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ABSTRACT 
Polymorphic gates are reconfigurable devices that deliver 
multiple functionalities at different temperature, supply voltage 
or external inputs. Capable of working in different modes, 
polymorphic gate is a promising candidate for embedding secret 
information such as fingerprints. In this paper, we report five 
polymorphic gates whose functionality varies in response to 
specific control input and propose a circuit fingerprinting 
scheme based on these gates. The scheme selectively replaces 
standard logic cells by polymorphic gates whose functionality 
differs with the standard cells only on Satisfiability Don’t Care 
conditions. Additional dummy fingerprint bits are also 
introduced to enhance the fingerprint’s robustness against 
attacks such as fingerprint removal and modification. 
Experimental results on ISCAS and MCNC benchmark circuits 
demonstrate that our scheme introduces low overhead. More 
specifically, the average overhead in area, speed and power are 
4.04%, 6.97% and 4.15% respectively when we embed 64-bit 
fingerprint that consists of 32 real fingerprint bits and 32 dummy 
bits. This is only half of the overhead of the other known 
approach when they create 32-bit fingerprints.1  
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1 INTRODUCTION 
Recent achievements in the field of digital circuit design brings a 
novel reconfigurable scheme based on polymorphic gates (or 
polymorphic circuits) that was first introduced by A. Stoica in 
2001 [1]. With multiple functionalities integrated in one single 
structure, polymorphic gates/circuits can achieve function 
transformation in response to control factors such as 
temperature, supply voltage or external inputs, etc. One typical 
polymorphic gate that has been fabricated with HP 0.5um 
technology is a NAND/NOR gate proposed in [2]. It performs as 
a NAND gate when Vdd is 3.3V and when Vdd drops to 1.8V, 
this gate works as a NOR gate. Many follow-up works have been 
reported on designing various types of polymorphic gates based 
on evolutionary approach [3][4] and on building complex 
polymorphic circuits using polymorphic gates [5][6]. 

Polymorphic gates have been applied in many scenarios such 
as multifunctional adaptive systems [7][8], finite impulse 
response(FIR) filter [9], self-checking circuits [10,12] and 
reduction of test vector volume [11], where multiple working 
modes are supported, and each mode can be enabled with global 
control signals. Besides these applications, polymorphic gates 
have great potentials in hardware security, as the flexible built-in 
multi-functionality enables one or more conceived ‘extra’ 
functions in addition to the ‘main’ one, which makes it feasible 
to hide function or embed secret information, such as circuit 
watermark [21]. The embedded information will show up when 
the ‘extra’ function gets activated. One straightforward and 
convenient application is to embed circuit fingerprint, which 
allows the tracking of every individually sold IP. When a 
designer suspects IP piracy or counterfeiting, he can detect the 
embedded fingerprint to locate the source.  

In this paper, we propose a circuit fingerprinting scheme with 
polymorphic gates controlled by external inputs. The scheme 
targets SDC (Satisfiability Don’t Care) conditions that usually 
appear in non-trivial circuits and replaces the standard library 
cells holding the SDC conditions by polymorphic gates. The 
modified circuit delivers correct functionality and the 
configurations of the polymorphic gates constitute the circuit 
fingerprint. We also introduce additional replacements to those 
gate locations without SDC conditions. The control inputs of 
these polymorphic gates serve as the dummy fingerprints.  Any 
malicious attempt to modify the dummy fingerprints will bring 
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functional changes and make the fingerprinted circuits function 
incorrectly. 

Our works and contributions are specified as follows, 
After a brief review of the existing design approaches of 

polymorphic gates, we employ the most widely used genetic 
algorithm. With this modified algorithm, we successfully 
construct five polymorphic gates whose function transition is 
controlled by external signals. 

We propose a polymorphic logic based justifiability checking 
method to determine the SDC conditions and potential 
locations where standard cells can be replaced by 
polymorphic gates to embed fingerprints.  

We perform security analysis by considering different 
attacking scenarios based on the attackers’ capabilities, 
which demonstrates the robustness and reliability of the 
proposed scheme.  

We evaluate the area, delay and power overhead introduced 
by our proposed fingerprinting scheme on ISCAS 85 and 
MCNC benchmark circuits using 0.13um SMIC technology. 
Results demonstrate that, when we embed 32-bit real 
fingerprint and 32-bit dummy fingerprint, the benchmark 
circuits have an average of 4.04%, 6.97% and 4.15% overhead 
in delay, area and power, respectively. In other words, our 
scheme can provide sufficiently strong fingerprints (32 bits) 
with acceptable performance deterioration.  
The rest of the paper is organized as follows: Section 2 gives 

the background and the design of polymorphic gates. Section 3 
presents our fingerprinting scheme based on SDC conditions and 
the security analysis. In Section 4, we validate the proposed 
technique based on overhead evaluation, and Section 5 concludes. 

2  DESIGN OF POLYMORPHIC GATES 

2.1 Genetic Algorithm 
Polymorphic gates can be implemented with FTPA (field 
programmable transistor array) [1], CMOS [2], emerging devices 
such as silicon nanowire and ambipolar devices [13] [14]. For 
better integration into the mainstream CMOS technology, we 
only focus on polymorphic gates consisting of CMOS transistors. 
Table 1 lists some representative polymorphic gates reported in 
the literature. These gates deliver different outputs for the same 
input vector depending on the operating environment such as 
temperature, supply voltage or specific input signals.  

While standard logic gates adopt complementary topology, 
polymorphic gates employ rather unconventional structure at 
the transistor level. Due to their irregular topology, it is a 
challenge to find polymorphic gates. Evolutionary approach 
[3][15] is the most suitable method to search for potential 
designs that match perfectly with the required functionalities. 
Genetic algorithm is one of the most popular variants of 
evolutionary approach. In the general version of genetic 
algorithm [16], after the genotype (or gene) is mapped to an 
artificial system and the initial population of candidate 
individuals are created, a generative process ranks candidate 
solutions based on a fitness function which incorporates the 
desired criteria, and selects the fittest candidates for mutation 

and reproducing the next generation. This process repeats until 
an acceptable solution is found. In this paper, we tailor the 
generalized genetic algorithm for designing polymorphic gates, 
as shown in Algorithm 1. We assign an index to each terminal of 
transistors, the source, gate and drain. Genes refer to the width 
and length value of transistors and the index of the terminals 
that their source, gate or drain are connected to, which are all 
initialized in Step 1. The genes are mapped to candidate netlists 
which are later simulated and evaluated in Step 2. The function 
for fitness evaluation is the hamming distance between the 
outputs of the candidate solutions and the desired outputs. In 
step 3, only those with hamming distance less than a threshold 
are mutated for reproduction of the next generation.   

Table 1: Examples of the Existing Polymorphic Gates. 

Gate Control Control values #Transisto
r 

AND/OR[1] T 27/125℃ 6 

AND/OR[1] ext. input 3.3V/0V 6 

AND/OR[1] Vdd 3.3V/1.2V 8 

AND/OR/XOR[1] ext. input 3.3V/0V/1.5V 10 

NAND/NOR[2] Vdd 3.3V/1.8V 6 

NAND/NOR[10] Vdd 5V/3.3V 8 

NAND/XOR[4] ext.input 3.3V/0V 9 

2.2  Evolved polymorphic gates 
We have evolved several polymorphic gates whose function is 
selected by a specific control input. The functionalities of these 
gates and their size (in terms of the number of transistors) are 
summarized in Table 2. For example, the first row shows a 
polymorphic gate with 6 transistors that behaves as a NOR gate 
when the control input C=1, and changes to an inverter when 
C=0.  

Table 2: Evolved Polymorphic Gates 

Gate functionalities #Transistor 

NOR(C=1) - INV (C=0) 6 

NAND(C=1) - INV (C=0) 7 

AND(C=1) – BUF (C=0) 9 

          AND(C=1) – OR (C=0) 9 

     NAND(C=1) – NOR (C=0) 9 

 
Fig. 1 (a) presents the schematic of the polymorphic AND/OR 
gate in the second row from the bottom in Table 2. The nine 
transistors are connected in irregular topology and take 
unconventional parameters. The function of this gate is shown 
in Fig. 1 (b). When the input c is logic ‘1’, this gate is an AND 



  
 

 

gate; when c reverses to logic ‘0’, this gate functions as an OR 
gate. 
 

Algorithm 1-Genetic algorithm for evolving polymorphic 
gates 
Input:  
Population_No - number of individuals in each generation 
Generation_No- number of generations for evolution 
f<c, a, b…> - truth table of the desired gate function, where 
a,b…. are the input values and c is the external control 
signal to transform the function 
fitness_threshold – threshold of hamming distance between 
the output of each individual and that of the desired gate 
function  
r - mutation rate of each generation 
Output: Gate netlist that performs the desired function. 
1.Gene initialization  
cnt1 = 0; 

for (cnt2 = 0 ; cnt2 < Population_No; cnt2++) 
Initialize the genes and generate netlist[cnt2]; 

end for 
2.Simulation and fitness evaluation 
for (cnt2 = 0; cnt2 < Population_No; cnt2 ++) 

for different c and every input combination of a,b… 
f’ = Simulate(c,a,b,..netlist[cnt2])； 

end for 
fitness[cnt2]=  matches(f, f’);//Hmming distance calculation 

end for 
3.Selection and reproduction 

No_indiv= 0; 
for (cnt2 = 0; cnt2 < Population_No; cnt2 ++) 

if  (fitness[cnt2] > fitness_threshold) 
Survival= Survival∪netlist(cnt2);No_indiv++; 

endif 
end for 
for every netlist in the set Survival 
for(cnt2 = 0; cnt2 <[Population_No/No_indiv];cnt2++) 

     Change r% of genes in netlist[cnt2]; 
   end for 
end for 
4.While(cnt1 != Generation_No) 

Goto step 2~3; cnt1++; 
end while 
5.   Report the netlists in the set Survival. 
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Figure 1:  Polymorphic AND/OR gate. (a) Topology (b) 
Input and output waveforms (from top to bottom: input a, 
input b, output with c =1.2V, output with c = 0V).  
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Figure 2:  An example of SDC condition based 
fingerprinting. (a) The original circuit (top) and the one 
after the AND gate is replaced (bottom)  (b) Truth tables of 
the internal signals and gates AND and OR. 

3  POLYMOPHIC GATE BASED 
FINGERPRINTING WITH SATISFIABILITY 
DON’T CARE CONDITIONS 

3.1  Satisfiability Don’t Care(SDC) conditions 
Satisfiability Don’t Care conditions describe the logic 
combinations that will not occur in the internal nets given all the 
combinations that the primary inputs can take. For example, in 
Fig. 2, the AND gate in (a) cannot have input patterns (1, 0) or (0, 
1) as shown in the truth table in (b). 



  
 

As shown in Algorithm 2, SDC conditions can be determined 
by using the justification methodology in VLSI testing, which 
deduces the logic value from an internal net backwards to the 
primary inputs. If the justification of a logic pattern in a gate 
fails, there exists a SDC condition for this gate. For example, in 
Fig. 2(a), for the AND gate to have inputs E=0 and F=1, we have 
A=F=1, but this makes D=1 and the OR gate will make E=1. 
Therefore, input pattern (0,1) fails justification and thus it is a 
SDC condition. 

 
Algorithm 2-Determining gate locations with SDC 
conditions 
Function SDC_checking ( gate g, pattern <v1,v2, … ,vn> ) 
for i = 0; i < n; i ++ 
     if ( justify ( g’s ith input, vi ) = fail ) 
                return pattern<v1,v2, … ,vn> is a SDC condition; // 
The SDC condition exist. 
endfor 
   return fail;// The SDC condition doesn’t exist. 
 
Function Justify (gate g, justification value v) 
if (v != g’s existing output value)// conflict occurs 
     backtrace(); 
Endif 
Else 
  if ( g functions as AND && v == 1) 

 for i = 0; i < number of inputs for g; i ++ 
                if ( justify ( g’s ith input, 1) = fail ) 
                       return fail;  
         endfor 
endif 
if ( g functions as AND && v == 0) 

 for i= 0; i < number of inputs for g; i ++ 
                if ( justify ( g’s ith input, 0) = success ) 
                       return success;  
         endfor 
endif 
…… 
 

3.2  Fingerprinting scheme with polymorphic 
gates 

A circuit fingerprinting technique needs to meet the following 
requirements [17][20]: 
1. Consistency. The circuit embedded with fingerprints needs 

to function correctly. 
2. Uniqueness. Each circuit should have distinct fingerprints so 

that it is feasible to differentiate different copies. 
3. Robustness. To enable the trace of source, the fingerprints 

must remain unchanged in any illegally produced circuits 
and shouldn’t be modified. 

In the proposed scheme, we replace standard cells in the 
netlist with polymorphic gates whose either modes of operation 
maintain the correct functionality of the circuit. As shown in Fig. 
2, by embedding such polymorphic gates, we can generate 

fingerprinted copies of the original circuits, where the 
configuration of each polymorphic gate represents one 
fingerprint bit.  

3.2.1  SDC-based fingerprint  
We derive the following principles when determining the 

potential locations for gate replacement. 
P1. Only the gates which have the same logic as either modes of 
polymorphic gates can be potential locations for replacements. 
For example, if we want to replace standard cells with evolved 
AND/OR gate, we should only target the 2-input AND gates and 
2-input OR gates. 
P2. The SDC conditions of potential replacement locations which 
we aim to find should be the Differentiating Input Value of the 
polymorphic gates. 
Differentiating Input Values (DIV) of a polymorphic gate are 
the input combinations for which the polymorphic gate produces 
different output when the control signal changes. For example, 
input combinations (1,0) and (0,1) are DIVs of the AND/OR gate 
in Fig. 1. The output of this gate reverses from 0 to 1 as the 
control signal changes from ‘1’ to ‘0’ when the two inputs are set 
as ‘1’ and ‘0’, respectively. 

After these gates with such SDC conditions are replaced by 
polymorphic gates, the functionality of the original circuit 
remains unchanged no matter which configuration the 
embedded polymorphic gates take. This satisfies the consistency 
requirement. We assign a binary value to the control input of 
each polymorphic gates (e.g. the input c in Fig. 1) which serves 
as a one-bit fingerprint. By replacing p standard cells with 
polymorphic gates, we can obtain 2p distinct fingerprints 
meeting the uniqueness requirement. In this scheme, we make 
this type of replacement with the first three polymorphic gates 
in Table 2. These gates deliver different outputs with only one 
input combination (1,0). We need to find the standard library 
gates with one SDC-condition (1,0), which is more likely to 
appear than the gates with two SDC conditions, (1,0) and (0,1) if 
we consider introducing NAND/NOR and AND/OR into the 
original design. 

3.2.2  Adding ‘dummy’ fingerprinting. 
Besides the gates with SDC conditions leading in, we also 

make some additional replacements for those gates without SDC 
conditions. To ensure the consistency of the circuit function 
after modification, the additionally inserted polymorphic gates 
should be configured to the same logic as the original cells. We 
take the function control input of these gates as the ‘dummy’ 
fingerprint bits as their values are constant and cannot be used 
for identification purposes. Any attempt to modify the dummy 
fingerprints will cause incorrect function of the circuit.  
Therefore, the robustness of the fingerprinted circuits against 
attacks can be enhanced. In this paper we add dummy 
fingerprint by replacing two-input logic gates with NAND/NOR 
and AND/OR gate. 

The design flow to embed fingerprints is summarized in Fig. 3. 
After the locations for replacement are determined, we connect 
the function control inputs of polymorphic gates to the power 
supply or ground to configure the functions. Thus, the 
fingerprint values can be embedded in the circuit at the layout 



  
 

 

design phase. After the fingerprinted copies of the original 
circuit are fabricated, we can detect the embedded fingerprints 
by opening up the chip and identifying the configuration type of 
the polymorphic gates at each location to recover the 
corresponding bits in the fingerprints. 

original netlist

Add SDC-based fingerprints

Add dummy fingerprints

A

O

C

D

E

F

B

A

O

C

D

E

F

B

f1

0
1

A

O

C

D

E

F

B AND/

BUF

AND/

OR

AND/

OR

 

 SDC checking

A

O

C

D

E

F

B AND/

BUF

f1

SDC conditions

 

Figure 3:  Design flow of the proposed scheme 

3.3 Security Analysis 
When a suspicious IP or circuit appears, the IP designer needs to 
recover the fingerprint to trace its source. Attackers who 
attempt to illegally build the circuit will try to alter the 
fingerprint to prevent it from being recovered. In this section, we 
will illustrate that our scheme is resilient against such 
adversaries and provides robust fingerprints in different attack 
scenarios. 

3.3.1 Fingerprint modification. 
Given a single copy of the fingerprinted circuit, the attacker 

can find the fingerprint locations by targeting the polymorphic 
gates. The attacker can modify the configuration of these 
polymorphic gates and change the fingerprint to one that has 
not been distributed by the vendor.  However, this attack 
requires locating the dummy fingerprint bits as changing these 
bits would influence the function of the circuits. It is not feasible 
for the attackers to fully reverse engineer the netlist since the 
fingerprinted circuit is obfuscated with polymorphic gates. 
Therefore, the attacker cannot differentiate between the dummy 
and the real SDC-based fingerprint locations and this attack will 
become impractical. 

3.3.2 Collision attack.  
Collision attack is a powerful attack for all fingerprinting 

schemes where the attacker has access to multiple fingerprinted 
copies and can compare these copies to determine the fingerprint 
locations. More specifically, for our proposed scheme, the 
attacker may extract the fingerprints and compare their values 

corresponding to different gate locations. If there exists a certain 
location where the corresponding bit value differs in different 
copies, this location is a real SDC-based fingerprint location and 
can be modified. A countermeasure to thwart this attack would 
be encoding the fingerprint before applying it to the original 
circuit and checking the parity bits in the extracted fingerprint to 
help reveal any malicious modifications. 

3.3.3 SAT-based attack 
SAT-based attacks[18] are powerful adversaries for many 

logic encryption schemes. As the attacker obtains a gate-level 
netlist and a functional module of the circuit, he can use the 
correct input-output pairs to eliminate the wrong configurations 
of the embedded polymorphic gates for retaining dummy bits, 
recover the locations of dummy bits, and change them. To gain 
resilience against these attacks, we can combine schemes like 
SARLOCK[19], which compares inputs and fingerprint bits to 
generate a signal that flips the primary outputs. This 
modification will bring exponential complexity to retrieve the 
dummy bit locations. 

4  SIMULATION VALIDATION AND 
EVALUATION 

We selected several circuits in ISCAS 85 and MCNC benchmarks 
to perform overhead evaluation. The circuits are described in 
Verilog HDL and synthesized using 0.13um SMIC technology 
and the supply voltage is set as 1.2V. For simplicity, the RTL 
design is mapped to inverters and two-input/three-input/four-
input NAND/NOR/OR/AND gates. A program written in C 
checks all the SDC conditions and replaces the standard cells 
with the evolved polymorphic gates automatically. The timing 
and power of the polymorphic gates are measured using Hspice 
and their layout area are estimated based on the transistor 
parameters. With these measurements, we incorporate the 
polymorphic gates into the SMIC 0.13um synthesis library as 
standard cells. We collect the area, delay and power of the 
original netlists and the fingerprinted netlists using Synopsys 
Design Compiler. 

The maximum size of fingerprints utilizing SDC conditions 
and dummy fingerprint locations is listed in Table 3. For most 
benchmark circuits there are enough number of locations to 
embed polymorphic gates for our fingerprinting scheme.We set 
fixed fingerprint width which equals to 16bit and 32bit, 
respectively and evaluate the overhead. For both cases, we also 
add dummy fingerprints of equal width. The synthesis results of 
the fingerprinted netlists are summarized in Table 4 and Table 5. 
When we add 16-bit real fingerprint and 16-bit dummy 
fingerprint, the average overhead in delay, area and power is 
approximately 2%, 3.5% and 4% respectively, which is tolerable; 
for most benchmarks, performance deterioration is less than 5%. 
The average overheads rise to 4%, 7% and 5% when we add 16 
more bits both in the real fingerprints and dummy fingerprints. 
Note that in this case, we have 64-bit fingerprints. Compared to 
the only other similar approach in [17] where their fingerprints 
are 32 bits, our average overhead is about only half. In addition, 
the use of dummy fingerprints makes our scheme more robust. 



  
 
Table 3:  Maximum SDC-based and Dummy Fingerprint Size 

Circuit #Gates #SDC-based 
fingerprint 

#Dummy fingerprint 

C880 290 42 114 
C1355 424 69 64 
C1908 396 52 106 
C3540 943 116 124 
C5315 1428 47 548 
dalu 1228 52 398 
des 3483 70 1712 
ex5 609 155 64 
i8 1174 208 267 
i10 1914 134 509 

 Table 4:  Overhead with 16-bit Real Fingerprint and 16-bit 
Dummy Fingerprint 

Circuit △delay(%) △area(%) △power(%) 
C880 1.08 8.11 8.16 
C1355 5.72 5.9 7.23 
C1908 5.1 6.31 4.13 
C3540 0.55 3 2.78 
C5315 0 1.645 1.93 
dalu 2.38 2.56 2.26 
des 4.59 0.77 0.50 
ex5 0 3.54 13.05 
i8 0 1.845 1.79 
i10 0.74 1.205 0.77 
avg 2.02 3.485 4.26 

Table 5:  Overhead with 32-bit Real Fingerprint and 32-bit 
Dummy Fingerprint 

Circuit △delay(%) △area(%) △power(%) 

C880 1.08 16.31 11.90 
C1355 11.74 12.275 8.02 
C1908 7.05 13.17 5.09 
C3540 1.11 5.835 4.72 
C5315 6.8 3.355 2.05 
dalu 5.71 4.77 2.49 
des 4.59 1.455 0.55 
ex5 1.65 6.485 13.26 
i8 0 3.635 2.29 
i10 0.74 2.4 0.98 
avg 4.04 6.97 5.14 

5  CONCLUSION 
In this paper, we proposed a circuit fingerprinting scheme to 
resist IP overbuilding and piracy. The proposed scheme utilizes 
the SDC conditions and make replacements with the 
polymorphic gates whose functions are controlled by specific 
inputs into the gate-level netlist. Experiment results demonstrate 
that our scheme brings low overhead in performance, area and 
power. One important direction for future work would be 

investigating the implementation of evolved polymorphic gates 
and our proposed technique in fabricating real-life circuits. 
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