineering and Institute for Systems Research

 University of Maryland, College Park, USA

e-mail: gangqu@umd.edu

Xiaole Cui

Key Lab of Integrated

Microsystems

Shenzhen, China 518055

e-mail: cuixl@pkusz.edu.cn

Results demonstrate that with 10% of the gates in the

circuits being replaced by polymorphic gates, we are able to

embed watermarks up to 300 bits, the circuits embedded

with watermarks have an average of 6.36%, 4.75%, 2.08%

overhead in delay, area and power, respectively. In other

words, our scheme can provide sufficiently strong

watermarks with acceptable performance deterioration.

Furthermore, the proposed watermarking scheme delivers

near perfect solution on fairness [20, 21].

The rest of the paper is organized as follows: Section II

gives the background on polymorphic gates and their design

methodology, the evolutionary approach. Section III presents

our design tool and the polymorphic gates we have evolved. In

Section IV, we propose our watermarking technique based on

the evolved polymorphic gates, and Section V concludes

II. Background

As the basic building unit of polymorphic circuits,

polymorphic gates can be implemented with FTPA (field

programmable transistor array) [2], CMOS [3], emerging

devices such as silicon nanowire and ambipolar devices [16]

[17]. Table I lists some representative polymorphic gates

reported in the literature. Different from conventional logic

gates, these gates will deliver different outputs for the same

input vector depending on the operating environment such as

temperature, supply voltage or external signals. So far there

are only two fabricated polymorphic gates. The rest of the

gates are either simulated or tested with FPTA. For better

integration in the mainstream CMOS technology, we only

focus on polymorphic gates consisting of CMOS transistors.

 While standard logic gates adopt complementary topology,

polymorphic gates employ rather unconventional structure at

the transistor level. Due to their irregular topology, it is a

challenge to find polymorphic gates. Evolutionary approach

[4][18] is the most suitable method to search for potential gate

designs that match perfectly with the required multiple

functionalities [13]. As long as the gate specifications (usually

takes the form of truth table) are given, candidates can be

evaluated and ranked. Genetic algorithm is one of the most

popular variants of evolutionary approach. In the generalized

version of Genetic algorithm [19], after the genotype (or gene)

is mapped to an artificial system and the initial population of

candidate individuals are created, a generative process ranks

candidate solutions based on a fitness function which

incorporates the desired criteria, and selects the fittest

candidates for mutation and reproducing the next generation.

This process repeats until an acceptable solution is found. In

this paper, we tailor the generalized genetic algorithm for

designing polymorphic gates. We assign an index for the

source, gate and drain terminals of each transistor respectively.

Genes refer to the index of the terminals that the source, gate

or drain are connected to and the width and length values of

each transistor. The fitness function is the hamming distance

between the outputs of the candidate solutions and the desired

outputs.

Algorithm 1-Genetic algorithm for evolving polymorphic

gates

Input:

Population_No - number of individuals in each generation

Generation_No- number of generations for evolution

f<t, a, b…> - truth table of the desired gate function, where

a,b…. are the input values and t is the external control signal to

transform the function

HD_threshold – threshold of hamming distance between the

output of each individual and that of the desired gate function

r - mutation rate of each generation

Output: Gate netlist that performs the desired function.

1. Gene initialization

cnt1 = 0;

for (cnt2 = 0; cnt2 < Population_No; cnt2++)

Initialize the genes and generate netlist[cnt2]

end for

2. Simulation and fitness evaluation

for (cnt2 = 0; cnt2 < Population_No; cnt2 ++)

 for different t and every input combination of a,b…

f’ = Simulate(t,a,b,..netlist[cnt2])；

end for

HD[cnt2] = hamming distance (f, f’);

end for

3. Selection and reproduction

No_indiv= 0;

for (cnt2 = 0; cnt2 < Population_No; cnt2 ++)

if (HD[cnt2] == 0)

Report(netlist[cnt2]);

endif

elseif (0<HD(cnt2) < HD_threshold)

Survival= Survival∪netlist(cnt2);

No_indiv++;

endif

end for

for every netlist in the set Survival

for (cnt2 = 0; cnt2 <[Population_No]/No_indiv; cnt2++)

 Change r% of genes in netlist[cnt2];

 end for

end for

4. While (cnt1 != Generation_No)

Goto step 2~3; cnt1++;

end while

TABLE I

Examples of the existing polymorphic gates.

Gate Control Control values Transistors

AND/OR[2] temperature 27/125C 6

AND/OR[2] ext. voltage 3.3V/0V 6

AND/OR[1] Vdd 3.3V/1.2V 8

AND/OR/XOR[2] ext. voltage 3.3V/0V/1.5V 10

NAND/NOR[3] Vdd 3.3V/1.8V 6

NAND/NOR[10] Vdd 5V/3.3V 8

NAND/XOR[5] ext. voltage 3.3V/0V 9

Notice that although the genes are randomly initialized and

modified, there are some practical constraints that needs to be

followed, which are specified as follows.

C1. At least one terminal should be connected to power,

ground, output, inputs, respectively.

C2. No floating nodes should appear in the circuits.

C1 is to ensure that each design will be a complete gate. To

meet C2, we force the source, drain and gate terminals of one

transistor to be connected to one terminal of other transistors

so that every terminal is in the path from power to the ground.

The modified genetic algorithm is shown as in Algorithm 1.

III. Designing logic gates with evolutionary approach

A. Experimental setup

We target two-input one-output gate and consider

temperature as the external control signal, which ranges from

-25°C to 150°C. The 130nm SMIC technology is adopted and

the supply voltage is set as 1.2V.

As shown in Fig.1, we have developed an automatic design

platform that integrates a netlist generation module, Hspice

simulator and function evaluation module based on the genetic

algorithm specified above. The netlist generation module

mutates the genes of each individual in every generation to

reproduce the next generation. The genes are translated into

the .sp netlists that are later fed into Hspice for simulation.

The measurements in the output files (.lis) of Hspice simulator

are extracted by the function evaluation module so that the

fitness function value (here refers to the Hamming distance) of

each candidate can be calculated. Both the netlist generation

module and the fitness evaluation module are written in C.

B. Evolved polymorphic gates

With the design tool, we have evolved four novel

polymorphic gates for the first time. The function of these

gates are listed in Table II.

Fig.2(a) presents the schematic of the polymorphic

NOR/INV gate. These transistors are connected in irregular

topology and takes unconventional parameters. The function

of this gate is shown in Fig.2(b). At room temperature, this

gate is a NOR gate; when temperature rises from to 125C, this

gate inverts the second input.

IV. Proposed circuit watermarking scheme with evolved

polymorphic gates

In this section we propose a circuit watermarking scheme

based on embedding the polymorphic gates we’ve evolved

into the original design.

A. Polymorphic logic based justifiability and observability

checking algorithm

We embed the evolved polymorphic gates into the design

by replacing the standard cells in the gate-level netlist with

polymorphic gates. Every cell in the original netlist represents

a possible location for gate replacement. However, the suitable

locations for replacement should ensure:

1. The circuit functions correctly at normal operation mode,

after the gates in these locations are replaced.

2. The functionality of the modified circuit in normal mode

and special mode can be differentiated by observing the

primary outputs of the circuit.

To find the suitable locations to embed polymorphic gate,

we address three principles that needs to follow. These

0.52u\0.26u

vdd

b
out

0.39u\0.26ub

a

a

0.39u\0.26u

0.26u\0.26u

1.3u\0.13u 0.91u\0.13u

(a)

0 10n 20n 30n 40n

0

0.6V

1.2V

a

b

out !(a||b) 25°C

out !b 125°C

0 10n 20n 30n 40n

0

0.6V

1.2V

0 10n 20n 30n 40n

0

0.6V

1.2V

0 10n 20n 30n 40n

0

0.6V

1.2V

(b)

Fig.2 Polymorphic NOR/INV gate. (a) Topology (b)
Input and output waveforms.

Fig. 1. Platform for implementing the genetic algorithm.

.

Netlist generation Hspice simulator Fitness evaluation
.sp .lis

TABLE II

Evolved polymorphic gates controlled by temperature.

Gate function Transistor

OR(25°C)-AND (125°C) 6

NOR (25°C)-INV(125°C) 6

NAND (25°C)-INV (125°C) 6

AND (25°C)-BUF (125°C) 7

principles ensure the correct functionality of the circuit and

facilitate the easy detectability of the embedded watermark

[12].

P1. Only the gates that have the same functionality as the

polymorphic gates in normal mode could be potential

locations for watermark embedding.

P2. There should be at least one pattern for primary inputs of

the circuit that can ‘activate’ the polymorphic gate. An

input pattern can ‘activate’ a polymorphic gate if it can

set the inputs of the gate to a Differentiating Input Value.

Differentiating Input Values (DIV) of a polymorphic gate

are the input combinations for which the polymorphic gate

produces different output when the control signal changes. For

example, input combination (1,0) is DIVs of the NOR/INV

gate in Fig.2, for the output of this gate reverses from 0 to 1 as

temperature changes from 25C to 125C when the two inputs

are set as ‘1’ and ‘0’.

Moreover, this primary input pattern should also

‘propagate’ the output of this gate to the primary output so

that the function transformation can be observed.

To find such input patterns, we adopted the justification

methodology in VLSI testing to deduce the logic value from

the input of the candidate gate backwards to the primary input.

Only a gate that is justifiable can be a potential replacement

location.

Besides justifiability, we also need to check the

observability of this gate location. We propagate the output of

one gate by justifying the other input(s) of its successor gate

as non-controlling values. Take the circuit in Fig.3 as an

example. To propagate the output of gate 1, the first input of

its successor gate 4 should be justified as ‘1’ so that the output

of gate 4 is determined by the output of gate 1. Similarly, we

advance the output one gate at a time until it reaches the

primary output.

P3. The changes in the functionality of one polymorphic gate

upon changing the temperature shouldn’t influence the

activation and propagation of other polymorphic gates.

To cater for P3, we need to incorporate the following

criteria when checking the justifiability and observability of a

certain location.

First, according to P1, every gate that has the same function

with one of the polymorphic gates could be possible locations

for gate replacement. When checking the justifiability or

observability of a gate, we may need to justify other gates that

will be replaced by polymorphic gates. For these gates, we

should assign DIV with least priority. For example, if we want

to check whether a NOR gate (gate A) could be replaced by a

NOR/NAND and we need to set the output of another

two-input NOR gate (gate B) as ‘0’, we will try the input

patterns ‘11’ first for B and then ‘01’or’10’ if ‘11’ fails. As

‘11’ gives the same output for NOR and NAND, even if gate

B is replaced by a polymorphic gate, the transition of its

output when control signal changes will not influence the

activation or propagation of gate A.

Second, when checking the observability of a gate location

we need to make sure that even if the successor gates are

replaced by polymorphic gates, the gate output can still

propagate in special mode. We give a case-by-case solution

based on analyzing the truth-table of the four polymorphic

gates.

Algorithm 2- Justifiability and observability checking

algorithm

Input: netlist of the original design, polymorphic gate gp

whose function changes from f1 to f2 when temperature

changes.

Output: locations that can be replaced by polymorphic

gates

for every gate g in the gate netlist

if(g functions as f1&& Activate(g) = success &&

Propagate(g) = success)

 Report g is a possible location to embed polymorphic

gate

endif

end for

Function Activate (gate g)

 for i= 0; i < number of inputs for g; i ++

 if (justify (g’s ith input, vi) = fail)

 return fail;

 endif

 endfor // f1(v1, v2, …) != f2(v1, v2, …)

return success;

Function Propagate (gate g)

 if (g is output) return success;

 for i = 0; i< number of fanout gates for g; i ++

 gf = g’s ith fanout gate;

 ni = number of inputs for gf ;

 if ((gf is NAND or gf is AND)&& ni ==2)

 if (justify (gf’s 2nd input, 1) == success)

 return success; endif

 endif

 if (gf is NOR && ni ==2)

 if (justify (gf’s 1st input, 0) == success)

 return success; endif

 endif

 if (ni !=2)

 for j = 0; j < ni; j++

 if (justify (gf’s jth input, vnon_con) == success)

 return success; endif

 endfor

 endif

 endfor

return fail;

 Function Justify (gate g, justification value v)

 if (v != g’s existing output value)// conflict occurs

 backtrace();

Endif

Elseif (g functions as f1&& v = vd)

for every input patterns giving same output for f1

and f2

for i= 0; i < number of inputs for g; i ++

 if (justify (g’s ith input, vi’) = fail)

 break; // f1(v1’, v2,’…) = f2(v1’, v2’, …) = vd

endfor

endfor

 for i= 0; i < number of inputs for g; i ++

 if (justify (g’s ith input, vi) = fail)

 return fail; // f1(v1, v2, …) = vd != f2(v1, v2, …)

 endfor

endif

 …

Case 1. The successor gate is a two-input NOR gate. Suppose

this gate is replaced by NOR/INV gate. If the second input of

this gate is justified as ‘0’ and the first input is connected to

the signal that needs to propagate, when temperature rises, the

gate inverts the second input and the output of this gate is

always ‘1’ so the propagation fails. If the two inputs are

swapped (the first input is justified as ‘0’), the gate delivers

the complementary of the second input so that the propagation

can proceed.

Similarly, if the successor gate is two-input NAND (or

AND) gate, it may be replaced by the NAND/INV (or

AND/BUF) that inverts (or outputs) the first input. In this case

the second input should be justified as ‘1’ and the signal to

propagate is connected to the first input.

Case 2. The successor gate is a two-input OR gate. If one

input of this OR gate is justified as ‘0’ and this gate gets

replaced by a polymorphic OR/AND gate, when temperature

rises, this gate turns into an AND gate. Since one input of this

gate is ‘0’, the output will be ‘0’ no matter what value the

other input (which is the signal we want to propagate) takes,

which makes the propagation fail. Therefore, we will avoid

propagating to two-input OR gates.

Based on these principles, we have come up with a

justifiability and observability checking algorithm to find out

the possible locations to insert polymorphic gates. The

algorithm is specified as in Algorithm 2.

Fig. 3 gives a motivational example on how we run this

algorithm. Suppose that we choose the evolved NOR/INV

gate. For the given circuit, there are three NOR gates that can

be replaced. As discussed before, the two inputs of the NOR

gate should be justified as ‘0’ and ‘1’ so that the function

transition can be observed if the gate is replaced. For gate 1, i4

and i5 are set as ‘1’ and ’0’, respectively. As marked in Fig.3,

by propagating the output of g1 forward to the primary output,

we derive i1= ‘0’, i2= ‘0’ and i3= ‘1’. Thus, the output of gate

1 can be observed at the primary output. Similarly, we derive

‘x10xx’ (x is the don’t care value) for gate 3. By changing the

temperature, we can observe the output to tell whether gate

1/gate 3 is a standard NOR gate or a polymorphic NOR/INV

gate. For gate 2, such input pattern doesn't exist, so gate 2 is

not an ideal location to insert polymorphic gate.

B. Watermarking scheme with polymorphic gates

The watermarking scheme with polymorphic gates involve

the following steps in the design phase as illustrated in Fig. 4.

 Determine the locations (e.g. gate 1 and 3 in Fig. 3) to

insert polymorphic gates with the Algorithm 2 in

IV.A. The input vectors for detecting the watermark

are also obtained at this step (‘00110’ for gate 1 and

‘x10xx’ for gate 3).

 Generate the watermark sequence. Bit ‘1’ (‘0’) in this

binary pattern means a standard logic gate in a

certain location will (will not) be replaced by a

polymorphic gate.

 Replace standard logic gates with polymorphic gates.

Thus the watermark is embedded in the ‘hidden’

function when the circuit works at special mode.

To detect the watermark, the users need to feed the input

vectors provided by the designers (‘00110’ and ‘x10xx’) into

the circuits and compare the primary outputs gathered at

normal mode and special mode. If a difference is observed at a

certain primary output, it indicates that the circuits has

employed a polymorphic gate at the corresponding location,

which means a bit ‘1’ of the watermark sequence is detected;

and vice versa. Therefore, the watermark sequence can be

retrieved, which proves the ownership of the design.

C. Overhead evaluation of the scheme

We selected several circuits in ISCAS 85 and MCNC

benchmarks to perform overhead evaluation. The circuits are

described in Verilog HDL and synthesized using 130nm SMIC

Fig.3 Motivation example of Algorithm 2

i1

i2

i3

i4

i5

1

2
3

 0

 0

 0
 0

 0

 1

 0

 1
 0 4

5

6

TABLE III

Area, performance and power overhead of the proposed scheme

(small watermark sequence length)

Circuit No. of

gates

No. of

possible

locations

△

delay

(%)

△

Area

(%)

△

Power

(%)

C880 290 94 0 0.66 0.43

C1355 424 32 6.62 0.47 0.24

C1908 396 114 1.70 0.12 1.11

C3540 943 83 0.18 0.19 0.47

C5315 1428 556 0 0.50 0.46

dalu 1228 131 0 0.23 0.44

des 3483 1084 0 0.07 0.53

ex5 609 48 0 0.37 0.54

i8 1174 277 0 0.16 0.51

i10 1914 526 0.74 0.09 0.27

vda 483 131 0 0.35 0.006

Avg - - 0.84 0.29 0.45

Fig. 4 Design flow of the proposed watermarking scheme

watermark
watermark

sequence 001..10..

original netlist

i1

i2

i3

i4

i5

Out

i1

i2

i3

i4

i5

Out

 0

 1

 0

 1

 1

locations + input patterns

Algorithm2

i1

i2

i3

i4

i5

Out

netlist with watermark

NOR/

INV

NOR/

INV

 input patterns
watermark

sequence 001..10..

Out

technology and the supply voltage is set as 1.2V. For

simplicity, the behavioral design is mapped to invertors and

two-input/three-input/four-input NAND/NOR/OR/AND gates.

The evolved gates are replaced in the gate-level netlist

automatically with a netlist modifier written in C. The timing

and power of the polymorphic gates are measured using

Hspice and their layout area are estimated based on the

transistor parameters. With these measurements, we

incorporate the polymorphic gates into the SMIC 0.13um

synthesis library as standard cells. We measure the area, delay

and power of the original netlist and the modified netlist after

polymorphic gates are embedded using Synopsys Design

Compiler. The overheads are evaluated in three different

scenarios:

1. We start from the simplest case where only a small size

watermark is needed. Choose a small number (say 4) of

possible gate locations to embed polymorphic gates. We

traverse all the 16 cases where the watermark sequence ranges

from “0000” to “1111”; for each watermark sequence, we

replace the gate at a certain location with polymorphic gate if

the corresponding bit in the sequence is ‘1’. Therefore, we

obtain 16 netlists embedded with 16 different watermarks and

measure their maximum path delay, area and power using

Design Compiler. The average overhead of the 16 modified

netlists is reported in Table III. From this, we can see that the

proposed watermarking scheme can achieve very good

fairness [20, 21] except on the delay metric for one circuit

C1355.

2. In real-world practices, a large number of unique

watermarks are needed, therefore, the watermark sequence

should be long enough. We set a fixed length of watermark

sequence and choose a relatively large number of (i.e. 20 or

30) potential gate locations. Since it is not practical to exhaust

all the possible 220 or 230 cases, we randomly generate 100

20-bit (30-bit) watermark sequences, embed polymorphic

gates and obtain 100 modified netlists. The average overhead

of these netlists is reported in Table IV.

3. In this scenario, we set the size of watermark proportional

to that of the circuit it secures. We replace 5% and 10% of the

total number of gates with polymorphic gates, which ensures

the space of candidate watermarks for most benchmark

circuits. Similarly, we randomly generate 100 watermark

sequences and report the average overhead of the modified

netlists in Table V.

From Table III we can tell that for most benchmark circuits

there are enough number of locations to embed polymorphic

gates for our watermarking scheme. A small size watermark

(4-bit watermark sequence) introduces little overhead, which

is an average of less than 1% increase in delay, area and power,

respectively. Table IV shows that with a fixed-length

watermark sequence, the watermarking scheme incurs an

average of less than 5% overhead. In Table V, when replacing

10% of the gate with polymorphic gates, the average overhead

may rise to 6%. For large size benchmark circuits, the

watermark sequence length equals 5% and 10% of the total

gate number, which far exceeds that in Table IV. A long

watermark sequence means on average more gates are

replaced by polymorphic gates and contributes to a larger

overhead in Table V.

V. Summary and Conclusions

In this paper we proposed a circuit watermarking scheme to

resist overbuilding and piracy. The proposed scheme is based

on embedding polymorphic gates that have been evolved with

the genetic algorithm into the gate-level netlist. Experiment

results demonstrate that our scheme brings low overhead in

performance, area and power. One important direction for

future work would be investigating the implementation of

evolved polymorphic gates and our proposed techniques in

fabricating real-life circuits.

Acknowledgement: We thank Dr. Bill Johnson and Dr. Doug

Ketchum for their valuable discussion and suggestion. This

work is supported in part by the National Science Foundation

under grant CNS1745466 and by the Department of Defense.

TABLE IV

Area, performance and power overhead of the proposed scheme

(fixed watermark sequence length)

Circuit 30 gates to be replaced 20 gates to be replaced

△
delay
(%)

△
Area
(%)

△
Power

(%)

△
delay
(%)

△
Area
(%)

△
Power

(%)

C880 7.88 4.05 5.54 0.54 2.77 3.97

C1355 12.34 3.46 0.89 11.44 2.22 0.70

C1908 4.62 4.15 0.47 6.08 2.52 0.76

C3540 7.24 1.53 1.44 8.17 0.93 0.48

C5315 0 0.47 0.75 0 0.14 0.61

dalu 0 1.78 0.49 0.47 1.17 0.14

des 0 0.48 0.44 0.28 0.28 0.49

ex5 5.96 2.44 1.33 0 1.63 1.40

i8 0.30 1.21 0.67 0.30 0.83 0.58

i10 1.79 0.71 0.43 3.13 0.47 0.26

vda 4.96 2.59 0.42 3.19 1.97 0.32

Avg 4.10 2.08 1.17 3.05 1.36 0.88

TABLE V

Area, performance and power overhead of the proposed scheme

(varying watermark sequence length)

Circuit 10% of the gates to be

replaced

5% of the gates to be

replaced

△
delay

(%)

△
Area

(%)

△
Power

(%)

△
delay

(%)

△
Area

(%)

△
Power

(%)

C880 4.89 3.74 4.70 2.44 1.80 2.73

C1355 12.04 3.59 0.95 11.44 2.36 0.69

C1908 6.56 5.18 1.27 7.54 2.02 0.10

C3540 11.15 4.47 3.68 5.94 2.55 1.52

C5315 5.95 4.67 2.24 5.31 1.86 1.31

dalu 0.71 7.12 3.37 0.23 3.52 1.45

des 8.90 5.77 0.63 8.04 2.79 0.98

ex5 9.60 4.01 3.35 0.33 2.64 1.97

i8 1.85 4.63 1.24 0.30 2.36 0.71

i10 2.23 4.97 1.23 2.08 2.48 0.54

vda 6.02 4.06 0.22 2.48 2.11 0.06

Avg 6.36 4.75 2.08 4.19 2.41 0.92

References

[1] A. Stoica, R. Zebulum, D. Keymeulen, J. Lohn, “On polymorphic

circuits and their design using evolutionary algorithms,” Proc. of

Lasted International Conference on Applied Informatics (AI2002),

2002.

[2] A. Stoica, R. Zebulum, D. Keymeulen, “Polymorphic

electronics,”International Conference on Evolvable Systems.

Springer Berlin Heidelberg, pp. 291-302, 2001.

[3] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, M.I.Ferguson &

V.Duong, “Taking evolutionary circuit design from

experimentation to implementation: Some useful techniques and

a silicon demonstration,” IEE Proceedings-Computers and Digital

Techniques, vol.151, no.4, pp.295-300,2004.

[4] L. Sekanina, “Evolutionary design of gate-level polymorphic

digital circuits,”Workshops on Applications of Evolutionary

Computation. Springer Berlin Heidelberg, pp.185-194, 2005.

[5] R. Ruzicka, “On bifunctional polymorphic gates controlled by a

special signal,” WSEAS Transactions on Circuits, vol.7, no.3, pp.

96-101, 2008.

[6] L. Sekanina, “Design methods for polymorphic digital circuits，”
Proc. of the 8th IEEE Design and Diagnostics of Electronic

Circuits and Systems Workshop DDECS，2005.

[7] W. Luo, Z. Zhang, X. Wang, “Designing polymorphic circuits

with polymorphic gates: a general design approach,” IET Circuits,

Devices & Systems, vol.1, no.6, pp. 470-476, 2007.

[8] L. Sekanina, R. Ruzicka, Z. Vasicek, R. Prokop & L. Fujcik,

“Repomo32-new reconfigurable polymorphic integrated circuit

for adaptive hardware,” IEEE Workshop on Evolvable and

Adaptive Hardware, 2009.

[9] L. Sekanina, R. Ruzicka, Z. Gajda, “Polymorphic FIR filters with

backup mode enabling power savings,” NASA/ESA Conference

on Adaptive Hardware and Systems, 2009.

[10] L. Sekanina, R. Ruzicka, R. Prokop, “Physical demonstration of

polymorphic self-checking circuits,” 14th IEEE International

On-Line Testing Symposium, 2008.

[11] L. Sekanina, L. Starecek, Z. Kotasek, Z. Gajda, “Polymorphic

gates in design and test of digital circuits,” International Journal

of Unconventional Computing, vol. 4, no.2, pp.125, 2008.

[12] G. Qu and M. Potkonjak, “Intellectual Property Protection in

VLSI Designs: Theory and Practice”, Kluwer Academic

Publishers, 2003.

[13] L. Sekanina, L. Starecek, Z. Gajda, Z. Kotasek., “Evolution of

multifunctional combinational modules controlled by the power

supply voltage,” Proc. of the 1st NASA/ESA Conference on

Adaptive Hardware and Systems, pp. 86–193, 2006.

[14] G. Qu, “Publicly Detectable Watermarking for Intellectual

Property Authentication in VLSI Design”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol.

21, No. 11, pp. 1363-1368, Nov, 2002.

[15] L. Sekanina, “Evolution of Polymorphic Self-Checking

Circuits,” Proc. of the 7th Conference on Evolvable Systems:

From Biology to Hardware, pp.186–197, 2007.

[16] Y. Bi, K Shamsi, J.S. Yuan, P. E. Gaillardon, G.D. Micheli, X.

Yin et al., “Emerging technology-based design of primitives for

hardware security,” ACM Journal on Emerging Technologies in

Computing Systems, vol. 13, no.1, pp.3, 2016.

[17] R. Richard and T. Radek, “Let’s move polymorphism

downwards: On the multifunctional logic based on ambipolar

behaviour of semiconductor devices,” 2016 International

Conference on Design and Technology of Integrated Systems in

Nanoscale Era (DTIS), pp.1-5, 2016.

[18] J.F. Miller, J. Dominic and K.V. Vesselin, “Principles in the

evolutionary design of digital circuits—Part I,” Genetic

programming and evolvable machines.vol.1, no.1-2, pp.7-35,

2000.

[19] J H.Holland, “Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and

artificial intelligence,” MIT press, 1992.

[20] G. Qu, J.L. Wong, and M. Potkonjak, “Fair Watermarking

Techniques”, Proceedings of the 2000 Asia and South Pacific

Design Automation Conference, pp. 55-60, 2000.

[21] J.L. Wong, G. Qu, and M. Potkonjak, “Optimization-intensive

Watermarking Techniques for Decision Problems”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 23, No. 1, pp. 119-127, Jan, 2004.

