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Abstract 
This study attempts to establish the need for a framework 
to assess the impact of connected buildings in a smart 
community. The contribution is a software framework 
designed to optimize buildings and grids at a district level. 
The following research products are developed: (1) An 
innovative method to model a cluster of buildings—with 
people’s behavior embedded in the cluster’s dynamics—
and their controls so that they can be integrated with grid 
operation and services; (2) a novel optimization 
framework to solve complex, centralized control 
problems for large-scale systems, leveraging convex 
programming approaches; and (3) a methodology to 
assess the impacts of connected buildings in terms of (a) 
the grid’s operational stability and safety and (b) 
buildings’ optimized energy consumption. To test the 
proposed framework, a large-scale simulation of a 
subtransmission network with three power generating 
stations and serving over 300 artificial buildings is 
conducted. 

Introduction 
It is well realized that two-thirds of global primary energy 
consumption can be attributed to cities, leading to 75% of 
world energy production and generating 80% of 
greenhouse gas emissions (Lazaroiu, 2012). Nowadays, 
nations across world are proposing a new urban district 
model, “the smart city,” to increase the connection, 
sustainability, comfort, attractiveness and security among 
the urban communities. It will play an important role in 
reducing global energy consumption, curbing greenhouse 
gas emissions, and maintaining stable electric-grid 
operations. Humans spend more than 90% of their time in 
buildings and profoundly influence the smart controls of 
the buildings. Recent research studies have addressed a 
breadth of optimization, control and occupancy-related 
challenges to the design and operation of buildings and 
power networks. In particular, a line of prior studies 
model urban scale building energy performance, where 
physical models of heat and mass flows in and around 
buildings are developed and applied to predict operational 
energy as well as indoor and outdoor environmental 
conditions for groups of buildings (Howard, 2012; Heiple, 
2008; Reinhart, 2016). The bulk of the recent literature on 
this topic focused on studying the reduction in building 
energy consumption with occupancy and behaviour 

prediction. Other studies addressed the integration of 
smart building into the smart distribution grid (Zhao, 
2015; Blum, 2014; Pisello, 2012).  
However, few of the existing work has studied the 
interplay among buildings, power grids, and people in a 
holistic framework (Chatzivasileiadis, 2016). 
Consequently, ARPA-E, the International Energy 
Agency, and U.S. DOE all stress the need to build modern 
grids and infrastructures that all operate as one (ARPA-
E,2016). As buildings are physically connected to the 
electric power grid, it is a natural idea to understand the 
coupling of decisions and operations between the two. 
However, at a community level, there is no holistic 
framework that buildings and power grids can 
simultaneously utilize to optimize their performance. The 
challenges related to establishing such a framework at a 
community level are: a) lack of a holistic, multi-time scale 
mathematical framework that couples the real-time 
decisions of buildings and grid stakeholders; and b) lack 
of a computationally-tractable solution methodology 
amenable to implementation on a large number of 
connected power grid-nodes and buildings (commercial 
and residential buildings). 
In this paper, the author plans to investigate a novel 
mathematical framework that fills the aforementioned 
knowledge gaps, and tests the following hypothesis: 
Connected buildings, people, and grids will achieve 
significant energy savings and stable operation within a 
smart and connected community. This framework will 
integrate individual building dynamics and power grid 
coupling by using a centralized Model Predictive Control 
approach. 

Building Dynamics 
Individual building energy consumption models such as 
EnergyPlus (Energyplus, 2015) and eQuest (Equest, 
2016) have been developing for decades where the 
fundamentals of heat transfer and thermal dynamics are 
accurately captured. The complexity and high number of 
model variables make these models difficult to include in 
large-scale smart community modeling and optimization. 
Recently, researchers developed reduced order thermal 
network models to solve the individual building optimal 
control problem (Dong, 2014). However, this reduced 
order model is still too complex when hundreds of 
heterogeneous buildings need to be modeled 
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simultaneously. In this project, the authors will develop a 
further reduced order thermal resistance and capacitance 
(RC) network model which only has two temperature 
states, namely, space temperature Tzone and structure 
temperature Twall, for each building, as depicted in Figure 
1. 

 
Figure 1: 2R1C Thermal Network. 

From Figure 1, the temperature states, Twall, and Tzone, of 
the “super-zone” are given by: 

𝐶𝑇̇𝑤𝑎𝑙𝑙(𝑡) =
𝑇𝑎𝑚𝑏(𝑡) − 𝑇𝑤𝑎𝑙𝑙(𝑡)

𝑅2
+

𝑇𝑧𝑜𝑛𝑒(𝑡) − 𝑇𝑤𝑎𝑙𝑙(𝑡)
𝑅1

+𝑄𝑠𝑜𝑙(𝑡)
 

𝐶𝑧𝑜𝑛𝑒𝑇̇𝑧𝑜𝑛𝑒(𝑡) =
𝑇𝑤𝑎𝑙𝑙(𝑡) − 𝑇𝑧𝑜𝑛𝑒(𝑡)

𝑅1
+

𝑇𝑎𝑚𝑏(𝑡) − 𝑇𝑧𝑜𝑛𝑒(𝑡)
𝑅𝑤𝑖𝑛

+𝑄𝑖𝑛𝑡(𝑡) + 𝑄ℎ𝑣𝑎𝑐(𝑡)    
 

Where: 
x Rwin, R2, and R1 are the physical parameters of 

the building envelope; 
x C is a lumped thermal capacity of all walls and 

roof; 
x Czone  is the thermal capacity of the zone; 
x Qsol(t) is the total absorbed solar radiation on the 

external wall; 
x Qint(t) is the total internal heat gains from space 

heat sources such as desktop, people, lights, etc; 
x Tamb(t), Tzone(t), and Twall(t) are the outside 

ambient, zone, and wall temperatures, 
respectively; 

x Qhvac(t) is the ideal cooling source; 
Hence, the dynamics of building l in state-space format 
can be written as: 

𝑥̇𝑙 = 𝐴𝑥
𝑙 𝑥𝑙 + 𝐵𝑢𝑥

𝑙 𝑢𝑥
𝑙 + 𝐵𝑤𝑥

𝑙 𝑤𝑥
𝑙  (2) 

Where the state, input, and disturbance vectors are given 
as follows: 

𝑥𝑙 = [𝑇𝑤𝑎𝑙𝑙  𝑇𝑧𝑜𝑛𝑒]𝑙
𝑇, 

𝑢𝑥
𝑙 = [𝑃ℎ𝑣𝑎𝑐]𝑙, 

𝑤𝑥
𝑙 = [𝑇𝑎𝑚𝑏 𝑄𝑠𝑜𝑙 𝑄𝑖𝑛𝑡]𝑙

𝑇 
And the system matrices are defined in as follows: 

𝐴𝑥
𝑙 = [

− 1
𝐶

( 1
𝑅1

+ 1
𝑅2

) − 1
𝐶𝑅1

1
𝐶𝑧𝑜𝑛𝑒𝑅1

− 1
𝐶𝑧𝑜𝑛𝑒

( 1
𝑅1

+ 1
𝑅𝑤𝑖𝑛

)
], 

𝐵𝑢𝑥
𝑙 = [

0
1

𝐶𝑧𝑜𝑛𝑒

], 𝐵𝑤𝑥
𝑙 = [

1
𝐶𝑅2

1
𝐶

0
1

𝐶𝑧𝑜𝑛𝑒𝑅𝑤𝑖𝑛
0 1

𝐶𝑧𝑜𝑛𝑒

] 

The system description (2) represents a linear, time-
invariant dynamical system for the building l, where: 

x 𝑥𝑙 is the state-vector; 
x 𝑢𝑥

𝑙  is the controllable input control-vector; 
x 𝑤𝑥

𝑙  is the known, yet uncontrollable input 

For the integration between buildings and grids, the global 
dynamics of a cluster of the buildings need to be expanded 
from a single building, such as the building l from 
Equation (2). It is assumed that all buildings are operating 
with same time-scales of the power system dynamics. If 
there are no connections between buildings, the global 
state-space dynamics of the building cluster comprised of 
a total of n buildings can be derived as follows: 

𝑋𝑏̇(𝑡) = 𝐴𝑋𝑋𝑏(𝑡) + 𝐵𝑢𝑋𝑈𝑋(𝑡) + 𝐵𝑤𝑋𝑊𝑋(𝑡)  (3) 
Where: 

x Xb=[𝑥1, 𝑥2, … , 𝑥𝑛], Ux=[𝑢𝑋
1 , 𝑢𝑋

2, … , 𝑢𝑋
𝑛]; 

WX=[𝑤𝑋
1, 𝑤𝑋

2, … , 𝑤𝑋
𝑛]; 

x AX=diag(𝐴𝑥
1 , 𝐴𝑥

2, … , 𝐴𝑥
𝑛); 

x BUX=diag(𝐵𝑢𝑥
1 , 𝐵𝑢𝑥

2 , … , 𝐵𝑢𝑥
𝑛 ); 

x BWX=diag(𝐵𝑤𝑥
1 , 𝐵𝑤𝑥

2 , … , 𝐵𝑤𝑥
𝑛 ). 

Power System Dynamics 
In this section, the swing equation defines the dynamic 
transfer of energy between generators and loads. The 
swing equation models the dynamical behavior of the kth 
bus with Mk and Dk as the inertia and damping coefficients 
in a power network, which relates the phase angle, δ (the 
rotor angle with respect to a rotating reference frame 
which rotates at synchronous speed ωs) with the angular 
velocity 𝛿̇, and angular acceleration, 𝛿̈. The synchronous 
speed ωs corresponds to the grid frequency of 60 Hz in 
North America via the relationship ωs=2π60 rad/sec. Let 
Pk,j be the active power flow from the kth to the jth node; 
and Let n to be the number of nodes in the network. The 
swing equation is expressed as follows: 

𝑀𝑘𝛿̈𝑘(𝑡) + 𝐷𝑘𝛿̇𝑘(𝑡) 
   = 𝑃𝑚

𝑘(𝑡) − 𝑃𝑘(𝑡) − ∑ 𝑃𝑘,𝑗(𝑡)
𝑗=1,…,𝑛

 

 
(4) 

Where: 
x 𝑃𝑚

𝑘 is the mechanical input power at bus k; 
x 𝑃𝑘 is the total load at bus k; 
x 𝑃𝑘,𝑗 is the linearized power flow from the 

generator j. 
If there is no generator on bus k, then we set Mk and Dk to 
zero, while the control variable 𝑃𝑚

𝑘  can either be 
eliminated, or constrained to be zero. Let 𝑏𝑘𝑙  be 1 if 
building l  is connected to bus k, and 0 otherwise; Let L to 
be the total building number Then, 𝑃𝑘 and 𝑃𝑘,𝑗 can be 
expressed as: 

{

𝑃𝑘,𝑗 = 𝑎𝑘𝑗(𝛿𝑘(𝑡) − 𝛿𝑗(𝑡))

𝑃𝑘 = 𝐹𝐷𝑘𝛿̇(𝑡) + 𝐹𝑘 + ∑ 𝑏𝑘𝑙(𝑃ℎ𝑣𝑎𝑐
𝑙 + 𝑃𝑚𝑖

𝑙 )
𝐿

𝑙=1

 

 

 
(5) 

Where: 
x akj is a parameter of the transmission line 

connecting buses k and j that converts angle 
differences to power flows (Taylor, 2015; 
Gatsis, 2013); akj=0 if there is no line connecting 
buses k and j; 

x 𝐹𝐷𝛿̇(𝑡) is the frequency-sensitive uncontrollable 
load at bus k; 

(1) 
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x 𝐹𝑘 is the frequency-insensitive uncontrollable 
load at bus k; 

x 𝑃ℎ𝑣𝑎𝑐
𝑙 is calculated from Equation 2 and 𝑃𝑚𝑖

𝑙  is the 
miscellaneous load of building l with no 
potential contribution in frequency regulation. 

Let 𝛿̇𝑘 = 𝜔𝑘. Then the second order Equation (4) for the 
bus k can be equivalently written as two first order 
differential equations. The augmented power dynamics 
for all buses then can be written as the following state-
space equations: 

𝐸𝑋𝑔̇(𝑡) = 𝐴𝑔𝑋𝑔 + 𝐴ℎ𝑣𝑎𝑐𝑈ℎ𝑣𝑎𝑐(𝑡) + 𝐵𝑚𝑈𝑚(𝑡) 
                +𝐵𝐹𝑈𝐹(𝑡) + 𝐵𝑚𝑖𝑊𝑚𝑖(𝑡) 

 
(6) 

Where: 
x 𝑋𝑔(𝑡) = [𝛿1, 𝛿2, … , 𝛿𝑛, 𝜔1, 𝜔2, … , 𝜔𝑛]; 
x 𝑈ℎ𝑣𝑎𝑐 = [𝑃ℎ𝑣𝑎𝑐

1 , 𝑃ℎ𝑣𝑎𝑐
2 , … , 𝑃ℎ𝑣𝑎𝑐

𝐿 ]; 
x 𝑈𝑚 = [𝑃𝑚

1 , 𝑃𝑚
2 , … , 𝑃𝑚

𝑛] 
x 𝑈𝐹 = [𝐹1, 𝐹2, … , 𝐹𝑛]; 
x 𝑊𝑚𝑖 = [𝑃𝑚𝑖

1 , 𝑃𝑚𝑖
2 , … , 𝑃𝑚𝑖

𝐿 ]; 

Integrated Framework of Controls 
An objective of the framework to be developed is to 
generate local control actions/signals for buildings and 
power generators such that the overall performance is 
optimized—in terms of stability, energy savings, and 
other socioeconomic metrics. However, the formulated 
dynamics in Equation (3) and Equation (6) clearly operate 
on two different time-scales. While the grid controls and 
states are often in milliseconds and seconds, the building 
state dynamics and controls are much slower, often in 
minutes. Especially the AC loads and temperatures in 
buildings change slowly in comparison with angles, 
frequencies, and voltages. However, the problem is still 
coupled because when electric motor loads in buildings’ 
response to grid frequency regulation, it will have long-
term impacts on building thermal loads. For example, a 
frequency regulated fan will have impacts on total amount 
of cooling loads into spaces.  
To overcome this limitation, the authors make the local 
optimal control laws for buildings to compute at different 
time-steps than local optimal control laws for generators. 
This approach mimics the physical realities for these 
systems, and this consideration can be imposed via 
constraints in the optimal control problem. Hence, the 
objective of this task is to construct these constraints. 
Since buildings possess slower dynamic behavior, the 
authors restrict the controls and states of buildings to 
depict the time-scales discrepancy. These constraints are 
then added to the joint optimal control formulation 
proposed.  
The proposed optimal control formulation is based on the 
well-known linear quadratic regulator (LQR) problem for 
nonlinear dynamical systems. The LQR formulation for 
classical power systems has been adapted before (Taylor, 
2015; Fosha, 1970; Elgerd, 1970). Furthermore, an LQR-
like cost function has been applied to commercial 
building (Maasoumy, 2014; Ma, 2009)—hence our 
choice of the LQR as an optimal control routine. The 
general form of the global optimal control problem can be 
written as follows: 

minimize ∫ 𝐶(𝑥, 𝑢, 𝑤) 𝑑𝑡𝑡𝑓
𝑡𝑜

 

subject to 𝑥̇ = 𝐴𝑥𝑥(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑤𝑤(𝑡) 
𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 
 𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥 

𝑢𝑏(𝑡) ∈ 𝑈𝑏, 𝑥𝑏(𝑡) ∈ 𝑋𝑏. 

 
 
(7) 

Where: 
x 𝑥(𝑡) includes 𝑋𝑏(𝑡) and 𝑋𝑔(𝑡) 
x 𝑢(𝑡) includes 𝑈ℎ𝑣𝑎𝑐(𝑡) and 𝑈𝑚(𝑡) 
x The cost functional C penalizes the cost of the 

operation of the buildings and the grid dynamics. This 
cost models economic and social-technical objectives 
such as: discomfort in reducing the temperature in 
individual buildings, the deviations in the frequency 
of the power system, the cost of applying a building 
or generator control, the high disturbances, and the 
potential cost on communication between different 
components. 

x The first three constraints in Equation (7) depict the 
integrated dynamics, and bounds on the states and 
control actions. 

x The last constraint in Equation (7) corresponds to the 
time-scales discrepancies between grid and building 
controls and states. Specifically, 𝑢𝑏(𝑡) ∈ 𝑈𝑏  signifies 
that during the faster time-scale corresponding to the 
grid, the building controls are held constant — these 
feasible regions 𝑈𝑏 and 𝑋𝑏 are constructed globally 
when integrating building and power grid. 

The optimization problem (7) cannot be solved 
analytically as it is a nonlinear optimal control problem 
with generally nonconvex constraints. The objective of 
the following section is to investigate and develop optimal 
control solutions for different solution methodologies. In 
addition, and to address the time-scale discrepancy, a two-
level Model Predictive Control (MPC) scheme will be 
developed, whereby the control laws for the slower and 
faster processes will be jointly computed; the time-steps 
of the latter will be nested in the time-steps of the former, 
while the joint system states evolve according to the 
coupling modeled by Equation (3) and (6). This approach 
will be tested by combining with appropriate linearization 
of building and grid nonlinearities.  
Previous work on the design and analysis of perturbed 
decentralized networked control systems (Elmahdi, 2015; 
Taha, 2015) have demonstrated the possibility achieve the 
goals of controls by using a decentralized approach. 
Distributed approach is also possible by utilizing their 
prior expertise in dual decomposition and subgradient 
methods (Gatsis, 2012; Gatsis 2014), disaggregated 
cutting plane and bundle methods (Gatsis, 2013; Zhang, 
2013)), or the alternating-direction method of multipliers 
(ADMM) (Bazrafshan, 2016). However, only a 
centralized approach is proposed for demonstration 
purpose in this study for different system-level scenarios, 
illustrated in Figure 2. The resulting optimization problem 
will be a large-scale linear or quadratic program 
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(depending on the building and grid cost functions), 
which will be tractable for a smaller community-scale 
system. This approach will naturally not be feasible for 
systems with larger number of buildings, while privacy 
concerns of building operators will likely not allow 
collecting all relevant building parameters and control 
constraints to the system operator.  

 
Figure 2: The control and optimization architectures. 

In summary, there are three challenges for the integrated 
framework to be functional in optimizations for large 
scale simulation at the community level. First,  controls of 
the states of buildings and grids have significant time-
scales discrepancy. An innovative discretization of 
systems between the two time scales (buildings and grids) 
needs to be utilized when discretize building parameters 
to building-grid optimization. Second, fast and feasible 
optimization programmings need to be proposed so that 
hundreds of buildings can be integrated to multiple grid 
buses. Third, the occupancy comfort and grid frequency 
constrained should not be violated. How to build a proper 
large-scale optimization algorithm and the suitable cost 
function need to be modeled and evaluated clearly. Every 
coupling among the occupancy, the buildings and the grid 
require explicit mathematical expressions in the entire 
integrated framework.  

Centralized Approach 
In this section, the authors investigate the discrepancies in 
time-scales between the building and power network 
dynamics, and discuss an MPC-based formulation of the 
joint optimal control problem that (a) addresses the time 
discrepancies of buildings and (b) incorporates frequency 
regulation routine based on the coupling of building loads 
with the power system dynamics.  
First, the authors discuss the optimal control problem of 
buildings of Equation (3) without any reference to the 
states of a power system. A novel occupancy-based 
HVAC control strategy is developed by embedding the 
occupancy prediction algorithm into a linear 
programming (LP) MPC framework. The objective of the 
proposed control strategy is to (a) address large scale 
simulation cost for multiple buildings by integrating LP, 

(b) counteract to the discomfort existing in the current 
baseline control by using rolling MPC window, and (c) 
minimize both electricity consumption and the expected 
occupant discomfort by introducing occupancy 
predictions.  
The uniqueness of the large scale building-grid 
integration is that hundreds of buildings need to be 
simulated simultaneously. Classical MPC can be solved 
by many algorithms for an individual building, but these 
algorithms are not computationally cost efficient for large 
scale simulation. In this study, the authors explore a low 
computation way, the LP-MPC. The canonical form of the 
building cost function during the prediction horizon [0,t] 
in Equation (2)  solved by LP is derived as follows: 

minimize 𝐶𝑇𝑦 
             subject to 𝐴𝑒𝑞𝑦 = 𝑏𝑒𝑞; 

 𝑙𝑏 ≤ 𝑦 ≤ 𝑢𝑏. 

 
 
(8) 

Where: 
x 𝑦 = [𝑇𝑤𝑎𝑙𝑙

1 , 𝑇𝑧𝑜𝑛𝑒
1 , 𝑇𝑤𝑎𝑙𝑙

2 , 𝑇𝑧𝑜𝑛𝑒
2 , … , 𝑇𝑤𝑎𝑙𝑙

𝑡 , 𝑇𝑧𝑜𝑛𝑒
𝑡  

𝑃ℎ𝑣𝑎𝑐
1 , … , 𝑃ℎ𝑣𝑎𝑐

𝑡−1 ];             
x 𝐴𝑒𝑞 =

[

I2 0𝑥
−𝐴𝑥

𝑙 I2

…
…

⋮𝑥 ⋱
0𝑥 …

⋱ 0
−𝐴𝑥

𝑙 I2

0 …
−𝐵𝑢𝑥

𝑙 …
0
⋮

⋮  ⋱
0     

⋮
−𝐵𝑢𝑥

𝑙

]; 

x 𝑏𝑒𝑞 = 𝐵𝑤𝑥
𝑙 [𝑤𝑥

𝑙 (1), … , 𝑤𝑥
𝑙 (𝑡 − 1)]; 

x 𝐶 = [0, … ,0, −1, … , −1] containing a length of 
2𝑡 of zeros and a length of 𝑡 − 1 of negativee 
ones; 

x 𝑙𝑏 = [𝑇𝑚𝑖𝑛
1 , … , 𝑇𝑚𝑖𝑛

𝑡 , 𝑃𝑚𝑖𝑛
1 , … , 𝑃𝑚𝑖𝑛

𝑡−1]; 
x 𝑢𝑏 = [𝑇𝑚𝑎𝑥

1 , … , 𝑇𝑚𝑎𝑥
𝑡 , 𝑃𝑚𝑎𝑥

1 , … , 𝑃𝑚𝑎𝑥
𝑡−1 ]. 

The linear optimization of Equation (8) will be solved by 
the simplex algorithm. To demonstrate the advantage of 
the proposed approach, a classic quadratic cost function 
using sequential quadratic programming is formulated to 
compare. The canonical form of the MPC based on 
Equation (2) is described as follows: 

minimize ∑ {𝑢𝑥 + 𝛾(𝑥𝑙 − 𝑇𝑑)2}𝑡−1
0  

subject to 𝑥̇𝑙 = 𝐴𝑥
𝑙 𝑥𝑙 + 𝐵𝑢𝑥

𝑙 𝑢𝑥
𝑙 + 𝐵𝑤𝑥

𝑙 𝑤𝑥
𝑙 ; 

 𝑙𝑏𝑥 ≤ 𝑥𝑙 ≤ 𝑢𝑏𝑥; 
𝑙𝑏𝑢 ≤ 𝑢𝑥

𝑙 ≤ 𝑢𝑏𝑢. 

 
 
(9) 

Where: 
x 𝑥𝑙 = [𝑇𝑤𝑎𝑙𝑙

1 , 𝑇𝑧𝑜𝑛𝑒
1 , 𝑇𝑤𝑎𝑙𝑙

2 , 𝑇𝑧𝑜𝑛𝑒
2 , … , 𝑇𝑤𝑎𝑙𝑙

𝑡−1 , 𝑇𝑧𝑜𝑛𝑒
𝑡−1 ]; 

x 𝑢𝑥
𝑙 = [𝑃ℎ𝑣𝑎𝑐

1 , 𝑃ℎ𝑣𝑎𝑐
2 , … , 𝑃ℎ𝑣𝑎𝑐

𝑡−1 ]; 
x The matrix form is the same from Equation (2) 

as 𝐴𝑥
𝑙 , 𝐵𝑢𝑥

𝑙 , and 𝐵𝑤𝑥
𝑙 ; 

x The bound settings such as  𝑙𝑏𝑥, 𝑢𝑏𝑥, 𝑙𝑏𝑢 and 
𝑢𝑏𝑢 are same as the boundaries set in Equation 
(8). 

x 𝛾 denotes a predefined penalty factor  
x 𝑇𝑑 denotes a desired room temperature set-point 
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An occupancy-based linear programming MPC is 
additionally developed to achieve the purpose of enabling 
more energy consumption savings. The authors introduce 
an occupancy-based slack relaxation of the constraints of 
Equation 8 to integrate the occupancy information. The 
occupancy information such as presence and absence is 
predicted based on a probabilistic occupancy modelling 
technique for commercial buildings (Reinhart, 2004). The 
model is redesigned in this study to focus on the 
occupancy status of building level. The model tends to 
simulate and predict the occupancy state in terms of group 
behaviors in an office environment. For example, the 
occupancy model will predict the lunch break as absence 
during certain time periods if the aggregated historical 
training data show a majority of the people leave the 
offices for lunch. Hence, the constraints on the states, 
namely [𝑇𝑚𝑎𝑥

1, … , 𝑇𝑚𝑎𝑥
𝑡], will increase, which will 

sacrifice the individual comfort of people who still remain 
in the office at the lunch break time. Four occupancy-
based control rules are proposed here: 1) if no people are 
present in one hour, the set-point upper bound will go up 
5°F (2.77°C), 2) if people are going to leave within one 
hour, the set-point upper bound will go up 2°F (1.11°C), 
3) if people are going to come in within one hour, the set-
point upper bound will go down  2°F (1.11°C), and 4) if 
people are staying continuously for one hour, no change 
will be made on the bounds of the set point. 
Second, the optimal control problem of the building-
integrated power network is formulated. The issue of 
time-scales of the building-grid coupling is addressed by 
proposing the use of Gear’s method. Note that when the 
building load is fed into Equation (4) of the grid, it is 
assumed that non-HVAC load will be scheduled and fixed 
and thus will be frequency insensitive as shown in 
Equation (5). Air conditioning as an optimization variable 
is isolated which is equivalent to the 𝑈𝑋(𝑡) in Equation 
(3). Then, a building-grid optimal MPC problem based on 
Equations (3) and (6) can be expressed as follows: 

minimize∫ (𝑋𝑏
𝑇𝑄𝑏𝑋𝑏 + 𝑐𝑋𝑔

𝑇𝑄𝑔𝑋𝑔)𝑑𝑡𝑡
0  

subject to  
𝑋𝑏̇(𝑡) = 𝐴𝑋𝑋𝑏(𝑡) + 𝐵𝑢𝑋𝑈𝑋(𝑡) + 𝐵𝑤𝑋𝑊𝑋(𝑡) ; 

𝐸𝑋𝑔̇(𝑡) = 𝐴𝑔𝑋𝑔 + 𝐴ℎ𝑣𝑎𝑐𝑈ℎ𝑣𝑎𝑐(𝑡) +
𝐵𝑚𝑈𝑚(𝑡)   + 𝐵𝐹𝑈𝐹(𝑡) + 𝐵𝑚𝑖𝑊𝑚𝑖(𝑡); 

𝑙𝑏𝑏 ≤ 𝑋𝑏 ≤ 𝑢𝑏𝑏; 
𝑙𝑏𝑔 ≤ 𝑋𝑔 ≤ 𝑢𝑏𝑔; 

𝑙𝑏𝑢𝑥 ≤ 𝑈𝑋 = 𝑈ℎ𝑣𝑎𝑐 ≤ 𝑢𝑏𝑢𝑥; 
. 

 
 
 
 
 
 
(10) 

Where: 
x 𝑙𝑏𝑏  is the lower bound for the building states; 
x 𝑢𝑏𝑏 is the upper bound for the building states; 
x 𝑙𝑏𝑔 is the lower bound for the grid states; 
x 𝑢𝑏𝑔 is the upper bound for the grid states; 
x 𝑙𝑏𝑢𝑥 is the lower bound for the building cooling 

power; 

x 𝑢𝑏𝑢𝑥 is the upper bound for the building cooling 
power; 

x for remaining notations refer to Equations (3) 
and (6). 

Building MPC Results 
To demonstrate the effectiveness of the LP MPC, a 
sample building is used to compare the system 
performances of the 4 control strategies: a baseline bang-
bang control, an LP MPC, a quadratic cost MPC, and an 
Occupancy-based LP MPC. The RC network model and 
the baseline bang-bang control of the sample building was 
previously validated by an earlier study (McFadden, 
2015). All the controls are simulated from July 8th to July 
13th of 2013. Weather information (outdoor air 
temperature and solar radiance) is retrieved from the 
National Oceanic and Atmospheric Administration 
(NOAA). The authors interpret the weather information 
for 5-min interval to match the control time steps. The 
internal heat gain is estimated from the power 
measurement and the operation schedules from the 
Building Management System of the sample building. 
The thermostat is set to be 72°F (22.22°C) with 2°F 
deadband (1.11°C) during daytime while the night 
setback allows it to go up to 75°F(23.88°C) with 4°F 
deadband (2.22°C). The occupancy schedules are 
predicted from the probabilistic model based on the 
historical occupancy information collected from multiple 
offices during the same period. Occupancy predictions are 
compared to the ground truth data collected from multiple 
sensors installed at different offices, shown in Figure 3. 
The numerical simulation results for buildings are 
presented in Figure 4 for the 200 kW peak building for 
July 9th.  
The energy savings and comfort violations are presented 
in Table 1 and Table 2. The energy saving is calculated 
as follows: 

% =
|𝑀𝑃𝐶𝑖 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖|

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖
 (11) 

Where  𝑀𝑃𝐶 is the MPC energy consumption and 
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the bang-bang energy consumption at day i. 
To quantify the improvement of the proposed MPC 
control strategies over the traditional Bang-bang control, 
two discomfort indices are introduced as follows: 

x Discomfort I (DI) 

𝐷𝐼 =
∑ (𝑇𝑐𝑜𝑛(𝑘) − 𝑇𝑑(𝑘))𝑑

𝑘=1
𝑑  

(12) 

x Discomfort II 

𝐷𝐼𝐼 =
∑ |∆𝐷|𝑑

𝑘=1
𝑑  

∆𝐷={
𝑇𝑐𝑜𝑛(𝑘) − 𝑇𝑚𝑎𝑥 𝑇𝑐𝑜𝑛(𝑘) > 𝑇𝑚𝑎𝑥
𝑇𝑚𝑖𝑛 − 𝑇𝑐𝑜𝑛(𝑘) 𝑇𝑐𝑜𝑛(𝑘) < 𝑇𝑚𝑖𝑛

0 𝑒𝑙𝑠𝑒
 

(13) 

Where 𝑑 is the evaluated time steps,  𝑇𝑐𝑜𝑛 is the controlled 
room temperature, 𝑇𝑑 is the desired set point temperature, 
𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥  are the lower and upper constraints of the 
desired set point temperature. 
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Table 1 shows energy savings from July 8th to July 13th, 
evaluated by Equation (11). The simulation results do not 
indicate much saving from the quadratic MPC. LP MPC 
has some potential to save some energy consumption at 
certain days, such as July 8th. Occupancy-based LP MPC 
can achieve further saving, by a margin near 10%. The 
average saving is 80 kWh per day for simulated week 
compared to the baseline bang-bang control. 

 
Figure 3: Occupancy Prediction. 

 
Figure 4: Energy performances for 4 strategies. 

The authors additionally examine if the energy savings 
are achieved due to large violations of the occupants’ 
comfort. The focus is only on the methods that 
demonstrate saving potentials, LP MPC and occupancy-
based LP MPC. Two comfort indices, calculated daily 
from Equation (12) and Equation (13), are shown in Table 
1 for the whole test week. The baseline is actually robust 
enough with a deviation range around 0.75°C from the 
desired set point according to the comfort index DI. The 
violations above the upper and lower constraints are 
ranging around 0.09°C. The LP MPC has no violations at 
all for the upper and lower constraints of the set point, 
shown by DII. It allows more deviation from the set point 
(around 1.09°C) to save the energy consumption while 
maintains the room temperature in a comfort zone. 
Compared to the LP MPC, the occupancy-based LP MPC 
allow the system to respond to the unoccupied period 
which save even more energy consumption. However, the 
uncertainty of the occupancy prediction creates trouble to 
keep up the constraints. Nevertheless, the violations from 
the occupancy-based LP MPC is very similar to the 
baseline control. A more detailed view of the differences 
and advantages of the methods is shown at Figure 5. It 

shows the simulated room temperature at July 12th with 5-
min control step. The baseline control and LP MPC do not 
respond to the occupancy and consume more energy 
before people arrive (9 am) and leave (5pm). Both 
methods also do not react to the lunch break, indicating 
low occupancy. In the contrast, the occupancy-based LP 
MPC violates some of the comfort constraints at 
afternoon (the third little peak of black line around 4 pm) 
and early morning (the arriving time after 9 am).  It 
additionally misses a saving potential period around 1 pm 
(the second period of low occupancy rate after the 12 pm 
lunch break). These issues discovered during the 
occupancy-based control are owing to two reasons: 1) the 
Linear Programming is over relaxing the optimal solution 
of the zone temperature by the changes of the upper 
constraints, and 2) the uncertainty of the occupancy 
predictions misleads the control operations. Both 
problems can be solved by more accurate occupancy 
modelling and more reasonable set points for the 
unoccupied period. 
The authors further introduce stochastic factors on both 
the building size, building thermal properties, and internal 
equipment schedules to simulate a cluster of 130 
commercial buildings at July 9th. From analysis of the 
single building test results, the LP MPC and the 
Occupancy-based LP MPC is further used. The numerical 
simulation of total building load for 130 buildings at July 
12th are presented in Figure 6. 
 

 
Figure 5: Zone temperature controls for Baseline, LP 

MPC, and Occupancy-based LP MPC at July 12th. 
 

Table 1: Energy Savings per day comparing to bassline 
(the bang-bang control) 

Methods 
 

Quadratic 
MPC 

LP  
MPC 

Occupancy 
-based LP MPC 

KWh % KWh % KWh % 
July 8th 22.79 1.71 74.53 5.59 124.6 9.95 
July 9th 9.71 0.70 29.84 2.15 55.45 4.00 

July 11th 4.37 0.32 12.98 0.95 19.98 1.46 
July 12th 9.81 0.72 24.25 1.78 52.77 3.88 
July 13th 20.22 1.46 35.19 2.54 63.42 4.57 

8 am 12 am 5 pm0

0.2

0.4

0.6

0.8

1

Time 

Oc
cu

pa
nc

y R
at

e 
th

ou
rg

h 
Ju

ly 
8t

h 
to

 Ju
ly 

13
th

 

 

Measured
Occupancy
Prediction

0 am 6 am 12 pm 6 pm 0 am0

20

40

60

80

100

120

Time

KW

 

 

Bang-bang
LPMPC
Quadratic MPC
Occupancy-based
 LPMPC

7 am 9 am 12 pm 6 pm15

20

25

30

35

Time

Te
m

pe
ra

te
ur

e 
(C

)

 

 

LP MPC
Bang-Bang Control
LP Occupancy-based MPC
Upper Bound of Deadband
Lower Bound of Deadband
Set Point Schedule
Occupancy Measurement



Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

2283

 

 

Table 2: Comfort Violations per day. 
Methods 

 
Baseline LP  

MPC 
LP occupancy 
-based MPC 

DI* DII* DI DII DI DII 
July 8th 0.76 0.10 1.10 0 1.18 0.08 
July 9th 0.74 0.09 1.09 0 1.15 0.05 

July 11th 0.76 0.10 1.10 0 1.50 0.40 
July 12th 0.71 0.08 1.10 0 1.19 0.09 
July 13th 0.78 0.08 1.05 0 1.19 0.14 

*All units for DI and DII presented as °C. 
 

 
a) Baseline Bang-bang Control 

 
b) LP MPC 

 
c) Occupancy-based LP MPC 

Figure 6: Simulated Energy Profiles for the baseline 
control, the LP MPC, and Occupancy-based LP MPC. 

Integration Grid Results 
For building load, the occupancy-based LP MPC with 5 
minutes rolling window is integrated. The MPC coupling 
of Equation (10) between the buildings and the grid 
regulate the grid frequency around the normal rate, 60 
Hertz. Three communities (consisting respectively of 
70,100, and 130 buildings) with maximum power peak 
around 400 kW for each individual building are 
simulated. These building loads are distributed to a power 
network of 9 grid buses. For each 5-minute building 
simulation step, Gear’s method discretizes the swing 
equation to 10 secs for the operation of the buses.  A 
quadratic program is used to optimize Equation (10) 
during the 5-min rolling window. The interior-point-
convex option is selected for the quadprog optimization 
function in Matlab with violation threshold below 10-8 for 
the constraints. The first 35-minute integration between 
the building load and the grid’s buses operations is shown 
in Figure 7. 

 
Figure 7: Stabilized buses’ angle. 

 
Figure 8: Distributed power from buses. 

It is obvious from Figure 7 that the bus angles stabilized 
very quickly. Authors additionally check whether the 
buses reached the desired set points of power distributions 
by examining the trajectories for all the power supplied in 
terms of per-unit system (p.u.) in Figure 8. A per-unit 
system expresses a quantity as fraction of the defined 
based unit quantity. For this study, the base power is set 
to 100 MW. Figure 8 shows the first 3 buses’ operation 
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trajectories. Although there are certain up and down 
ramps at the beginning seconds, all the buses stabilized 
quickly to reach the stabilized statuses. 

 
Figure 9: Simulation of 9 buses. 

 
Figure 10: Beginning stage of the 9 buses. 

All the frequencies of the 9 buses during the power 
balance operation are presented in Figure 9 and Figure 10. 
All buses are supposed to be maintained near 60 Hertz. 
Most of the buses are not deviated much from the 60 Hertz 
threshold. The reason for certain buses to have a bit of 
deviation of frequency threshold is owing to the loose 
constraints from the initial settings to find feasible 
solutions for Equation (10).  

Discussions 
The proposed building-grid integration with occupancy-
based building control connects buildings, people, and 
grid in three levels. At the building level, several control 
strategies are demonstrated using state-of-the-art 
algorithms. Fast solvers should be always the first priority 
owing to the speciality of the computation scale to 
simulate hundreds of buildings. A new linear-
programming based MPC approach is proposed. The 
improvement of control performances show different 
potentials of the energy consumption saving. At the 
people level, all the building control strategies are 
evaluated by two innovative discomfort indexes. Those 
discomfort indexes measure the violations between the 
maximum tolerance of the people comfort and the 
deviation from the desired comfort level. The building 

occupants’ thermal comfort are maintained with the 
intelligent control of the HVAC system based on 
occupants’ presence prediction. The uncertainty of the 
presence predictions cause most of the comfort level 
violations. However, no significant comfort violations 
could be observed for the proposed control strategy of the 
buildings. The last but not the least is the grid level. The 
building MPC generates load in community scale 
independently of grid with much slower time step. 
Coupling between the building load and the grid operation 
needs an alternative discretization approach to regulate 
the angles, the frequencies and the generating powers of 
the grid buses. By combining Gear’s discretization with 
an MPC approach, the performances of the reliability and 
resiliency of the grid are quantified.  

Conclusion 
The proposed research in this paper expands traditional 
optimization and optimal control studies for buildings and 
power grids. The project develops: 1) an innovative 
modelling framework to control buildings in large scale 
based on linear programming, 2) integration of the 
occupancy modelling for building control, 3) and the 
design and coordination of coupled controls for a large-
scale network of buildings and generator buses. The 
attempt to formulate such a complex sustainability 
problem as a coupled large-scale control problem creates 
a new paradigm for studies of the impacts of smart, 
connected communities on energy supply and demand 
along with operational stability of power networks. 
Future studies need to be conducted to enhance the 
performance of this framework. First, the building models 
need to be developed based on more realistic examples by 
introducing 1) AHU models for commercial buildings and 
2) compressor performance curve for residential 
buildings. Currently, authors are seeking for real test beds 
and data sources from SCE’s Johanna and Santiago 
substations in Central Orange County of California. The 
smart test beds in the 2500 buildings of all the substations 
could also leverage the success of the decentralized and 
distributed approaches that are still under developing by 
authors. The final point is that the building-grid coupling 
controls tested now are linearized. It is very important to 
additionally address the nonlinearities of the buildings 
and the grid with novel modelling approaches. In 
conclusion, future studies will introduce more realistic 
nonlinear building and grid models in a larger simulation 
scale that truly represents a smart city scale, while 
advanced techniques are going to be developed to handle 
nonlinearities during the operation and uncertainty of the 
occupancy comfort violations. The work will be very 
useful in urban smart city planning, designing, and 
operation stages. Practical implementations are possible 
with real-time data fitting of the models and integration 
with high performance computing techniques. 
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