
A Novel Polymorphic Gate Based Circuit
Fingerprinting Technique

Tian Wang, Xiaoxin Cui,
Dunshan Yu

Institute of Microelectronics,
Peking University,

Beijing, China
cuixx@pku.edu.cn

Omid Aramoon, Timothy Dunlap,
Gang Qu

Department of Electrical and Computer
Engineering and Institute for Systems Research,

University of Maryland, College Park, USA
gangqu@umd.edu

Xiaole Cui
Key Lab of Integrated Microsystems,

Peking University Shenzhen
Graduate School,
Shenzhen, China

cuixl@pkusz.edu.cn

ABSTRACT
Polymorphic gates are reconfigurable devices that deliver
multiple functionalities at different temperature, supply voltage
or external inputs. Capable of working in different modes,
polymorphic gate is a promising candidate for embedding secret
information such as fingerprints. In this paper, we report five
polymorphic gates whose functionality varies in response to
specific control input and propose a circuit fingerprinting
scheme based on these gates. The scheme selectively replaces
standard logic cells by polymorphic gates whose functionality
differs with the standard cells only on Satisfiability Don’t Care
conditions. Additional dummy fingerprint bits are also
introduced to enhance the fingerprint’s robustness against
attacks such as fingerprint removal and modification.
Experimental results on ISCAS and MCNC benchmark circuits
demonstrate that our scheme introduces low overhead. More
specifically, the average overhead in area, speed and power are
4.04%, 6.97% and 4.15% respectively when we embed 64-bit
fingerprint that consists of 32 real fingerprint bits and 32 dummy
bits. This is only half of the overhead of the other known
approach when they create 32-bit fingerprints.1

KEYWORDS
Polymorphic gate, fingerprinting, satisfiability don’t care
conditions

ACM Reference format:

Tian Wang, Xiaoxin Cui, Dunshan Yu, Omid Aramoon, Timothy Dunlap,
Gang Qu, Xiaole Cui. 2018. A Novel Polymorphic Gate Based Circuit
Fingerprinting Technique. In GLSVLSI '18: 2018 Great Lakes Symposium
on VLSI, May 23–25, 2018, Chicago, IL, USA. ACM, New York, NY, USA, 6
pages. https://doi.org/10.1145/3194554.3194572

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
GLSVLSI '18, May 23–25, 2018, Chicago, IL, USA
 © 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05…$15.00
https://doi.org/10.1145/3194554.3194572

1 INTRODUCTION
Recent achievements in the field of digital circuit design brings a
novel reconfigurable scheme based on polymorphic gates (or
polymorphic circuits) that was first introduced by A. Stoica in
2001 [1]. With multiple functionalities integrated in one single
structure, polymorphic gates/circuits can achieve function
transformation in response to control factors such as
temperature, supply voltage or external inputs, etc. One typical
polymorphic gate that has been fabricated with HP 0.5um
technology is a NAND/NOR gate proposed in [2]. It performs as
a NAND gate when Vdd is 3.3V and when Vdd drops to 1.8V,
this gate works as a NOR gate. Many follow-up works have been
reported on designing various types of polymorphic gates based
on evolutionary approach [3][4] and on building complex
polymorphic circuits using polymorphic gates [5][6].

Polymorphic gates have been applied in many scenarios such
as multifunctional adaptive systems [7][8], finite impulse
response(FIR) filter [9], self-checking circuits [10,12] and
reduction of test vector volume [11], where multiple working
modes are supported, and each mode can be enabled with global
control signals. Besides these applications, polymorphic gates
have great potentials in hardware security, as the flexible built-in
multi-functionality enables one or more conceived ‘extra’
functions in addition to the ‘main’ one, which makes it feasible
to hide function or embed secret information, such as circuit
watermark [21]. The embedded information will show up when
the ‘extra’ function gets activated. One straightforward and
convenient application is to embed circuit fingerprint, which
allows the tracking of every individually sold IP. When a
designer suspects IP piracy or counterfeiting, he can detect the
embedded fingerprint to locate the source.

In this paper, we propose a circuit fingerprinting scheme with
polymorphic gates controlled by external inputs. The scheme
targets SDC (Satisfiability Don’t Care) conditions that usually
appear in non-trivial circuits and replaces the standard library
cells holding the SDC conditions by polymorphic gates. The
modified circuit delivers correct functionality and the
configurations of the polymorphic gates constitute the circuit
fingerprint. We also introduce additional replacements to those
gate locations without SDC conditions. The control inputs of
these polymorphic gates serve as the dummy fingerprints. Any
malicious attempt to modify the dummy fingerprints will bring

mailto:Permissions@acm.org

functional changes and make the fingerprinted circuits function
incorrectly.

Our works and contributions are specified as follows,
After a brief review of the existing design approaches of

polymorphic gates, we employ the most widely used genetic
algorithm. With this modified algorithm, we successfully
construct five polymorphic gates whose function transition is
controlled by external signals.

We propose a polymorphic logic based justifiability checking
method to determine the SDC conditions and potential
locations where standard cells can be replaced by
polymorphic gates to embed fingerprints.

We perform security analysis by considering different
attacking scenarios based on the attackers’ capabilities,
which demonstrates the robustness and reliability of the
proposed scheme.

We evaluate the area, delay and power overhead introduced
by our proposed fingerprinting scheme on ISCAS 85 and
MCNC benchmark circuits using 0.13um SMIC technology.
Results demonstrate that, when we embed 32-bit real
fingerprint and 32-bit dummy fingerprint, the benchmark
circuits have an average of 4.04%, 6.97% and 4.15% overhead
in delay, area and power, respectively. In other words, our
scheme can provide sufficiently strong fingerprints (32 bits)
with acceptable performance deterioration.
The rest of the paper is organized as follows: Section 2 gives

the background and the design of polymorphic gates. Section 3
presents our fingerprinting scheme based on SDC conditions and
the security analysis. In Section 4, we validate the proposed
technique based on overhead evaluation, and Section 5 concludes.

2 DESIGN OF POLYMORPHIC GATES

2.1 Genetic Algorithm
Polymorphic gates can be implemented with FTPA (field
programmable transistor array) [1], CMOS [2], emerging devices
such as silicon nanowire and ambipolar devices [13] [14]. For
better integration into the mainstream CMOS technology, we
only focus on polymorphic gates consisting of CMOS transistors.
Table 1 lists some representative polymorphic gates reported in
the literature. These gates deliver different outputs for the same
input vector depending on the operating environment such as
temperature, supply voltage or specific input signals.

While standard logic gates adopt complementary topology,
polymorphic gates employ rather unconventional structure at
the transistor level. Due to their irregular topology, it is a
challenge to find polymorphic gates. Evolutionary approach
[3][15] is the most suitable method to search for potential
designs that match perfectly with the required functionalities.
Genetic algorithm is one of the most popular variants of
evolutionary approach. In the general version of genetic
algorithm [16], after the genotype (or gene) is mapped to an
artificial system and the initial population of candidate
individuals are created, a generative process ranks candidate
solutions based on a fitness function which incorporates the
desired criteria, and selects the fittest candidates for mutation

and reproducing the next generation. This process repeats until
an acceptable solution is found. In this paper, we tailor the
generalized genetic algorithm for designing polymorphic gates,
as shown in Algorithm 1. We assign an index to each terminal of
transistors, the source, gate and drain. Genes refer to the width
and length value of transistors and the index of the terminals
that their source, gate or drain are connected to, which are all
initialized in Step 1. The genes are mapped to candidate netlists
which are later simulated and evaluated in Step 2. The function
for fitness evaluation is the hamming distance between the
outputs of the candidate solutions and the desired outputs. In
step 3, only those with hamming distance less than a threshold
are mutated for reproduction of the next generation.

Table 1: Examples of the Existing Polymorphic Gates.

Gate Control Control values #Transisto
r

AND/OR[1] T 27/125℃ 6

AND/OR[1] ext. input 3.3V/0V 6

AND/OR[1] Vdd 3.3V/1.2V 8

AND/OR/XOR[1] ext. input 3.3V/0V/1.5V 10

NAND/NOR[2] Vdd 3.3V/1.8V 6

NAND/NOR[10] Vdd 5V/3.3V 8

NAND/XOR[4] ext.input 3.3V/0V 9

2.2 Evolved polymorphic gates
We have evolved several polymorphic gates whose function is
selected by a specific control input. The functionalities of these
gates and their size (in terms of the number of transistors) are
summarized in Table 2. For example, the first row shows a
polymorphic gate with 6 transistors that behaves as a NOR gate
when the control input C=1, and changes to an inverter when
C=0.

Table 2: Evolved Polymorphic Gates

Gate functionalities #Transistor

NOR(C=1) - INV (C=0) 6

NAND(C=1) - INV (C=0) 7

AND(C=1) – BUF (C=0) 9

 AND(C=1) – OR (C=0) 9

 NAND(C=1) – NOR (C=0) 9

Fig. 1 (a) presents the schematic of the polymorphic AND/OR
gate in the second row from the bottom in Table 2. The nine
transistors are connected in irregular topology and take
unconventional parameters. The function of this gate is shown
in Fig. 1 (b). When the input c is logic ‘1’, this gate is an AND

gate; when c reverses to logic ‘0’, this gate functions as an OR
gate.

Algorithm 1-Genetic algorithm for evolving polymorphic
gates
Input:
Population_No - number of individuals in each generation
Generation_No- number of generations for evolution
f<c, a, b…> - truth table of the desired gate function, where
a,b…. are the input values and c is the external control
signal to transform the function
fitness_threshold – threshold of hamming distance between
the output of each individual and that of the desired gate
function
r - mutation rate of each generation
Output: Gate netlist that performs the desired function.
1.Gene initialization
cnt1 = 0;

for (cnt2 = 0 ; cnt2 < Population_No; cnt2++)
Initialize the genes and generate netlist[cnt2];

end for
2.Simulation and fitness evaluation
for (cnt2 = 0; cnt2 < Population_No; cnt2 ++)

for different c and every input combination of a,b…
f’ = Simulate(c,a,b,..netlist[cnt2])；

end for
fitness[cnt2]= matches(f, f’);//Hmming distance calculation

end for
3.Selection and reproduction

No_indiv= 0;
for (cnt2 = 0; cnt2 < Population_No; cnt2 ++)

if (fitness[cnt2] > fitness_threshold)
Survival= Survival∪netlist(cnt2);No_indiv++;

endif
end for
for every netlist in the set Survival
for(cnt2 = 0; cnt2 <[Population_No/No_indiv];cnt2++)

 Change r% of genes in netlist[cnt2];
 end for
end for
4.While(cnt1 != Generation_No)

Goto step 2~3; cnt1++;
end while
5. Report the netlists in the set Survival.

a

a

b

b

ba

b

a

c

out

vdd vdd

c

(a)

0 10n 20n 30n 40n

0

0.6V

1.2V

a

b

out

out

0 10n 20n 30n 40n

0

0.6V

1.2V

0 10n 20n 30n 40n

0

0.6V

1.2V

0 10n 20n 30n 40n

0

0.6V

1.2V

c = 1.2V

c = 0V

(b)

Figure 1: Polymorphic AND/OR gate. (a) Topology (b)
Input and output waveforms (from top to bottom: input a,
input b, output with c =1.2V, output with c = 0V).

A

B O

C

D

E

F

A

B O

C

D

E

F

AND/OR

(a)

A B C D E F AND OR
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1

(b)

Figure 2: An example of SDC condition based
fingerprinting. (a) The original circuit (top) and the one
after the AND gate is replaced (bottom) (b) Truth tables of
the internal signals and gates AND and OR.

3 POLYMOPHIC GATE BASED
FINGERPRINTING WITH SATISFIABILITY
DON’T CARE CONDITIONS

3.1 Satisfiability Don’t Care(SDC) conditions
Satisfiability Don’t Care conditions describe the logic
combinations that will not occur in the internal nets given all the
combinations that the primary inputs can take. For example, in
Fig. 2, the AND gate in (a) cannot have input patterns (1, 0) or (0,
1) as shown in the truth table in (b).

As shown in Algorithm 2, SDC conditions can be determined
by using the justification methodology in VLSI testing, which
deduces the logic value from an internal net backwards to the
primary inputs. If the justification of a logic pattern in a gate
fails, there exists a SDC condition for this gate. For example, in
Fig. 2(a), for the AND gate to have inputs E=0 and F=1, we have
A=F=1, but this makes D=1 and the OR gate will make E=1.
Therefore, input pattern (0,1) fails justification and thus it is a
SDC condition.

Algorithm 2-Determining gate locations with SDC
conditions
Function SDC_checking (gate g, pattern <v1,v2, … ,vn>)
for i = 0; i < n; i ++
 if (justify (g’s ith input, vi) = fail)
 return pattern<v1,v2, … ,vn> is a SDC condition; //
The SDC condition exist.
endfor
 return fail;// The SDC condition doesn’t exist.

Function Justify (gate g, justification value v)
if (v != g’s existing output value)// conflict occurs
 backtrace();
Endif
Else
 if (g functions as AND && v == 1)

 for i = 0; i < number of inputs for g; i ++
 if (justify (g’s ith input, 1) = fail)
 return fail;
 endfor
endif
if (g functions as AND && v == 0)

 for i= 0; i < number of inputs for g; i ++
 if (justify (g’s ith input, 0) = success)
 return success;
 endfor
endif
……

3.2 Fingerprinting scheme with polymorphic
gates

A circuit fingerprinting technique needs to meet the following
requirements [17][20]:
1. Consistency. The circuit embedded with fingerprints needs

to function correctly.
2. Uniqueness. Each circuit should have distinct fingerprints so

that it is feasible to differentiate different copies.
3. Robustness. To enable the trace of source, the fingerprints

must remain unchanged in any illegally produced circuits
and shouldn’t be modified.

In the proposed scheme, we replace standard cells in the
netlist with polymorphic gates whose either modes of operation
maintain the correct functionality of the circuit. As shown in Fig.
2, by embedding such polymorphic gates, we can generate

fingerprinted copies of the original circuits, where the
configuration of each polymorphic gate represents one
fingerprint bit.

3.2.1 SDC-based fingerprint
We derive the following principles when determining the

potential locations for gate replacement.
P1. Only the gates which have the same logic as either modes of
polymorphic gates can be potential locations for replacements.
For example, if we want to replace standard cells with evolved
AND/OR gate, we should only target the 2-input AND gates and
2-input OR gates.
P2. The SDC conditions of potential replacement locations which
we aim to find should be the Differentiating Input Value of the
polymorphic gates.
Differentiating Input Values (DIV) of a polymorphic gate are
the input combinations for which the polymorphic gate produces
different output when the control signal changes. For example,
input combinations (1,0) and (0,1) are DIVs of the AND/OR gate
in Fig. 1. The output of this gate reverses from 0 to 1 as the
control signal changes from ‘1’ to ‘0’ when the two inputs are set
as ‘1’ and ‘0’, respectively.

After these gates with such SDC conditions are replaced by
polymorphic gates, the functionality of the original circuit
remains unchanged no matter which configuration the
embedded polymorphic gates take. This satisfies the consistency
requirement. We assign a binary value to the control input of
each polymorphic gates (e.g. the input c in Fig. 1) which serves
as a one-bit fingerprint. By replacing p standard cells with
polymorphic gates, we can obtain 2p distinct fingerprints
meeting the uniqueness requirement. In this scheme, we make
this type of replacement with the first three polymorphic gates
in Table 2. These gates deliver different outputs with only one
input combination (1,0). We need to find the standard library
gates with one SDC-condition (1,0), which is more likely to
appear than the gates with two SDC conditions, (1,0) and (0,1) if
we consider introducing NAND/NOR and AND/OR into the
original design.

3.2.2 Adding ‘dummy’ fingerprinting.
Besides the gates with SDC conditions leading in, we also

make some additional replacements for those gates without SDC
conditions. To ensure the consistency of the circuit function
after modification, the additionally inserted polymorphic gates
should be configured to the same logic as the original cells. We
take the function control input of these gates as the ‘dummy’
fingerprint bits as their values are constant and cannot be used
for identification purposes. Any attempt to modify the dummy
fingerprints will cause incorrect function of the circuit.
Therefore, the robustness of the fingerprinted circuits against
attacks can be enhanced. In this paper we add dummy
fingerprint by replacing two-input logic gates with NAND/NOR
and AND/OR gate.

The design flow to embed fingerprints is summarized in Fig. 3.
After the locations for replacement are determined, we connect
the function control inputs of polymorphic gates to the power
supply or ground to configure the functions. Thus, the
fingerprint values can be embedded in the circuit at the layout

design phase. After the fingerprinted copies of the original
circuit are fabricated, we can detect the embedded fingerprints
by opening up the chip and identifying the configuration type of
the polymorphic gates at each location to recover the
corresponding bits in the fingerprints.

original netlist

Add SDC-based fingerprints

Add dummy fingerprints

A

O

C

D

E

F

B

A

O

C

D

E

F

B

f1

0
1

A

O

C

D

E

F

B AND/

BUF

AND/

OR

AND/

OR

 SDC checking

A

O

C

D

E

F

B AND/

BUF

f1

SDC conditions

Figure 3: Design flow of the proposed scheme

3.3 Security Analysis
When a suspicious IP or circuit appears, the IP designer needs to
recover the fingerprint to trace its source. Attackers who
attempt to illegally build the circuit will try to alter the
fingerprint to prevent it from being recovered. In this section, we
will illustrate that our scheme is resilient against such
adversaries and provides robust fingerprints in different attack
scenarios.

3.3.1 Fingerprint modification.
Given a single copy of the fingerprinted circuit, the attacker

can find the fingerprint locations by targeting the polymorphic
gates. The attacker can modify the configuration of these
polymorphic gates and change the fingerprint to one that has
not been distributed by the vendor. However, this attack
requires locating the dummy fingerprint bits as changing these
bits would influence the function of the circuits. It is not feasible
for the attackers to fully reverse engineer the netlist since the
fingerprinted circuit is obfuscated with polymorphic gates.
Therefore, the attacker cannot differentiate between the dummy
and the real SDC-based fingerprint locations and this attack will
become impractical.

3.3.2 Collision attack.
Collision attack is a powerful attack for all fingerprinting

schemes where the attacker has access to multiple fingerprinted
copies and can compare these copies to determine the fingerprint
locations. More specifically, for our proposed scheme, the
attacker may extract the fingerprints and compare their values

corresponding to different gate locations. If there exists a certain
location where the corresponding bit value differs in different
copies, this location is a real SDC-based fingerprint location and
can be modified. A countermeasure to thwart this attack would
be encoding the fingerprint before applying it to the original
circuit and checking the parity bits in the extracted fingerprint to
help reveal any malicious modifications.

3.3.3 SAT-based attack
SAT-based attacks[18] are powerful adversaries for many

logic encryption schemes. As the attacker obtains a gate-level
netlist and a functional module of the circuit, he can use the
correct input-output pairs to eliminate the wrong configurations
of the embedded polymorphic gates for retaining dummy bits,
recover the locations of dummy bits, and change them. To gain
resilience against these attacks, we can combine schemes like
SARLOCK[19], which compares inputs and fingerprint bits to
generate a signal that flips the primary outputs. This
modification will bring exponential complexity to retrieve the
dummy bit locations.

4 SIMULATION VALIDATION AND
EVALUATION

We selected several circuits in ISCAS 85 and MCNC benchmarks
to perform overhead evaluation. The circuits are described in
Verilog HDL and synthesized using 0.13um SMIC technology
and the supply voltage is set as 1.2V. For simplicity, the RTL
design is mapped to inverters and two-input/three-input/four-
input NAND/NOR/OR/AND gates. A program written in C
checks all the SDC conditions and replaces the standard cells
with the evolved polymorphic gates automatically. The timing
and power of the polymorphic gates are measured using Hspice
and their layout area are estimated based on the transistor
parameters. With these measurements, we incorporate the
polymorphic gates into the SMIC 0.13um synthesis library as
standard cells. We collect the area, delay and power of the
original netlists and the fingerprinted netlists using Synopsys
Design Compiler.

The maximum size of fingerprints utilizing SDC conditions
and dummy fingerprint locations is listed in Table 3. For most
benchmark circuits there are enough number of locations to
embed polymorphic gates for our fingerprinting scheme.We set
fixed fingerprint width which equals to 16bit and 32bit,
respectively and evaluate the overhead. For both cases, we also
add dummy fingerprints of equal width. The synthesis results of
the fingerprinted netlists are summarized in Table 4 and Table 5.
When we add 16-bit real fingerprint and 16-bit dummy
fingerprint, the average overhead in delay, area and power is
approximately 2%, 3.5% and 4% respectively, which is tolerable;
for most benchmarks, performance deterioration is less than 5%.
The average overheads rise to 4%, 7% and 5% when we add 16
more bits both in the real fingerprints and dummy fingerprints.
Note that in this case, we have 64-bit fingerprints. Compared to
the only other similar approach in [17] where their fingerprints
are 32 bits, our average overhead is about only half. In addition,
the use of dummy fingerprints makes our scheme more robust.

Table 3: Maximum SDC-based and Dummy Fingerprint Size

Circuit #Gates #SDC-based
fingerprint

#Dummy fingerprint

C880 290 42 114
C1355 424 69 64
C1908 396 52 106
C3540 943 116 124
C5315 1428 47 548
dalu 1228 52 398
des 3483 70 1712
ex5 609 155 64
i8 1174 208 267
i10 1914 134 509

 Table 4: Overhead with 16-bit Real Fingerprint and 16-bit
Dummy Fingerprint

Circuit △delay(%) △area(%) △power(%)
C880 1.08 8.11 8.16
C1355 5.72 5.9 7.23
C1908 5.1 6.31 4.13
C3540 0.55 3 2.78
C5315 0 1.645 1.93
dalu 2.38 2.56 2.26
des 4.59 0.77 0.50
ex5 0 3.54 13.05
i8 0 1.845 1.79
i10 0.74 1.205 0.77
avg 2.02 3.485 4.26

Table 5: Overhead with 32-bit Real Fingerprint and 32-bit
Dummy Fingerprint

Circuit △delay(%) △area(%) △power(%)

C880 1.08 16.31 11.90
C1355 11.74 12.275 8.02
C1908 7.05 13.17 5.09
C3540 1.11 5.835 4.72
C5315 6.8 3.355 2.05
dalu 5.71 4.77 2.49
des 4.59 1.455 0.55
ex5 1.65 6.485 13.26
i8 0 3.635 2.29
i10 0.74 2.4 0.98
avg 4.04 6.97 5.14

5 CONCLUSION
In this paper, we proposed a circuit fingerprinting scheme to
resist IP overbuilding and piracy. The proposed scheme utilizes
the SDC conditions and make replacements with the
polymorphic gates whose functions are controlled by specific
inputs into the gate-level netlist. Experiment results demonstrate
that our scheme brings low overhead in performance, area and
power. One important direction for future work would be

investigating the implementation of evolved polymorphic gates
and our proposed technique in fabricating real-life circuits.

ACKNOWLEDGMENTS
Omid Aramoon and Gang Qu were supported in part by the
National Science Foundation under grant CNS1745466 and by a
research agreement between the University of Maryland and
the Laboratory for Physical Sciences.

REFERENCES
[1] A. Stoica, R. Zebulum, D. Keymeulen. Polymorphic electronics. International

Conference on Evolvable Systems. Springer Berlin Heidelberg, 291-302, 2001.
[2] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, M.I.Ferguson & V.Duong. Taking

evolutionary circuit design from experimentation to implementation: Some
useful techniques and a silicon demonstration. IEE Proceedings Computers and
Digital Techniques, 151(4), 295-300, 2004.

[3] L. Sekanina. Evolutionary design of gate-level polymorphic digital circuits.
Workshops on Applications of Evolutionary Computation. Springer Berlin
Heidelberg, 185-194, 2005.

[4] R. Ruzicka. On bifunctional polymorphic gates controlled by a special signal.
WSEAS Transactions on Circuits, 7(3), 96-101, 2008.

[5] L. Sekanina. Design methods for polymorphic digital circuits. In Proceedings of
the 8th IEEE Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2005.

[6] W. Luo, Z. Zhang, X. Wang. Designing polymorphic circuits with polymorphic
gates: a general design approach. IET Circuits, Devices & Systems, 1(6), 470-476,
2007.

[7] L. Sekanina, R. Ruzicka, Z. Vasicek, R. Prokop & L. Fujcik. Repomo32-new
reconfigurable polymorphic integrated circuit for adaptive hardware. IEEE
Workshop on Evolvable and Adaptive Hardware, 2009.

[8] L. Sekanina, L. Starecek, Z. Gajda, Z. Kotasek. Evolution of multifunctional
combinational modules controlled by the power supply voltage. In Proceeding of
the 1st NASA/ESA Conference on Adaptive Hardware and Systems, 86–193, 2006.

[9] L. Sekanina, R. Ruzicka, Z. Gajda. Polymorphic FIR filters with backup mode
enabling power savings. NASA/ESA Conference on Adaptive Hardware and
Systems, 2009.

[10] L. Sekanina, R. Ruzicka, R. Prokop. Physical demonstration of polymorphic
self-checking circuits. 14th IEEE International On-Line Testing Symposium, 2008.

[11] L. Sekanina, L. Starecek, Z. Kotasek, Z. Gajda. Polymorphic gates in design and
test of digital circuits. International Journal of Unconventional Computing, 4(2),
125, 2008.

[12] L. Sekanina. Evolution of Polymorphic Self-Checking Circuits. In Proceedings of
the 7th Conference on Evolvable Systems: From Biology to Hardware, 186–197,
2007.

[13] Y. Bi, K Shamsi, J.S. Yuan, P. E. Gaillardon, G.D. Micheli, X. Yin.Emerging
technology-based design of primitives for hardware security. ACM Journal on
Emerging Technologies in Computing Systems, 13(1), 2016

[14] R. Richard and T. Radek. Let’s move polymorphism downwards: On the
multifunctional logic based on ambipolar behaviour of semiconductor devices.
2016 International Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS), 2016.

[15] J.F. Miller, J. Dominic and K.V. Vesselin. Principles in the evolutionary design
of digital circuits—Part I. Genetic programming and evolvable machines, 1(1-2), 7-
35, 2000.

[16] J.H.Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[17] C. DunBar, G. Qu. Satisfiability don't care condition based circuit
fingerprinting techniques. 2015 20th Asia and South Pacific Design Automation
Conference (ASP-DAC), IEEE, 815-820, 2015.

[18] P. Subramanyan, S. Ray, and S. Malik. Evaluatingthe Security of Logic
Encryption Algorithms. IEEE International Symposium on Hardware Oriented
Security and Trust, 137–143, 2015.

[19] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu. SARlock: SAT Attack
Resistant Logic Locking. IEEE International Symposium on Hardware Oriented
Security and Trust, 236–241, 2016.

[20] G. Qu and M. Potkonja, Fingerprinting intellectual property using constraint-
addition. Proceedings of the 37th annual design automation conference, 587-592,
2000.

[21] T. Wang, X. Cui, D. Yu, O.Aramoon, T.Dunlap, G. Qu, et al. Polymorphic gate
based IC watermarking techniques. Asia and South Pacific Design Automation
Conference, 90-96, 2018.

