Polymorphic Gate based IC Watermarking Techniques

Tian Wang, Xiaoxin
Cui, Dunshan Yu

Institute of Microelectronics,
Peking University
Beijing, China 100871
e-mail: cuixx@pku.edu.cn

Abstract - Polymorphic gates are reconfigurable devices whose
functionality may vary in response to the change of execution
environment such as temperature, supply voltage or external
control signals. This feature makes them a perfect candidate for
circuit watermarking. However, polymorphic gates are hard to
find because they do not exhibit the traditional structure. In this
paper, we report four dual-function polymorphic gates that we
have discovered using an evolutionary approach. With these
gates, we propose a circuit watermarking scheme that selectively
replaces certain standard logic gates with the polymorphic gates.
Experimental results on ISCAS and MCNC benchmark circuits
demonstrate that this scheme introduces low overhead. More
specifically, the average overhead in area, speed and power are
4.10%, 2.08% and 1.17% respectively when we embed 30-bit
watermark sequences. These overheads increase to 6.36%, 4.75%
and 2.08% respectively when 10% of the gates in the original
circuits are replaced to embed watermark up to more than 300
bits.

I Introduction

The advances in integrated circuit(IC) technology has led to
demands for efficient ways to implement increasingly
complex electronic systems. Multifunction or reconfiguration
schemes are promising solutions to this problem as they aim
to expand the potential scope and utility of electronic devices
through simplified and minimal number of components [1].
Traditional multifunctional systems are implemented by
multiplexing between multiple stand-alone conventional
subsystems. This straightforward approach satisfies the
required functionality at the cost of larger implementation
overheads.

Recent achievements in the field of digital circuit design
brings another concept — so called polymorphic gates (or
polymorphic circuits), which was introduced by A. Stoica as a
novel type of reconfigurable scheme [2]. Different from the
conventional reconfigurable circuits, polymorphic circuits
need no reconfiguration switch, as the multiple-functionality
is inherently embedded in them. Function transitions are
triggered by changes in temperature, supply voltage or
external signals, etc. For example, one typical polymorphic
gate that has been fabricated using HP 0.5um technology is a
NAND/NOR gate proposed in [3]. It performs as a NAND
gate when Vdd is 3.3V and when Vdd drops to 1.8V, this gate
works as a NOR gate. Many follow-up works have been
reported on designing various types of polymorphic gates
based on evolutionary approach [4][5] and on the design of
polymorphic circuits using polymorphic gates [6][7].

Omid Aramoon,
Timothy Dunlap, Gang Qu

Department of Electrical and Computer
Engineering and Institute for Systems Research
University of Maryland, College Park, USA
e-mail: gangqu@umd.edu

Xiaole Cui

Key Lab of Integrated
Microsystems
Shenzhen, China 518055
e-mail: cuixl@pkusz.edu.cn

With two or more functions built in one single compact
structure, polymorphic circuits have found many applications
where a few predefined functions have to be implemented and
a global control signal selects the function, such as
multifunctional adaptive systems [8,13], finite impulse
response(FIR) filter [9], self-checking circuits [10], reduction
of test vector volume [11,15], etc. For these scenarios, two
modes are supported in polymorphic circuits, where one mode
is considered the main operation mode and the other mode is
only for special occasions. Notice that the special mode
remains invisible when the circuits delivers normal function.
Therefore, it is feasible to hide secret information and activate
the special mode with specific control factors to reveal the
secret.

In this paper we aim to dig out the potentials of
polymorphic circuits in hardware security and trust related
applications, which hasn’t been comprehensively researched
in previous works. One straightforward and convenient
application of polymorphic gates is to embed circuit
watermark, which is one of the first studied hardware security
problems [12]. In this scheme, the circuit delivers correct
functionality in the normal mode; when it’s necessary to
demonstrate the watermark, the circuit is transitioned to the
special mode by activating the external control so that the
circuit can change its functionality and produce different
outputs. In this case, the hidden “secret” is the hardware-level
watermark, which proves the ownership of the circuits and
gives the circuits legal protection against piracy, overbuilding
and counterfeiting.

Based on above considerations, we have put forward a
watermarking scheme by replacing the standard logic gates in
the design netlist with polymorphic gates. Our works and
contributions are specified as follows:

o After making a second visit to the design approaches of
polymorphic gates, we optimize the most widely used
genetic algorithm and implement an automatic design tool;
with this tool, we have successfully constructed four

polymorphic gates.

o We propose a polymorphic logic based circuit watermarking
scheme by replacing standard library cells with polymorphic
gates. The scheme features easy detectability [14] which is
achieved by a justifiability and observability checking
algorithm.

o We evaluate the area, delay and power overhead introduced
by our proposed watermarking schemes on ISCAS 85 and
MCNC benchmark circuits using 0.13um SMIC technology.

Results demonstrate that with 10% of the gates in the
circuits being replaced by polymorphic gates, we are able to
embed watermarks up to 300 bits, the circuits embedded
with watermarks have an average of 6.36%, 4.75%, 2.08%
overhead in delay, area and power, respectively. In other
words, our scheme can provide sufficiently strong
watermarks with acceptable performance deterioration.
Furthermore, the proposed watermarking scheme delivers
near perfect solution on fairness [20, 21].

The rest of the paper is organized as follows: Section II
gives the background on polymorphic gates and their design
methodology, the evolutionary approach. Section III presents
our design tool and the polymorphic gates we have evolved. In
Section 1V, we propose our watermarking technique based on
the evolved polymorphic gates, and Section V concludes

II. Background

As the basic building unit of polymorphic circuits,
polymorphic gates can be implemented with FTPA (field
programmable transistor array) [2], CMOS [3], emerging
devices such as silicon nanowire and ambipolar devices [16]
[17]. Table I lists some representative polymorphic gates
reported in the literature. Different from conventional logic
gates, these gates will deliver different outputs for the same
input vector depending on the operating environment such as
temperature, supply voltage or external signals. So far there
are only two fabricated polymorphic gates. The rest of the
gates are either simulated or tested with FPTA. For better
integration in the mainstream CMOS technology, we only
focus on polymorphic gates consisting of CMOS transistors.

While standard logic gates adopt complementary topology,
polymorphic gates employ rather unconventional structure at
the transistor level. Due to their irregular topology, it is a
challenge to find polymorphic gates. Evolutionary approach
[4][18] is the most suitable method to search for potential gate
designs that match perfectly with the required multiple
functionalities [13]. As long as the gate specifications (usually
takes the form of truth table) are given, candidates can be
evaluated and ranked. Genetic algorithm is one of the most
popular variants of evolutionary approach. In the generalized
version of Genetic algorithm [19], after the genotype (or gene)
is mapped to an artificial system and the initial population of
candidate individuals are created, a generative process ranks
candidate solutions based on a fitness function which

incorporates the desired criteria, and selects the fittest
candidates for mutation and reproducing the next generation.
This process repeats until an acceptable solution is found. In
this paper, we tailor the generalized genetic algorithm for
designing polymorphic gates. We assign an index for the
source, gate and drain terminals of each transistor respectively.
Genes refer to the index of the terminals that the source, gate
or drain are connected to and the width and length values of
each transistor. The fitness function is the hamming distance
between the outputs of the candidate solutions and the desired
outputs.

Algorithm 1-Genetic algorithm for evolving polymorphic
gates

Input:

Population_No - number of individuals in each generation
Generation_No- number of generations for evolution

f<t, a, b...> - truth table of the desired gate function, where
a,b.... are the input values and ¢ is the external control signal to
transform the function

HD threshold — threshold of hamming distance between the
output of each individual and that of the desired gate function

r - mutation rate of each generation

Output: Gate netlist that performs the desired function.

1. Gene initialization

cntl =0;
Jfor (cnt2 = 0; cnt2 < Population No; cnt2++)
Initialize the genes and generate netlist[cnt2]
end for
2. Simulation and fitness evaluation
Jfor (cnt2 = 0; cnt2 < Population No; cnt2 ++)
for different ¢ and every input combination of a,b...
f = Simulate(z,a,b,..netlist[cnt2]);

end for
HD[cnt2] = hamming distance (f, f°);
end for
3. Selection and reproduction
No_indiv=0;

Jfor (cnt2 = 0; cnt2 < Population No; cnt2 ++)
if (HD[cnt2] == 0)
Report(netlist[cnt2]);
endif
elseif (0<HD(cnt2) < HD_threshold)

TABLE I
Examples of the existing polymorphic gates. Survival= Survival U netlist(cnt2);
No_indiv++;
Gate Control Control values | Transistors endif
AND/OR[2] temperature 27/125C 6 end for
AND/OR[2] ext. voltage 33V/0V P for every netlist in the set Survival
for (cnt2 = 0; ent2 <[Population No]/No_indiv; cnt2++)
AND/OR[1] Vad 3.3V/1.2V 8 . .
Change 1% of genes in netlist[cnt2];
AND/OR/XOR[2] ext. voltage 3.3V/OV/1.5V 10 end for
NAND/NOR[3] Vad 3.3V/1.8V 6 endfoy
NAND/NOR([10] Vaa 5V/3.3V 8 4. While (cntl = Generation_No)
NAND/XOR([5] | ext. voltage 3.3V/0V 9 Goto step 2~3; cntl++;

end while

Notice that although the genes are randomly initialized and
modified, there are some practical constraints that needs to be
followed, which are specified as follows.

C1. At least one terminal should be connected to power,
ground, output, inputs, respectively.

C2. No floating nodes should appear in the circuits.

Cl1 is to ensure that each design will be a complete gate. To
meet C2, we force the source, drain and gate terminals of one
transistor to be connected to one terminal of other transistors
so that every terminal is in the path from power to the ground.
The modified genetic algorithm is shown as in Algorithm 1.

III. Designing logic gates with evolutionary approach

A. Experimental setup

We target two-input one-output gate and consider
temperature as the external control signal, which ranges from
-25°C to 150°C. The 130nm SMIC technology is adopted and
the supply voltage is set as 1.2V.

As shown in Fig.1, we have developed an automatic design
platform that integrates a netlist generation module, Hspice
simulator and function evaluation module based on the genetic
algorithm specified above. The netlist generation module
mutates the genes of each individual in every generation to
reproduce the next generation. The genes are translated into
the .sp netlists that are later fed into Hspice for simulation.
The measurements in the output files (.lis) of Hspice simulator
are extracted by the function evaluation module so that the
fitness function value (here refers to the Hamming distance) of
each candidate can be calculated. Both the netlist generation
module and the fitness evaluation module are written in C.

B. Evolved polymorphic gates

With the design tool, we have evolved four novel
polymorphic gates for the first time. The function of these
gates are listed in Table II.

Fig.2(a) presents the schematic of the polymorphic
NOR/INV gate. These transistors are connected in irregular
topology and takes unconventional parameters. The function
of this gate is shown in Fig.2(b). At room temperature, this
gate is a NOR gate; when temperature rises from to 125C, this
gate inverts the second input.

[Hspice simulator}?{ﬁtness evaluatiorJ
.Sp lis

Fig. 1. Platform for implementing the genetic algorithm.

TABLE II
Evolved polymorphic gates controlled by temperature.
Gate function Transistor
OR(25°C)-AND (125°C) 6
NOR (25°C)-INV(125°C) 6
NAND (25°C)-INV (125°C) 6
AND (25°C)-BUF (125°C) 7

vdd

0.39u\0.26u

Es%\o.zaub—q 0.26u\0.26u

out
b
a
0.52u\0.26u_| s [0.91u\0.13u
(a)
1.2V 7 {
a o.6v
0 |
0 10n 20n 30n 40n
1.2V 1 i ‘
b oe6v
(118 I—/ | I S
1on 30n 30n 40n
1.2V 7 —
out 0.6V !(al[b) 25°C
0+ 1\
0 10n 20n 30n 40n
1.2V 7 J—
out o.6v ‘ b 125°C |
0L | |
0 10n 20n 30n 40n
(b)

Fig.2 Polymorphic NOR/INV gate. (a) Topology (b)
Input and output waveforms.

IV. Proposed circuit watermarking scheme with evolved
polymorphic gates

In this section we propose a circuit watermarking scheme
based on embedding the polymorphic gates we’ve evolved
into the original design.

A. Polymorphic logic based justifiability and observability
checking algorithm

We embed the evolved polymorphic gates into the design
by replacing the standard cells in the gate-level netlist with
polymorphic gates. Every cell in the original netlist represents
a possible location for gate replacement. However, the suitable
locations for replacement should ensure:

1. The circuit functions correctly at normal operation mode,
after the gates in these locations are replaced.

2. The functionality of the modified circuit in normal mode
and special mode can be differentiated by observing the
primary outputs of the circuit.

To find the suitable locations to embed polymorphic gate,
we address three principles that needs to follow. These

principles ensure the correct functionality of the circuit and

facilitate the easy detectability of the embedded watermark

[12].

P1. Only the gates that have the same functionality as the
polymorphic gates in normal mode could be potential
locations for watermark embedding.

P2. There should be at least one pattern for primary inputs of
the circuit that can ‘activate’ the polymorphic gate. An
input pattern can ‘activate’ a polymorphic gate if it can
set the inputs of the gate to a Differentiating Input Value.

Differentiating Input Values (DIV) of a polymorphic gate
are the input combinations for which the polymorphic gate
produces different output when the control signal changes. For
example, input combination (1,0) is DIVs of the NOR/INV
gate in Fig.2, for the output of this gate reverses from 0 to 1 as
temperature changes from 25C to 125C when the two inputs
are setas ‘1’ and ‘0.

Moreover, this primary input pattern should also
‘propagate’ the output of this gate to the primary output so
that the function transformation can be observed.

To find such input patterns, we adopted the justification
methodology in VLSI testing to deduce the logic value from
the input of the candidate gate backwards to the primary input.
Only a gate that is justifiable can be a potential replacement
location.

Besides justifiability, we also need to check the
observability of this gate location. We propagate the output of
one gate by justifying the other input(s) of its successor gate
as non-controlling values. Take the circuit in Fig.3 as an
example. To propagate the output of gate 1, the first input of
its successor gate 4 should be justified as ‘1’ so that the output
of gate 4 is determined by the output of gate 1. Similarly, we
advance the output one gate at a time until it reaches the
primary output.

P3. The changes in the functionality of one polymorphic gate
upon changing the temperature shouldn’t influence the
activation and propagation of other polymorphic gates.

To cater for P3, we need to incorporate the following
criteria when checking the justifiability and observability of a
certain location.

First, according to P1, every gate that has the same function
with one of the polymorphic gates could be possible locations
for gate replacement. When checking the justifiability or
observability of a gate, we may need to justify other gates that
will be replaced by polymorphic gates. For these gates, we
should assign DIV with least priority. For example, if we want
to check whether a NOR gate (gate A) could be replaced by a
NOR/NAND and we need to set the output of another
two-input NOR gate (gate B) as ‘0°, we will try the input
patterns ‘11° first for B and then ‘01’0r’10’ if ‘11’ fails. As
‘11’ gives the same output for NOR and NAND, even if gate
B is replaced by a polymorphic gate, the transition of its
output when control signal changes will not influence the
activation or propagation of gate A.

Second, when checking the observability of a gate location
we need to make sure that even if the successor gates are
replaced by polymorphic gates, the gate output can still
propagate in special mode. We give a case-by-case solution
based on analyzing the truth-table of the four polymorphic
gates.

Algorithm 2- Justifiability and observability checking
algorithm

Input: netlist of the original design, polymorphic gate gp
whose function changes from f1 to f2 when temperature
changes.

Output: locations that can be replaced by polymorphic
gates

for every gate g in the gate netlist

if(g functions as fl1&& Activate(g) = success &&
Propagate(g) = success)

Report g is a possible location to embed polymorphic
gate

endif

end for

Function Activate (gate g)
for i=0; i <number of inputs for g; i ++
if (justify (g’s ith input, v;) = fail)
return fail;
endif
endfor
return success;

I fl(vi, v, o) 1= 2(vi, va, ..

Function Propagate (gate g)
if (g is output) return success;
for i = 0; i< number of fanout gates for g; i ++
gr=g’s ith fanout gate;
n;i=number of inputs for gr;
if ((gris NAND or gris AND)&& ni==2)
if (justify (gf's 2nd input, 1) == success)
return success; endif
endif
if (gris NOR && ni==2)
if (justify (gf’s lst input, 0) == success)
return success; endif
endif
if (ni1=2)
Jorj=0;j<nij++
if (justify (g7’s jth input, Vion_con) == success)
return success; endif
endfor
endif
endfor
return fail;

Function Justify (gate g, justification value v)
if (v = g’s existing output value)// conflict occurs
backtrace();
Endif
Elseif (g functions as f1&& v=vq)
for every input patterns giving same output for f1
and /2
for i=0; i <number of inputs for g; i ++
if (justify (g’s ith input, v;") = fail)

break; // f1(vi’, v2,”...) = f2(vi’, v2°, ...) = v4
endfor
endfor
Sfor i=0; i <number of inputs for g; i ++
if (justify (g’s ith input, v;) = fail)
return fail; // f1(vi, va, ...) = va !=f2(v1, v2, ...)

endfor
endif

Case 1. The successor gate is a two-input NOR gate. Suppose
this gate is replaced by NOR/INV gate. If the second input of
this gate is justified as ‘0’ and the first input is connected to
the signal that needs to propagate, when temperature rises, the
gate inverts the second input and the output of this gate is
always ‘1’ so the propagation fails. If the two inputs are
swapped (the first input is justified as ‘0’), the gate delivers
the complementary of the second input so that the propagation
can proceed.

Similarly, if the successor gate is two-input NAND (or

AND) gate, it may be replaced by the NAND/INV (or
AND/BUF) that inverts (or outputs) the first input. In this case
the second input should be justified as ‘1’ and the signal to
propagate is connected to the first input.
Case 2. The successor gate is a two-input OR gate. If one
input of this OR gate is justified as ‘0’ and this gate gets
replaced by a polymorphic OR/AND gate, when temperature
rises, this gate turns into an AND gate. Since one input of this
gate is ‘0’, the output will be ‘0’ no matter what value the
other input (which is the signal we want to propagate) takes,
which makes the propagation fail. Therefore, we will avoid
propagating to two-input OR gates.

Based on these principles, we have come up with a
justifiability and observability checking algorithm to find out
the possible locations to insert polymorphic gates. The
algorithm is specified as in Algorithm 2.

Fig. 3 gives a motivational example on how we run this
algorithm. Suppose that we choose the evolved NOR/INV
gate. For the given circuit, there are three NOR gates that can
be replaced. As discussed before, the two inputs of the NOR

i] ‘0’

i
iy .
i Algorithm2 i
Out|
iy
is
original netlist locations + inpyt patterns
atermark /v\
W
watermark | —wl -
sequence 001..10.. %
input patterns watermark

—

sequence 001..10..

netlist with watermark

Fig. 4 Design flow of the proposed watermarking scheme

gate should be justified as ‘0’ and ‘1’ so that the function
transition can be observed if the gate is replaced. For gate 1, i4
and 15 are set as ‘1’ and ’0’, respectively. As marked in Fig.3,
by propagating the output of gl forward to the primary output,
we derive il1= ‘0, i2= ‘0’ and i3= ‘1°. Thus, the output of gate
1 can be observed at the primary output. Similarly, we derive
“x10xx’ (x is the don’t care value) for gate 3. By changing the
temperature, we can observe the output to tell whether gate
1/gate 3 is a standard NOR gate or a polymorphic NOR/INV
gate. For gate 2, such input pattern doesn't exist, so gate 2 is
not an ideal location to insert polymorphic gate.

B. Watermarking scheme with polymorphic gates

The watermarking scheme with polymorphic gates involve
the following steps in the design phase as illustrated in Fig. 4.

e Determine the locations (e.g. gate 1 and 3 in Fig. 3) to
insert polymorphic gates with the Algorithm 2 in
IV.A. The input vectors for detecting the watermark
are also obtained at this step (‘00110 for gate 1 and
‘x10xx” for gate 3).

e Generate the watermark sequence. Bit ‘1’ (‘0”) in this
binary pattern means a standard logic gate in a
certain location will (will not) be replaced by a
polymorphic gate.

e Replace standard logic gates with polymorphic gates.
Thus the watermark is embedded in the ‘hidden’
function when the circuit works at special mode.

To detect the watermark, the users need to feed the input
vectors provided by the designers (‘00110 and ‘x10xx’) into
the circuits and compare the primary outputs gathered at
normal mode and special mode. If a difference is observed at a
certain primary output, it indicates that the circuits has
employed a polymorphic gate at the corresponding location,
which means a bit ‘1’ of the watermark sequence is detected;
and vice versa. Therefore, the watermark sequence can be
retrieved, which proves the ownership of the design.

C. Overhead evaluation of the scheme

We selected several circuits in ISCAS 85 and MCNC
benchmarks to perform overhead evaluation. The circuits are
described in Verilog HDL and synthesized using 130nm SMIC

TABLE III
Area, performance and power overhead of the proposed scheme
(small watermark sequence length)

Circuit | No. of No. of A A A
gates possible delay Area Power
locations (%) (%) (%)
C880 290 94 0 0.66 0.43
C1355 424 32 6.62 0.47 0.24
C1908 396 114 1.70 0.12 1.11
C3540 943 83 0.18 0.19 0.47
C5315 1428 556 0 0.50 0.46
dalu 1228 131 0 0.23 0.44
des 3483 1084 0 0.07 0.53
ex5 609 48 0 0.37 0.54
i8 1174 277 0 0.16 0.51
il0 1914 526 0.74 0.09 0.27
vda 483 131 0 0.35 0.006
Avg - - 0.84 0.29 0.45

technology and the supply voltage is set as 1.2V. For
simplicity, the behavioral design is mapped to invertors and
two-input/three-input/four-input NAND/NOR/OR/AND gates.
The evolved gates are replaced in the gate-level netlist
automatically with a netlist modifier written in C. The timing
and power of the polymorphic gates are measured using
Hspice and their layout area are estimated based on the
transistor parameters. With these measurements, we
incorporate the polymorphic gates into the SMIC 0.13um
synthesis library as standard cells. We measure the area, delay
and power of the original netlist and the modified netlist after
polymorphic gates are embedded using Synopsys Design
Compiler. The overheads are evaluated in three different
scenarios:

1. We start from the simplest case where only a small size
watermark is needed. Choose a small number (say 4) of
possible gate locations to embed polymorphic gates. We
traverse all the 16 cases where the watermark sequence ranges
from “0000” to “11117; for each watermark sequence, we

TABLE IV
Area, performance and power overhead of the proposed scheme
(fixed watermark sequence length)

Circuit | 30 gates to be replaced | 20 gates to be replaced
A A A A A A

delay | Area | Power | delay | Area | Power
(%) | (%) | (%) (o) | (%) | (%)

C880 7.88 | 4.05 5.54 054 | 277 | 397
C1355 | 12.34 | 3.46 | 0.89 1144 | 222 | 0.70
C1908 | 4.62 | 4.15 | 047 6.08 | 252 | 0.76
C3540 | 7.24 | 1.53 1.44 8.17 1 0.93 0.48
C5315 0 047 | 0.75 0 0.14 | 0.61
dalu 0 1.78 | 0.49 0.47 1.17 | 0.14
des 0 048 | 0.44 028 | 0.28 | 0.49
ex5 596 | 2.44 1.33 0 1.63 1.40
i8 030 | 1.21 0.67 0.30 | 0.83 0.58
il0 1.79 | 0.71 0.43 3.13 047 | 0.26
vda 496 | 259 | 042 3.19 1.97 | 0.32
Avg 4.10 | 2.08 1.17 3.05 1.36 | 0.88

TABLE V

Area, performance and power overhead of the proposed scheme
(varying watermark sequence length)

Circuit 10% of the gates to be 5% of the gates to be
replaced replaced
A A A A A A
delay | Area | Power delay Area | Power

o) | (%) (%) (o) (o) (%)
C880 4.89 3.74 4.70 2.44 1.80 2.73
C1355 12.04 | 3.59 0.95 11.44 2.36 0.69
C1908 6.56 5.18 1.27 7.54 2.02 0.10
C3540 11.15 | 447 3.68 5.94 2.55 1.52
C5315 5.95 4.67 2.24 5.31 1.86 1.31
dalu 0.71 7.12 3.37 0.23 3.52 1.45
des 8.90 5.77 0.63 8.04 2.79 0.98
ex5 9.60 4.01 3.35 0.33 2.64 1.97
i8 1.85 4.63 1.24 0.30 2.36 0.71
i10 2.23 4.97 1.23 2.08 2.48 0.54
vda 6.02 4.06 0.22 2.48 2.11 0.06
Avg 6.36 4.75 2.08 4.19 2.41 0.92

replace the gate at a certain location with polymorphic gate if
the corresponding bit in the sequence is ‘1°. Therefore, we
obtain 16 netlists embedded with 16 different watermarks and
measure their maximum path delay, area and power using
Design Compiler. The average overhead of the 16 modified
netlists is reported in Table III. From this, we can see that the
proposed watermarking scheme can achieve very good
fairness [20, 21] except on the delay metric for one circuit
C1355.

2.In real-world practices, a large number of unique
watermarks are needed, therefore, the watermark sequence
should be long enough. We set a fixed length of watermark
sequence and choose a relatively large number of (i.e. 20 or
30) potential gate locations. Since it is not practical to exhaust
all the possible 22° or 2% cases, we randomly generate 100
20-bit (30-bit) watermark sequences, embed polymorphic
gates and obtain 100 modified netlists. The average overhead
of these netlists is reported in Table I'V.

3. In this scenario, we set the size of watermark proportional
to that of the circuit it secures. We replace 5% and 10% of the
total number of gates with polymorphic gates, which ensures
the space of candidate watermarks for most benchmark
circuits. Similarly, we randomly generate 100 watermark
sequences and report the average overhead of the modified
netlists in Table V.

From Table III we can tell that for most benchmark circuits
there are enough number of locations to embed polymorphic
gates for our watermarking scheme. A small size watermark
(4-bit watermark sequence) introduces little overhead, which
is an average of less than 1% increase in delay, area and power,
respectively. Table IV shows that with a fixed-length
watermark sequence, the watermarking scheme incurs an
average of less than 5% overhead. In Table V, when replacing
10% of the gate with polymorphic gates, the average overhead
may rise to 6%. For large size benchmark circuits, the
watermark sequence length equals 5% and 10% of the total
gate number, which far exceeds that in Table IV. A long
watermark sequence means on average more gates are
replaced by polymorphic gates and contributes to a larger
overhead in Table V.

V. Summary and Conclusions

In this paper we proposed a circuit watermarking scheme to
resist overbuilding and piracy. The proposed scheme is based
on embedding polymorphic gates that have been evolved with
the genetic algorithm into the gate-level netlist. Experiment
results demonstrate that our scheme brings low overhead in
performance, area and power. One important direction for
future work would be investigating the implementation of
evolved polymorphic gates and our proposed techniques in
fabricating real-life circuits.

Acknowledgement: We thank Dr. Bill Johnson and Dr. Doug
Ketchum for their valuable discussion and suggestion. This
work is supported in part by the National Science Foundation
under grant CNS1745466 and by the Department of Defense.

References

[1] A. Stoica, R. Zebulum, D. Keymeulen, J. Lohn, “On polymorphic
circuits and their design using evolutionary algorithms,” Proc. of
Lasted International Conference on Applied Informatics (A12002),
2002.

[2] A. Stoica, R. Zebulum, D. Keymeulen, “Polymorphic
electronics,”International Conference on Evolvable Systems.
Springer Berlin Heidelberg, pp. 291-302, 2001.

[3] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, M.I.Ferguson &
V.Duong, “Taking evolutionary circuit design from
experimentation to implementation: Some useful techniques and
a silicon demonstration,” IEE Proceedings-Computers and Digital
Techniques, vol.151, no.4, pp.295-300,2004.

[4] L. Sekanina, “Evolutionary design of gate-level polymorphic
digital circuits,”Workshops on Applications of Evolutionary
Computation. Springer Berlin Heidelberg, pp.185-194, 2005.

[5] R. Ruzicka, “On bifunctional polymorphic gates controlled by a
special signal,” WSEAS Transactions on Circuits, vol.7, no.3, pp.
96-101, 2008.

[6] L. Sekanina, “Design methods for polymorphic digital circuits, ”
Proc. of the 8th IEEE Design and Diagnostics of Electronic
Circuits and Systems Workshop DDECS, 2005.

[71 W. Luo, Z. Zhang, X. Wang, “Designing polymorphic circuits
with polymorphic gates: a general design approach,” IET Circuits,
Devices & Systems, vol.1, no.6, pp. 470-476, 2007.

[8] L. Sekanina, R. Ruzicka, Z. Vasicek, R. Prokop & L. Fujcik,
“Repomo32-new reconfigurable polymorphic integrated circuit
for adaptive hardware,” IEEE Workshop on Evolvable and
Adaptive Hardware, 2009.

[9] L. Sekanina, R. Ruzicka, Z. Gajda, “Polymorphic FIR filters with
backup mode enabling power savings,” NASA/ESA Conference
on Adaptive Hardware and Systems, 2009.

[10] L. Sekanina, R. Ruzicka, R. Prokop, “Physical demonstration of
polymorphic self-checking circuits,” 14th IEEE International
On-Line Testing Symposium, 2008.

[11] L. Sekanina, L. Starecek, Z. Kotasek, Z. Gajda, “Polymorphic
gates in design and test of digital circuits,” International Journal
of Unconventional Computing, vol. 4, no.2, pp.125, 2008.

[12] G Qu and M. Potkonjak, “Intellectual Property Protection in
VLSI Designs: Theory and Practice”, Kluwer Academic
Publishers, 2003.

[13] L. Sekanina, L. Starecek, Z. Gajda, Z. Kotasek., “Evolution of
multifunctional combinational modules controlled by the power
supply voltage,” Proc. of the 1st NASA/ESA Conference on
Adaptive Hardware and Systems, pp. 86—193, 2006.

[14] G Qu, “Publicly Detectable Watermarking for Intellectual
Property Authentication in VLSI Design”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol.
21, No. 11, pp. 1363-1368, Nov, 2002.

[15] L. Sekanina, “Evolution of Polymorphic Self-Checking
Circuits,” Proc. of the 7th Conference on Evolvable Systems:
From Biology to Hardware, pp.186-197, 2007.

[16] Y. Bi, K Shamsi, J.S. Yuan, P. E. Gaillardon, G.D. Micheli, X.
Yin et al., “Emerging technology-based design of primitives for
hardware security,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 13, no.1, pp.3, 2016.

[17] R. Richard and T. Radek, “Let’s move polymorphism
downwards: On the multifunctional logic based on ambipolar
behaviour of semiconductor devices,” 2016 International
Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS), pp.1-5, 2016.

[18] J.E. Miller, J. Dominic and K.V. Vesselin, “Principles in the
evolutionary design of digital circuits—Part L Genetic
programming and evolvable machines.vol.1, no.1-2, pp.7-35,
2000.

[19] J H.Holland, “Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence,” MIT press, 1992.

[20] G. Qu, J.L. Wong, and M. Potkonjak, “Fair Watermarking
Techniques”, Proceedings of the 2000 Asia and South Pacific
Design Automation Conference, pp. 55-60, 2000.

[21] J.L. Wong, G. Qu, and M. Potkonjak, “Optimization-intensive
Watermarking Techniques for Decision Problems”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 23, No. 1, pp. 119-127, Jan, 2004.

