
 

Polymorphic Gate based IC Watermarking Techniques 
 

Abstract -  Polymorphic gates are reconfigurable devices whose 

functionality may vary in response to the change of execution 

environment such as temperature, supply voltage or external 

control signals. This feature makes them a perfect candidate for 

circuit watermarking. However, polymorphic gates are hard to 

find because they do not exhibit the traditional structure. In this 

paper, we report four dual-function polymorphic gates that we 

have discovered using an evolutionary approach. With these 

gates, we propose a circuit watermarking scheme that selectively 

replaces certain standard logic gates with the polymorphic gates. 

Experimental results on ISCAS and MCNC benchmark circuits 

demonstrate that this scheme introduces low overhead. More 

specifically, the average overhead in area, speed and power are 

4.10%, 2.08% and 1.17% respectively when we embed 30-bit 

watermark sequences. These overheads increase to 6.36%, 4.75% 

and 2.08% respectively when 10% of the gates in the original 

circuits are replaced to embed watermark up to more than 300 

bits. 

I Introduction 
 

The advances in integrated circuit(IC) technology has led to 

demands for efficient ways to implement increasingly 

complex electronic systems. Multifunction or reconfiguration 

schemes are promising solutions to this problem as they aim 

to expand the potential scope and utility of electronic devices 

through simplified and minimal number of components [1]. 

Traditional multifunctional systems are implemented by 

multiplexing between multiple stand-alone conventional 

subsystems. This straightforward approach satisfies the 

required functionality at the cost of larger implementation 

overheads. 

Recent achievements in the field of digital circuit design 

brings another concept – so called polymorphic gates (or 

polymorphic circuits), which was introduced by A. Stoica as a 

novel type of reconfigurable scheme [2]. Different from the 

conventional reconfigurable circuits, polymorphic circuits 

need no reconfiguration switch, as the multiple-functionality 

is inherently embedded in them. Function transitions are 

triggered by changes in temperature, supply voltage or 

external signals, etc. For example, one typical polymorphic 

gate that has been fabricated using HP 0.5um technology is a 

NAND/NOR gate proposed in [3]. It performs as a NAND 

gate when Vdd is 3.3V and when Vdd drops to 1.8V, this gate 

works as a NOR gate. Many follow-up works have been 

reported on designing various types of polymorphic gates 

based on evolutionary approach [4][5] and on the design of 

polymorphic circuits using polymorphic gates [6][7]. 

With two or more functions built in one single compact 

structure, polymorphic circuits have found many applications 

where a few predefined functions have to be implemented and  

a global control signal selects the function, such as 

multifunctional adaptive systems [8,13], finite impulse 

response(FIR) filter [9], self-checking circuits [10], reduction 

of test vector volume [11,15], etc. For these scenarios, two 

modes are supported in polymorphic circuits, where one mode 

is considered the main operation mode and the other mode is 

only for special occasions. Notice that the special mode 

remains invisible when the circuits delivers normal function. 

Therefore, it is feasible to hide secret information and activate 

the special mode with specific control factors to reveal the 

secret.  

In this paper we aim to dig out the potentials of 

polymorphic circuits in hardware security and trust related 

applications, which hasn’t been comprehensively researched 

in previous works. One straightforward and convenient 

application of polymorphic gates is to embed circuit 

watermark, which is one of the first studied hardware security 

problems [12]. In this scheme, the circuit delivers correct 

functionality in the normal mode; when it’s necessary to 

demonstrate the watermark, the circuit is transitioned to the 

special mode by activating the external control so that the 

circuit can change its functionality and produce different 

outputs. In this case, the hidden “secret” is the hardware-level 

watermark, which proves the ownership of the circuits and 

gives the circuits legal protection against piracy, overbuilding 

and counterfeiting. 

Based on above considerations, we have put forward a 

watermarking scheme by replacing the standard logic gates in 

the design netlist with polymorphic gates. Our works and 

contributions are specified as follows: 

 After making a second visit to the design approaches of 

polymorphic gates, we optimize the most widely used 

genetic algorithm and implement an automatic design tool; 

with this tool, we have successfully constructed four 

polymorphic gates. 

 We propose a polymorphic logic based circuit watermarking 

scheme by replacing standard library cells with polymorphic 

gates. The scheme features easy detectability [14] which is 

achieved by a justifiability and observability checking 

algorithm. 

 We evaluate the area, delay and power overhead introduced 

by our proposed watermarking schemes on ISCAS 85 and 

MCNC benchmark circuits using 0.13um SMIC technology. 
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Results demonstrate that with 10% of the gates in the 

circuits being replaced by polymorphic gates, we are able to 

embed watermarks up to 300 bits, the circuits embedded 

with watermarks have an average of 6.36%, 4.75%, 2.08% 

overhead in delay, area and power, respectively. In other 

words, our scheme can provide sufficiently strong 

watermarks with acceptable performance deterioration. 

Furthermore, the proposed watermarking scheme delivers 

near perfect solution on fairness [20, 21]. 

The rest of the paper is organized as follows: Section II 

gives the background on polymorphic gates and their design 

methodology, the evolutionary approach. Section III presents 

our design tool and the polymorphic gates we have evolved. In 

Section IV, we propose our watermarking technique based on 

the evolved polymorphic gates, and Section V concludes 

II. Background 
 

As the basic building unit of polymorphic circuits, 

polymorphic gates can be implemented with FTPA (field 

programmable transistor array) [2], CMOS [3], emerging 

devices such as silicon nanowire and ambipolar devices [16] 

[17]. Table I lists some representative polymorphic gates 

reported in the literature. Different from conventional logic 

gates, these gates will deliver different outputs for the same 

input vector depending on the operating environment such as 

temperature, supply voltage or external signals. So far there 

are only two fabricated polymorphic gates. The rest of the 

gates are either simulated or tested with FPTA. For better 

integration in the mainstream CMOS technology, we only 

focus on polymorphic gates consisting of CMOS transistors. 

 While standard logic gates adopt complementary topology, 

polymorphic gates employ rather unconventional structure at 

the transistor level. Due to their irregular topology, it is a 

challenge to find polymorphic gates. Evolutionary approach 

[4][18] is the most suitable method to search for potential gate 

designs that match perfectly with the required multiple 

functionalities [13]. As long as the gate specifications (usually 

takes the form of truth table) are given, candidates can be 

evaluated and ranked. Genetic algorithm is one of the most 

popular variants of evolutionary approach. In the generalized 

version of Genetic algorithm [19], after the genotype (or gene) 

is mapped to an artificial system and the initial population of 

candidate individuals are created, a generative process ranks 

candidate solutions based on a fitness function which 

incorporates the desired criteria, and selects the fittest 

candidates for mutation and reproducing the next generation. 

This process repeats until an acceptable solution is found. In 

this paper, we tailor the generalized genetic algorithm for 

designing polymorphic gates. We assign an index for the 

source, gate and drain terminals of each transistor respectively. 

Genes refer to the index of the terminals that the source, gate 

or drain are connected to and the width and length values of 

each transistor. The fitness function is the hamming distance 

between the outputs of the candidate solutions and the desired 

outputs. 

 

Algorithm 1-Genetic algorithm for evolving polymorphic 

gates 

Input:  

Population_No - number of individuals in each generation 

Generation_No- number of generations for evolution 

f<t, a, b…> - truth table of the desired gate function, where 

a,b…. are the input values and t is the external control signal to 

transform the function 

HD_threshold – threshold of hamming distance between the 

output of each individual and that of the desired gate function  

r - mutation rate of each generation 

Output: Gate netlist that performs the desired function. 

1. Gene initialization  

cnt1 = 0; 

for (cnt2 = 0; cnt2 < Population_No; cnt2++) 

Initialize the genes and generate netlist[cnt2] 

end for 

2. Simulation and fitness evaluation 

for (cnt2 = 0; cnt2 < Population_No; cnt2 ++) 

 for different t and every input combination of a,b… 

f’ = Simulate(t,a,b,..netlist[cnt2])； 

end for 

HD[cnt2] = hamming distance (f, f’); 

end for 

3. Selection and reproduction 

No_indiv= 0; 

for (cnt2 = 0; cnt2 < Population_No; cnt2 ++) 

if (HD[cnt2] == 0)   

Report(netlist[cnt2]);  

endif 

elseif (0<HD(cnt2) < HD_threshold) 

Survival= Survival∪netlist(cnt2);  

No_indiv++; 

endif 

end for 

for every netlist in the set Survival 

for (cnt2 = 0; cnt2 <[Population_No]/No_indiv; cnt2++) 

   Change r% of genes in netlist[cnt2]; 

 end for 

end for 

4. While (cnt1 != Generation_No) 

Goto step 2~3; cnt1++; 

end while 

TABLE I 

Examples of the existing polymorphic gates. 

 

Gate Control Control values Transistors 

AND/OR[2] temperature 27/125C 6 

AND/OR[2] ext. voltage 3.3V/0V 6 

AND/OR[1] Vdd 3.3V/1.2V 8 

AND/OR/XOR[2] ext. voltage 3.3V/0V/1.5V 10 

NAND/NOR[3] Vdd 3.3V/1.8V 6 

NAND/NOR[10] Vdd 5V/3.3V 8 

NAND/XOR[5] ext. voltage 3.3V/0V 9 

 



Notice that although the genes are randomly initialized and 

modified, there are some practical constraints that needs to be 

followed, which are specified as follows. 

C1. At least one terminal should be connected to power, 

ground, output, inputs, respectively. 

C2. No floating nodes should appear in the circuits. 

C1 is to ensure that each design will be a complete gate. To 

meet C2, we force the source, drain and gate terminals of one 

transistor to be connected to one terminal of other transistors 

so that every terminal is in the path from power to the ground. 

The modified genetic algorithm is shown as in Algorithm 1. 

III. Designing logic gates with evolutionary approach 

A. Experimental setup 

We target two-input one-output gate and consider 

temperature as the external control signal, which ranges from 

-25°C to 150°C. The 130nm SMIC technology is adopted and 

the supply voltage is set as 1.2V.  

As shown in Fig.1, we have developed an automatic design 

platform that integrates a netlist generation module, Hspice 

simulator and function evaluation module based on the genetic 

algorithm specified above. The netlist generation module 

mutates the genes of each individual in every generation to 

reproduce the next generation. The genes are translated into 

the .sp netlists that are later fed into Hspice for simulation. 

The measurements in the output files (.lis) of Hspice simulator 

are extracted by the function evaluation module so that the 

fitness function value (here refers to the Hamming distance) of 

each candidate can be calculated. Both the netlist generation 

module and the fitness evaluation module are written in C. 

B. Evolved polymorphic gates  

With the design tool, we have evolved four novel 

polymorphic gates for the first time. The function of these 

gates are listed in Table II. 

Fig.2(a) presents the schematic of the polymorphic 

NOR/INV gate. These transistors are connected in irregular 

topology and takes unconventional parameters. The function 

of this gate is shown in Fig.2(b). At room temperature, this 

gate is a NOR gate; when temperature rises from to 125C, this 

gate inverts the second input. 

 

IV. Proposed circuit watermarking scheme with evolved 

polymorphic gates 
 

In this section we propose a circuit watermarking scheme 

based on embedding the polymorphic gates we’ve evolved 

into the original design. 

A. Polymorphic logic based justifiability and observability 

checking algorithm  

We embed the evolved polymorphic gates into the design 

by replacing the standard cells in the gate-level netlist with 

polymorphic gates. Every cell in the original netlist represents 

a possible location for gate replacement. However, the suitable 

locations for replacement should ensure: 

1. The circuit functions correctly at normal operation mode, 

after the gates in these locations are replaced. 

2. The functionality of the modified circuit in normal mode 

and special mode can be differentiated by observing the 

primary outputs of the circuit. 

To find the suitable locations to embed polymorphic gate, 

we address three principles that needs to follow. These 
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Fig.2 Polymorphic NOR/INV gate. (a) Topology (b) 
Input and output waveforms.  

 

Fig. 1. Platform for implementing the genetic algorithm. 
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TABLE II 

Evolved polymorphic gates controlled by temperature. 

 

Gate function Transistor 

OR(25°C)-AND (125°C) 6 

NOR (25°C)-INV(125°C) 6 

NAND (25°C)-INV (125°C) 6 

AND (25°C)-BUF (125°C) 7 

 



principles ensure the correct functionality of the circuit and 

facilitate the easy detectability of the embedded watermark 

[12].    

P1. Only the gates that have the same functionality as the 

polymorphic gates in normal mode could be potential 

locations for watermark embedding. 

P2. There should be at least one pattern for primary inputs of 

the circuit that can ‘activate’ the polymorphic gate. An 

input pattern can ‘activate’ a polymorphic gate if it can 

set the inputs of the gate to a Differentiating Input Value. 

Differentiating Input Values (DIV) of a polymorphic gate 

are the input combinations for which the polymorphic gate 

produces different output when the control signal changes. For 

example, input combination (1,0) is DIVs of the NOR/INV 

gate in Fig.2, for the output of this gate reverses from 0 to 1 as 

temperature changes from 25C to 125C when the two inputs 

are set as ‘1’ and ‘0’.  

Moreover, this primary input pattern should also 

‘propagate’ the output of this gate to the primary output so 

that the function transformation can be observed. 

To find such input patterns, we adopted the justification 

methodology in VLSI testing to deduce the logic value from 

the input of the candidate gate backwards to the primary input. 

Only a gate that is justifiable can be a potential replacement 

location.  

Besides justifiability, we also need to check the 

observability of this gate location. We propagate the output of 

one gate by justifying the other input(s) of its successor gate 

as non-controlling values. Take the circuit in Fig.3 as an 

example. To propagate the output of gate 1, the first input of 

its successor gate 4 should be justified as ‘1’ so that the output 

of gate 4 is determined by the output of gate 1. Similarly, we 

advance the output one gate at a time until it reaches the 

primary output. 

P3. The changes in the functionality of one polymorphic gate 

upon changing the temperature shouldn’t influence the 

activation and propagation of other polymorphic gates. 

To cater for P3, we need to incorporate the following 

criteria when checking the justifiability and observability of a 

certain location.  

First, according to P1, every gate that has the same function 

with one of the polymorphic gates could be possible locations 

for gate replacement. When checking the justifiability or 

observability of a gate, we may need to justify other gates that 

will be replaced by polymorphic gates. For these gates, we 

should assign DIV with least priority. For example, if we want 

to check whether a NOR gate (gate A) could be replaced by a 

NOR/NAND and we need to set the output of another 

two-input NOR gate (gate B) as ‘0’, we will try the input 

patterns ‘11’ first for B and then ‘01’or’10’ if ‘11’ fails. As 

‘11’ gives the same output for NOR and NAND, even if gate 

B is replaced by a polymorphic gate, the transition of its 

output when control signal changes will not influence the 

activation or propagation of gate A. 

Second, when checking the observability of a gate location 

we need to make sure that even if the successor gates are 

replaced by polymorphic gates, the gate output can still 

propagate in special mode. We give a case-by-case solution 

based on analyzing the truth-table of the four polymorphic 

gates. 

Algorithm 2- Justifiability and observability checking 

algorithm 

Input: netlist of the original design, polymorphic gate gp 

whose function changes from f1 to f2 when temperature 

changes.  

Output: locations that can be replaced by polymorphic 

gates 

for every gate g in the gate netlist 

if(g functions as f1&& Activate(g) = success && 

Propagate(g) = success) 

  Report g is a possible location to embed polymorphic 

gate 

endif 

end for 

 

Function Activate (gate g) 

    for i= 0; i < number of inputs for g; i ++ 

        if (justify (g’s ith input, vi) = fail) 

                return fail; 

       endif 

    endfor    // f1(v1, v2, …) != f2(v1, v2, …) 

return success; 

Function Propagate (gate g) 

 if (g is output) return success; 

  for i = 0; i< number of fanout gates for g; i ++ 

     gf = g’s ith fanout gate; 

     ni = number of inputs for gf ; 

     if ((gf is NAND or gf is AND)&& ni ==2) 

        if (justify (gf’s 2nd input, 1) == success) 

              return success; endif 

     endif 

     if (gf is NOR && ni ==2) 

        if (justify (gf’s 1st input, 0) == success) 

              return success; endif 

     endif 

     if (ni !=2) 

        for j = 0; j < ni; j++ 

         if (justify (gf’s jth input, vnon_con) == success) 

              return success; endif 

        endfor 

     endif 

 endfor 

return fail; 

 Function Justify (gate g, justification value v) 

 if (v != g’s existing output value)// conflict occurs 

     backtrace(); 

Endif 

Elseif (g functions as f1&& v = vd ) 

for every input patterns giving same output for f1 

and f2  

for i= 0; i < number of inputs for g; i ++ 

    if (justify (g’s ith input, vi’) = fail) 

        break; // f1(v1’, v2,’…) = f2(v1’, v2’, …) = vd 

endfor 

endfor 

 for i= 0; i < number of inputs for g; i ++ 

    if (justify (g’s ith input, vi) = fail) 

       return fail; // f1(v1, v2, …) = vd != f2(v1, v2, …) 

 endfor 

endif 

  … 



Case 1. The successor gate is a two-input NOR gate. Suppose 

this gate is replaced by NOR/INV gate. If the second input of 

this gate is justified as ‘0’ and the first input is connected to 

the signal that needs to propagate, when temperature rises, the 

gate inverts the second input and the output of this gate is 

always ‘1’ so the propagation fails. If the two inputs are 

swapped (the first input is justified as ‘0’), the gate delivers 

the complementary of the second input so that the propagation 

can proceed. 

Similarly, if the successor gate is two-input NAND (or 

AND) gate, it may be replaced by the NAND/INV (or 

AND/BUF) that inverts (or outputs) the first input. In this case 

the second input should be justified as ‘1’ and the signal to 

propagate is connected to the first input.  

Case 2. The successor gate is a two-input OR gate. If one 

input of this OR gate is justified as ‘0’ and this gate gets 

replaced by a polymorphic OR/AND gate, when temperature 

rises, this gate turns into an AND gate. Since one input of this 

gate is ‘0’, the output will be ‘0’ no matter what value the 

other input (which is the signal we want to propagate) takes, 

which makes the propagation fail. Therefore, we will avoid 

propagating to two-input OR gates. 

Based on these principles, we have come up with a 

justifiability and observability checking algorithm to find out 

the possible locations to insert polymorphic gates. The 

algorithm is specified as in Algorithm 2. 

Fig. 3 gives a motivational example on how we run this 

algorithm. Suppose that we choose the evolved NOR/INV 

gate. For the given circuit, there are three NOR gates that can 

be replaced. As discussed before, the two inputs of the NOR 

 

gate should be justified as ‘0’ and ‘1’ so that the function 

transition can be observed if the gate is replaced. For gate 1, i4 

and i5 are set as ‘1’ and ’0’, respectively. As marked in Fig.3, 

by propagating the output of g1 forward to the primary output, 

we derive i1= ‘0’, i2= ‘0’ and i3= ‘1’. Thus, the output of gate 

1 can be observed at the primary output. Similarly, we derive 

‘x10xx’ (x is the don’t care value) for gate 3. By changing the 

temperature, we can observe the output to tell whether gate 

1/gate 3 is a standard NOR gate or a polymorphic NOR/INV 

gate. For gate 2, such input pattern doesn't exist, so gate 2 is 

not an ideal location to insert polymorphic gate. 

B. Watermarking scheme with polymorphic gates  

The watermarking scheme with polymorphic gates involve 

the following steps in the design phase as illustrated in Fig. 4. 

 Determine the locations (e.g. gate 1 and 3 in Fig. 3) to 

insert polymorphic gates with the Algorithm  2 in 

IV.A. The input vectors for detecting the watermark 

are also obtained at this step (‘00110’ for gate 1 and 

‘x10xx’ for gate 3). 

 Generate the watermark sequence. Bit ‘1’ (‘0’) in this 

binary pattern means a standard logic gate in a 

certain location will (will not) be replaced by a 

polymorphic gate. 

 Replace standard logic gates with polymorphic gates. 

Thus the watermark is embedded in the ‘hidden’ 

function when the circuit works at special mode. 

To detect the watermark, the users need to feed the input 

vectors provided by the designers (‘00110’ and ‘x10xx’) into 

the circuits and compare the primary outputs gathered at 

normal mode and special mode. If a difference is observed at a 

certain primary output, it indicates that the circuits has 

employed a polymorphic gate at the corresponding location, 

which means a bit ‘1’ of the watermark sequence is detected; 

and vice versa. Therefore, the watermark sequence can be 

retrieved, which proves the ownership of the design. 

C. Overhead evaluation of the scheme  

We selected several circuits in ISCAS 85 and MCNC 

benchmarks to perform overhead evaluation. The circuits are 

described in Verilog HDL and synthesized using 130nm SMIC 

Fig.3 Motivation example of Algorithm 2 
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TABLE III 

Area, performance and power overhead of the proposed scheme 

(small watermark sequence length) 

 

Circuit No. of 

gates 

No. of 

possible 

locations 

△ 

delay 

(%) 

△ 

Area 

(%) 

△ 

Power 

(%) 

C880 290 94 0 0.66 0.43 

C1355 424 32 6.62 0.47 0.24 

C1908 396 114 1.70 0.12 1.11 

C3540 943 83 0.18 0.19  0.47 

C5315 1428 556 0 0.50 0.46 

dalu 1228 131 0 0.23 0.44 

des 3483 1084 0 0.07 0.53 

ex5 609 48 0 0.37 0.54 

i8 1174 277 0 0.16 0.51 

i10 1914 526 0.74 0.09 0.27 

vda 483 131 0 0.35 0.006 

Avg - - 0.84 0.29 0.45 

 

Fig. 4 Design flow of the proposed watermarking scheme 
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technology and the supply voltage is set as 1.2V. For 

simplicity, the behavioral design is mapped to invertors and 

two-input/three-input/four-input NAND/NOR/OR/AND gates. 

The evolved gates are replaced in the gate-level netlist 

automatically with a netlist modifier written in C. The timing 

and power of the polymorphic gates are measured using 

Hspice and their layout area are estimated based on the 

transistor parameters. With these measurements, we 

incorporate the polymorphic gates into the SMIC 0.13um 

synthesis library as standard cells. We measure the area, delay 

and power of the original netlist and the modified netlist after 

polymorphic gates are embedded using Synopsys Design 

Compiler. The overheads are evaluated in three different 

scenarios:  

1. We start from the simplest case where only a small size 

watermark is needed. Choose a small number (say 4) of 

possible gate locations to embed polymorphic gates. We 

traverse all the 16 cases where the watermark sequence ranges 

from “0000” to “1111”; for each watermark sequence, we 

replace the gate at a certain location with polymorphic gate if 

the corresponding bit in the sequence is ‘1’. Therefore, we 

obtain 16 netlists embedded with 16 different watermarks and 

measure their maximum path delay, area and power using 

Design Compiler. The average overhead of the 16 modified 

netlists is reported in Table III. From this, we can see that the 

proposed watermarking scheme can achieve very good 

fairness [20, 21] except on the delay metric for one circuit 

C1355.  

2. In real-world practices, a large number of unique 

watermarks are needed, therefore, the watermark sequence 

should be long enough. We set a fixed length of watermark 

sequence and choose a relatively large number of (i.e. 20 or 

30) potential gate locations. Since it is not practical to exhaust 

all the possible 220 or 230 cases, we randomly generate 100 

20-bit (30-bit) watermark sequences, embed polymorphic 

gates and obtain 100 modified netlists. The average overhead 

of these netlists is reported in Table IV. 

3. In this scenario, we set the size of watermark proportional 

to that of the circuit it secures. We replace 5% and 10% of the 

total number of gates with polymorphic gates, which ensures 

the space of candidate watermarks for most benchmark 

circuits. Similarly, we randomly generate 100 watermark 

sequences and report the average overhead of the modified 

netlists in Table V. 

From Table III we can tell that for most benchmark circuits 

there are enough number of locations to embed polymorphic 

gates for our watermarking scheme. A small size watermark 

(4-bit watermark sequence) introduces little overhead, which 

is an average of less than 1% increase in delay, area and power, 

respectively. Table IV shows that with a fixed-length 

watermark sequence, the watermarking scheme incurs an 

average of less than 5% overhead. In Table V, when replacing 

10% of the gate with polymorphic gates, the average overhead 

may rise to 6%. For large size benchmark circuits, the 

watermark sequence length equals 5% and 10% of the total 

gate number, which far exceeds that in Table IV. A long 

watermark sequence means on average more gates are 

replaced by polymorphic gates and contributes to a larger 

overhead in Table V. 

V. Summary and Conclusions 

In this paper we proposed a circuit watermarking scheme to 

resist overbuilding and piracy. The proposed scheme is based 

on embedding polymorphic gates that have been evolved with 

the genetic algorithm into the gate-level netlist. Experiment 

results demonstrate that our scheme brings low overhead in 

performance, area and power. One important direction for 

future work would be investigating the implementation of 

evolved polymorphic gates and our proposed techniques in 

fabricating real-life circuits. 
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TABLE IV 

Area, performance and power overhead of the proposed scheme 

(fixed watermark sequence length) 

 

Circuit 30 gates to be replaced 20 gates to be replaced 

△ 
delay 
(%) 

△ 
Area 
(%) 

△ 
Power 

(%) 

△ 
delay 
(%) 

△ 
Area 
(%) 

△ 
Power 

(%) 

C880 7.88 4.05 5.54 0.54 2.77 3.97 

C1355 12.34 3.46 0.89 11.44 2.22 0.70 

C1908 4.62 4.15 0.47 6.08 2.52 0.76 

C3540 7.24 1.53 1.44 8.17 0.93 0.48 

C5315 0 0.47 0.75 0 0.14 0.61 

dalu 0 1.78 0.49 0.47 1.17 0.14 

des 0 0.48 0.44 0.28 0.28 0.49 

ex5 5.96 2.44 1.33 0 1.63 1.40 

i8 0.30 1.21 0.67 0.30 0.83 0.58 

i10 1.79 0.71 0.43 3.13 0.47 0.26 

vda 4.96 2.59 0.42 3.19 1.97 0.32 

Avg 4.10 2.08 1.17 3.05 1.36 0.88 

 

 
TABLE V 

Area, performance and power overhead of the proposed scheme 

(varying watermark sequence length) 

 

Circuit 10% of the gates to be 

replaced 

5% of the gates to be 

replaced 

△ 
delay 

(%) 

△ 
Area 

(%) 

△ 
Power 

(%) 

△ 
delay 

(%) 

△ 
Area 

(%) 

△ 
Power 

(%) 

C880 4.89 3.74 4.70 2.44 1.80 2.73 

C1355 12.04 3.59 0.95 11.44 2.36 0.69 

C1908 6.56 5.18 1.27 7.54 2.02 0.10 

C3540 11.15 4.47 3.68 5.94 2.55 1.52 

C5315 5.95 4.67 2.24 5.31 1.86 1.31 

dalu 0.71 7.12 3.37 0.23 3.52 1.45 

des 8.90 5.77 0.63 8.04 2.79 0.98 

ex5 9.60 4.01 3.35 0.33 2.64 1.97 

i8 1.85 4.63 1.24 0.30 2.36 0.71 

i10 2.23 4.97 1.23 2.08 2.48 0.54 

vda 6.02 4.06 0.22 2.48 2.11 0.06 

Avg 6.36 4.75 2.08 4.19 2.41 0.92 
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