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Abstract

This study attempts to establish the need for a framework
to assess the impact of connected buildings in a smart
community. The contribution is a software framework
designed to optimize buildings and grids at a district level.
The following research products are developed: (1) An
innovative method to model a cluster of buildings—with
people’s behavior embedded in the cluster’s dynamics—
and their controls so that they can be integrated with grid
operation and services; (2) a novel optimization
framework to solve complex, centralized control
problems for large-scale systems, leveraging convex
programming approaches; and (3) a methodology to
assess the impacts of connected buildings in terms of (a)
the grid’s operational stability and safety and (b)
buildings’ optimized energy consumption. To test the
proposed framework, a large-scale simulation of a
subtransmission network with three power generating
stations and serving over 300 artificial buildings is
conducted.

Introduction

It is well realized that two-thirds of global primary energy
consumption can be attributed to cities, leading to 75% of
world energy production and generating 80% of
greenhouse gas emissions (Lazaroiu, 2012). Nowadays,
nations across world are proposing a new urban district
model, “the smart city,” to increase the connection,
sustainability, comfort, attractiveness and security among
the urban communities. It will play an important role in
reducing global energy consumption, curbing greenhouse
gas emissions, and maintaining stable -electric-grid
operations. Humans spend more than 90% of their time in
buildings and profoundly influence the smart controls of
the buildings. Recent research studies have addressed a
breadth of optimization, control and occupancy-related
challenges to the design and operation of buildings and
power networks. In particular, a line of prior studies
model urban scale building energy performance, where
physical models of heat and mass flows in and around
buildings are developed and applied to predict operational
energy as well as indoor and outdoor environmental
conditions for groups of buildings (Howard, 2012; Heiple,
2008; Reinhart, 2016). The bulk of the recent literature on
this topic focused on studying the reduction in building
energy consumption with occupancy and behaviour

prediction. Other studies addressed the integration of
smart building into the smart distribution grid (Zhao,
2015; Blum, 2014; Pisello, 2012).

However, few of the existing work has studied the
interplay among buildings, power grids, and people in a
holistic framework (Chatzivasileiadis, 2016).
Consequently, ARPA-E, the International Energy
Agency, and U.S. DOE all stress the need to build modern
grids and infrastructures that all operate as one (ARPA-
E,2016). As buildings are physically connected to the
electric power grid, it is a natural idea to understand the
coupling of decisions and operations between the two.
However, at a community level, there is no holistic
framework that buildings and power grids can
simultaneously utilize to optimize their performance. The
challenges related to establishing such a framework at a
community level are: a) lack of a holistic, multi-time scale
mathematical framework that couples the real-time
decisions of buildings and grid stakeholders; and b) lack
of a computationally-tractable solution methodology
amenable to implementation on a large number of
connected power grid-nodes and buildings (commercial
and residential buildings).

In this paper, the author plans to investigate a novel
mathematical framework that fills the aforementioned
knowledge gaps, and tests the following hypothesis:
Connected buildings, people, and grids will achieve
significant energy savings and stable operation within a
smart and connected community. This framework will
integrate individual building dynamics and power grid
coupling by using a centralized Model Predictive Control
approach.

Building Dynamics

Individual building energy consumption models such as
EnergyPlus (Energyplus, 2015) and eQuest (Equest,
2016) have been developing for decades where the
fundamentals of heat transfer and thermal dynamics are
accurately captured. The complexity and high number of
model variables make these models difficult to include in
large-scale smart community modeling and optimization.
Recently, researchers developed reduced order thermal
network models to solve the individual building optimal
control problem (Dong, 2014). However, this reduced
order model is still too complex when hundreds of
heterogeneous  buildings need to be modeled
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simultaneously. In this project, the authors will develop a
further reduced order thermal resistance and capacitance
(RC) network model which only has two temperature
states, namely, space temperature T,one and structure
temperature Twai, for each building, as depicted in Figure
1.

R
AN v
Tamb O_ Tzone

Qint

Figure 1: 2R1C Thermal Network.
From Figure 1, the temperature states, Twan, and Tyone, of
the “super-zone” are given by:

Tamb (t) - Twall (t) + Tzone (t) - Twall (t)

CTwall(t) Rz R1
+Qsol(t) o
CzoneTzone (t) — Twall (t)R Tzone (t) + Tamb (t)R Tz (1)
1 win
+Qint (t) + thac (t)
Where:
®  Ruin, Rz, and R; are the physical parameters of
the building envelope;
e (s a lumped thermal capacity of all walls and
roof;

®  Cyone is the thermal capacity of the zone;
o (Oi(?) is the total absorbed solar radiation on the
external wall,
®  QOin(?) is the total internal heat gains from space
heat sources such as desktop, people, lights, etc;
o Tunn(), Trone(f), and Twan(f) are the outside
ambient, zone, and wall temperatures,
respectively;
®  Onac(?) is the ideal cooling source;
Hence, the dynamics of building / in state-space format
can be written as:
x' = Alx' + B, uy + By, wy )
Where the state, input, and disturbance vectors are given
as follows:
xt = [Tyau Tzone]f»
we = [Phyaclis
Wi = [Tamp Qsor Qint]gw
And the system matrices are defined in as follows:

1,1 1 1
i (_ + _) —_—
Al — C "Ry R, CRq
x 1 1 1 1 ) 4
CzoneR1 Czone R1 Rwin
0 — -0
1T 1 [ CR; C
Bux - [C—]’ BWx - 1 1
zone
CzoneRwin Czone

The system description (2) represents a linear, time-
invariant dynamical system for the building /, where:

e x!is the state-vector;

e ! is the controllable input control-vector;

e wl is the known, yet uncontrollable input

For the integration between buildings and grids, the global
dynamics of a cluster of the buildings need to be expanded
from a single building, such as the building / from
Equation (2). It is assumed that all buildings are operating
with same time-scales of the power system dynamics. If
there are no connections between buildings, the global
state-space dynamics of the building cluster comprised of
a total of n buildings can be derived as follows:

Xp () = AxX, (1) + By, Ux(t) + By, Wx(t) 3)
Where:
o X=[x1,x%, ..., x"], Us=[uk, uz, ..., ul];
Wy=[ws, w3, ..., wil;
o Ay=diag(Al, A%, ..., AV);
e By~diag(B; B} , ..., B});
e By=diag(By ,BS .., B} ).

Power System Dynamics

In this section, the swing equation defines the dynamic
transfer of energy between generators and loads. The
swing equation models the dynamical behavior of the ki
bus with My and Dy as the inertia and damping coefficients
in a power network, which relates the phase angle, J (the
rotor angle with respect to a rotating reference frame
which rotates at synchronous speed ®s) with the angular
velocity &, and angular acceleration, §. The synchronous
speed s corresponds to the grid frequency of 60 Hz in
North America via the relationship ®s=2n60 rad/sec. Let
Pyj be the active power flow from the £ to the /™ node;
and Let n to be the number of nodes in the network. The
swing equation is expressed as follows:

M8,.() + D8, ()
= Pr(t) — P(t) —

Jj=1,.n

Py ;(t) @
Where:
e Pk is the mechanical input power at bus ;
e P, is the total load at bus £;
e P ; is the linearized power flow from the
generator j.
If there is no generator on bus £, then we set M) and Dy to
zero, while the control variable PK can either be
eliminated, or constrained to be zero. Let by be 1 if
building / is connected to bus &, and 0 otherwise; Let L to
be the total building number Then, P, and Py ; can be
expressed as:
Pyj = aij(6x(t) — 6;(1))
L )
P = Fp, 6(t) + Fi + Z by (Prvac + Pri)
=1

Where:

e qay is a parameter of the transmission line
connecting buses k£ and j that converts angle
differences to power flows (Taylor, 2015;
Gatsis, 2013); ay=0 if there is no line connecting
buses k and j;

e Fy8(t) is the frequency-sensitive uncontrollable
load at bus k;
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e F, is the frequency-insensitive uncontrollable
load at bus k;

e Pl iscalculated from Equation 2 and P, is the
miscellaneous load of building / with no
potential contribution in frequency regulation.

Let 8, = wy,. Then the second order Equation (4) for the
bus k& can be equivalently written as two first order
differential equations. The augmented power dynamics
for all buses then can be written as the following state-
space equations:
EXg @) = Ang + AnvacUnvac ®+ BmUm(t)
+BrUp(t) + BpiWini (t) (6)

Where:

e X,(t) =[646%..,6" 0", w?, ..., 0"];

b Uhvac = [P}‘%‘UG.C’P}%‘U(IC’ ""P}'IIAUG.C];

e U, =[PP2.. B

o Up=[F,F, .., F];

o Wi = [Py Py s Pl

Integrated Framework of Controls

An objective of the framework to be developed is to
generate local control actions/signals for buildings and
power generators such that the overall performance is
optimized—in terms of stability, energy savings, and
other socioeconomic metrics. However, the formulated
dynamics in Equation (3) and Equation (6) clearly operate
on two different time-scales. While the grid controls and
states are often in milliseconds and seconds, the building
state dynamics and controls are much slower, often in
minutes. Especially the AC loads and temperatures in
buildings change slowly in comparison with angles,
frequencies, and voltages. However, the problem is still
coupled because when electric motor loads in buildings’
response to grid frequency regulation, it will have long-
term impacts on building thermal loads. For example, a
frequency regulated fan will have impacts on total amount
of cooling loads into spaces.

To overcome this limitation, the authors make the local
optimal control laws for buildings to compute at different
time-steps than local optimal control laws for generators.
This approach mimics the physical realities for these
systems, and this consideration can be imposed via
constraints in the optimal control problem. Hence, the
objective of this task is to construct these constraints.
Since buildings possess slower dynamic behavior, the
authors restrict the controls and states of buildings to
depict the time-scales discrepancy. These constraints are
then added to the joint optimal control formulation
proposed.

The proposed optimal control formulation is based on the
well-known linear quadratic regulator (LQR) problem for
nonlinear dynamical systems. The LQR formulation for
classical power systems has been adapted before (Taylor,
2015; Fosha, 1970; Elgerd, 1970). Furthermore, an LQR-
like cost function has been applied to commercial
building (Maasoumy, 2014; Ma, 2009)—hence our
choice of the LQR as an optimal control routine. The
general form of the global optimal control problem can be
written as follows:

minimize [ ttf C(x,u,w) dt
o

subject to X = A, x(t) + Byu(t) + B, w(t) (7
ymin < u(t) < ymax
XM < x(t) < xMe
up(t) € Uy, x,(t) € X,.
Where:
e x(t) includes X, (t) and X, (¢t)
o u(t) includes Upyqc () and U, (t)

e The cost functional C penalizes the cost of the
operation of the buildings and the grid dynamics. This
cost models economic and social-technical objectives
such as: discomfort in reducing the temperature in
individual buildings, the deviations in the frequency
of the power system, the cost of applying a building
or generator control, the high disturbances, and the
potential cost on communication between different
components.

e The first three constraints in Equation (7) depict the
integrated dynamics, and bounds on the states and
control actions.

e The last constraint in Equation (7) corresponds to the
time-scales discrepancies between grid and building
controls and states. Specifically, u,(t) € U, signifies
that during the faster time-scale corresponding to the
grid, the building controls are held constant — these
feasible regions U, and X}, are constructed globally
when integrating building and power grid.

The optimization problem (7) cannot be solved
analytically as it is a nonlinear optimal control problem
with generally nonconvex constraints. The objective of
the following section is to investigate and develop optimal
control solutions for different solution methodologies. In
addition, and to address the time-scale discrepancy, a two-
level Model Predictive Control (MPC) scheme will be
developed, whereby the control laws for the slower and
faster processes will be jointly computed; the time-steps
of the latter will be nested in the time-steps of the former,
while the joint system states evolve according to the
coupling modeled by Equation (3) and (6). This approach
will be tested by combining with appropriate linearization
of building and grid nonlinearities.

Previous work on the design and analysis of perturbed
decentralized networked control systems (Elmahdi, 2015;
Taha, 2015) have demonstrated the possibility achieve the
goals of controls by using a decentralized approach.
Distributed approach is also possible by utilizing their
prior expertise in dual decomposition and subgradient
methods (Gatsis, 2012; Gatsis 2014), disaggregated
cutting plane and bundle methods (Gatsis, 2013; Zhang,
2013)), or the alternating-direction method of multipliers
(ADMM) (Bazrafshan, 2016). However, only a
centralized approach is proposed for demonstration
purpose in this study for different system-level scenarios,
illustrated in Figure 2. The resulting optimization problem
will be a large-scale linear or quadratic program
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(depending on the building and grid cost functions),
which will be tractable for a smaller community-scale
system. This approach will naturally not be feasible for
systems with larger number of buildings, while privacy
concerns of building operators will likely not allow
collecting all relevant building parameters and control
constraints to the system operator.

Controller

f’f—\’—\_

C Commumcatlon Network >
L

Figure 2: The control and optimization architectures.

In summary, there are three challenges for the integrated
framework to be functional in optimizations for large
scale simulation at the community level. First, controls of
the states of buildings and grids have significant time-
scales discrepancy. An innovative discretization of
systems between the two time scales (buildings and grids)
needs to be utilized when discretize building parameters
to building-grid optimization. Second, fast and feasible
optimization programmings need to be proposed so that
hundreds of buildings can be integrated to multiple grid
buses. Third, the occupancy comfort and grid frequency
constrained should not be violated. How to build a proper
large-scale optimization algorithm and the suitable cost
function need to be modeled and evaluated clearly. Every
coupling among the occupancy, the buildings and the grid
require explicit mathematical expressions in the entire
integrated framework.

Centralized Approach

In this section, the authors investigate the discrepancies in
time-scales between the building and power network
dynamics, and discuss an MPC-based formulation of the
joint optimal control problem that (a) addresses the time
discrepancies of buildings and (b) incorporates frequency
regulation routine based on the coupling of building loads
with the power system dynamics.

First, the authors discuss the optimal control problem of
buildings of Equation (3) without any reference to the
states of a power system. A novel occupancy-based
HVAC control strategy is developed by embedding the
occupancy prediction algorithm into a linear
programming (LP) MPC framework. The objective of the
proposed control strategy is to (a) address large scale
simulation cost for multiple buildings by integrating LP,

(b) counteract to the discomfort existing in the current
baseline control by using rolling MPC window, and (c)
minimize both electricity consumption and the expected
occupant discomfort by introducing occupancy
predictions.

The uniqueness of the large scale building-grid
integration is that hundreds of buildings need to be
simulated simultaneously. Classical MPC can be solved
by many algorithms for an individual building, but these
algorithms are not computationally cost efficient for large
scale simulation. In this study, the authors explore a low
computation way, the LP-MPC. The canonical form of the
building cost function during the prediction horizon [0,t]
in Equation (2) solved by LP is derived as follows:

minimize CTy

subject to AgqV = beg; )
Ib <y <ub.
Where
¢ Y= [Tmlzallr Tzlone: Tv%/all' Tzzone: e Tut/alb thone
Pi}vac' - thac]
o Ay =
I, 0 0 0
—AL 1, —Blllx ol
0 .. —AL I, o -B,,
s beq = B\fvx[waé(l)' -"'Waé(t - D]

e (=]0,..,0,—1,..,—1] containing a length of
2t of zeros and a length of t — 1 of negativee
ones;

® b = [T#un' i Triunfpriun' . mm]

s ub = [Tr}laxr R Prlr:lax]

The linear optimization of Equation (8) will be solved by

the simplex algorithm. To demonstrate the advantage of

the proposed approach, a classic quadratic cost function
using sequential quadratic programming is formulated to
compare. The canonical form of the MPC based on

Equation (2) is described as follows:

t 1
Tmax' Pmaxr .

minimize Y5 Hu, + y(x! — Ty)?}
subject to ' = Ajx' + B} uj + By, wy; )
b, < x' <ub,;
lb, < uk < ub,.
Where:

® [ wall’ zone' Tuz/all' Tzzone' e
— t—1
® ux - [thac: thac: . thac]
e  The matrix form is the same from Equation (2)
as AL, B,ix, and B‘fl,x;
e The bound settings such as [b,, ub,, lb, and
ub,, are same as the boundaries set in Equation

(8).

ey denotes a predefined penalty factor

t t—-1
Twall' Tzone]

e T, denotes a desired room temperature set-point
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An occupancy-based linear programming MPC is
additionally developed to achieve the purpose of enabling
more energy consumption savings. The authors introduce
an occupancy-based slack relaxation of the constraints of
Equation 8 to integrate the occupancy information. The
occupancy information such as presence and absence is
predicted based on a probabilistic occupancy modelling
technique for commercial buildings (Reinhart, 2004). The
model is redesigned in this study to focus on the
occupancy status of building level. The model tends to
simulate and predict the occupancy state in terms of group
behaviors in an office environment. For example, the
occupancy model will predict the lunch break as absence
during certain time periods if the aggregated historical
training data show a majority of the people leave the
offices for lunch. Hence, the constraints on the states,
namely [Thaxs -» Tmax'], Will increase, which will
sacrifice the individual comfort of people who still remain
in the office at the lunch break time. Four occupancy-
based control rules are proposed here: 1) if no people are
present in one hour, the set-point upper bound will go up
5°F (2.77°C), 2) if people are going to leave within one
hour, the set-point upper bound will go up 2°F (1.11°C),
3) if people are going to come in within one hour, the set-
point upper bound will go down 2°F (1.11°C), and 4) if
people are staying continuously for one hour, no change
will be made on the bounds of the set point.

Second, the optimal control problem of the building-
integrated power network is formulated. The issue of
time-scales of the building-grid coupling is addressed by
proposing the use of Gear’s method. Note that when the
building load is fed into Equation (4) of the grid, it is
assumed that non-HVAC load will be scheduled and fixed
and thus will be frequency insensitive as shown in
Equation (5). Air conditioning as an optimization variable
is isolated which is equivalent to the Uy (t) in Equation
(3). Then, a building-grid optimal MPC problem based on
Equations (3) and (6) can be expressed as follows:

minimizefot(XZQbXb + cXJQyX,)dt
subject to
Xp(t) = AxXy(t) + By, Ux(t) + B, Wx() ;
EXg @® = Ang + AhvacUhvac(t) +
BpUn(t) + BpUp(t) + BpyiWpni(£);
b, < X, < uby;
lbg < Xy < uby;
byy < Uy = Uppac < Ubyy;

(10)

Where:
e [b, is the lower bound for the building states;
e ub, is the upper bound for the building states;
e by is the lower bound for the grid states;
e ubg is the upper bound for the grid states;

e b, is the lower bound for the building cooling
power;

e ub,, is the upper bound for the building cooling

power;
e for remaining notations refer to Equations (3)
and (6).
Building MPC Results

To demonstrate the effectiveness of the LP MPC, a
sample building is used to compare the system
performances of the 4 control strategies: a baseline bang-
bang control, an LP MPC, a quadratic cost MPC, and an
Occupancy-based LP MPC. The RC network model and
the baseline bang-bang control of the sample building was
previously validated by an earlier study (McFadden,
2015). All the controls are simulated from July 8% to July
13" of 2013. Weather information (outdoor air
temperature and solar radiance) is retrieved from the
National Oceanic and Atmospheric Administration
(NOAA). The authors interpret the weather information
for 5-min interval to match the control time steps. The
internal heat gain is estimated from the power
measurement and the operation schedules from the
Building Management System of the sample building.
The thermostat is set to be 72°F (22.22°C) with 2°F
deadband (1.11°C) during daytime while the night
setback allows it to go up to 75°F(23.88°C) with 4°F
deadband (2.22°C). The occupancy schedules are
predicted from the probabilistic model based on the
historical occupancy information collected from multiple
offices during the same period. Occupancy predictions are
compared to the ground truth data collected from multiple
sensors installed at different offices, shown in Figure 3.
The numerical simulation results for buildings are
presented in Figure 4 for the 200 kW peak building for
July 9th.

The energy savings and comfort violations are presented

in Table 1 and Table 2. The energy saving is calculated
as follows:

_ IMPC; — Baseline| (11)
a Baseline;
Where MPC is the MPC energy consumption and
Baseline is the bang-bang energy consumption at day i.
To quantify the improvement of the proposed MPC
control strategies over the traditional Bang-bang control,
two discomfort indices are introduced as follows:

e Discomfort I (DI)

%

DI = Zgzl(Tcon(k) - Td(k)) (12)
B d
e  Discomfort II
Yi-11AD| (13)

DIl =

Tcon (k) - Tmax Tcon(k) > Tmax

ADH\Tin = Teon (k) Teon(K) < Thnin

0 else
Where d is the evaluated time steps, T, is the controlled
room temperature, T is the desired set point temperature,
Tmin and Ty, are the lower and upper constraints of the
desired set point temperature.
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Table 1 shows energy savings from July 8th to July 13,
evaluated by Equation (11). The simulation results do not
indicate much saving from the quadratic MPC. LP MPC
has some potential to save some energy consumption at
certain days, such as July 8th. Occupancy-based LP MPC
can achieve further saving, by a margin near 10%. The
average saving is 80 kWh per day for simulated week

compared to the baseline bang-bang control.
1~

— \easured
. .a.. Occupancy
0.8+ Prediction

0.6

0.4

EEERRRS

0.2

Occupancy Rate thourgh July 8th to July 13th

8am 12am 5pm
Time

Figure 3: Occupancy Prediction.

1201
100F
80-
S e0f
== Bang-bang
40 =—=LPMPC
== Quadratic MPC
20 _Occupancy-based
LPMPC
Ooam 6 am 12 rpm 6 bm
Time

Figure 4: Energy performances for 4 strategies.
The authors additionally examine if the energy savings
are achieved due to large violations of the occupants’
comfort. The focus is only on the methods that
demonstrate saving potentials, LP MPC and occupancy-
based LP MPC. Two comfort indices, calculated daily
from Equation (12) and Equation (13), are shown in Table
1 for the whole test week. The baseline is actually robust
enough with a deviation range around 0.75°C from the
desired set point according to the comfort index DI. The
violations above the upper and lower constraints are
ranging around 0.09°C. The LP MPC has no violations at
all for the upper and lower constraints of the set point,
shown by DII. It allows more deviation from the set point
(around 1.09°C) to save the energy consumption while
maintains the room temperature in a comfort zone.
Compared to the LP MPC, the occupancy-based LP MPC
allow the system to respond to the unoccupied period
which save even more energy consumption. However, the
uncertainty of the occupancy prediction creates trouble to
keep up the constraints. Nevertheless, the violations from
the occupancy-based LP MPC is very similar to the
baseline control. A more detailed view of the differences
and advantages of the methods is shown at Figure 5. It

0 am

shows the simulated room temperature at July 12 with 5-
min control step. The baseline control and LP MPC do not
respond to the occupancy and consume more energy
before people arrive (9 am) and leave (5pm). Both
methods also do not react to the lunch break, indicating
low occupancy. In the contrast, the occupancy-based LP
MPC violates some of the comfort constraints at
afternoon (the third little peak of black line around 4 pm)
and early morning (the arriving time after 9 am). It
additionally misses a saving potential period around 1 pm
(the second period of low occupancy rate after the 12 pm
lunch break). These issues discovered during the
occupancy-based control are owing to two reasons: 1) the
Linear Programming is over relaxing the optimal solution
of the zone temperature by the changes of the upper
constraints, and 2) the uncertainty of the occupancy
predictions misleads the control operations. Both
problems can be solved by more accurate occupancy
modelling and more reasonable set points for the
unoccupied period.

The authors further introduce stochastic factors on both
the building size, building thermal properties, and internal
equipment schedules to simulate a cluster of 130
commercial buildings at July 9th. From analysis of the
single building test results, the LP MPC and the
Occupancy-based LP MPC is further used. The numerical
simulation of total building load for 130 buildings at July
12th are presented in Figure 6.

== | P MPC

3B | Bang-Bang Control

=== | P Occupancy-based MPC
== = Upper Bound of Deadband
== = |_ower Bound of Deadband
=== Set Point Schedule

=== Occupancy Measurement

W
o
T

Temperateure (C)
N
[6)]

N
o

15

7 am9 am 12 pm 6 pm

Time
Figure 5: Zone temperature controls for Baseline, LP
MPC, and Occupancy-based LP MPC at July 12™.

Table 1: Energy Savings per day comparing to bassline
(the bang-bang control)
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Methods Quadratic LP Occupancy
MPC MPC -based LP MPC
KWh % KWh | % KWh %
July 8t 2279 | 1.71 | 7453 | 5.59 | 124.6 9.95
July 9t 9.71 | 0.70 | 29.84 | 2.15 | 55.45 4.00
July 11" | 437 | 032 | 12.98 | 0.95 | 19.98 1.46
July 12 9.81 0.72 | 2425 | 1.78 | 52.77 3.88
July 13 | 2022 | 1.46 | 35.19 | 2.54 | 63.42 4.57
2282




BUILDING
SIMULATION 2017

INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION
ASSOCIATION

i

Table 2: Comfort Violations per day.

Methods Baseline LP LP occupancy
MPC -based MPC
DI* | DII* DI DII DI DII
July 8™ 0.76 | 0.10 | 1.10 0 1.18 0.08
July 9t 0.74 | 0.09 | 1.09 0 1.15 0.05
July 11" | 0.76 | 0.10 | 1.10 0 1.50 0.40
July 12" | 0.71 | 0.08 | 1.10 0 1.19 0.09

July 13* | 0.78 | 0.08 | 1.05 0 1.19 0.14

*All units for DI and DII presented as °C.

200
150 :
; H
X
1001
TR il |
sol il ilé mn i
0
Oam 7am 12 pm 6 pm
Time (5min)
a) Baseline Bang-bang Control
200
2
100
50
0 i I |
6 am 12 pm 6 pm
Time (5min)
b) LP MPC
200
150
=
x
100
50
0 | !
6 am 12 pm 6 pm
Time (5min)

¢) Occupancy-based LP MPC

Figure 6: Simulated Energy Profiles for the baseline
control, the LP MPC, and Occupancy-based LP MPC.

Integration Grid Results

For building load, the occupancy-based LP MPC with 5
minutes rolling window is integrated. The MPC coupling
of Equation (10) between the buildings and the grid
regulate the grid frequency around the normal rate, 60
Hertz. Three communities (consisting respectively of
70,100, and 130 buildings) with maximum power peak
around 400 kW for each individual building are
simulated. These building loads are distributed to a power
network of 9 grid buses. For each 5-minute building
simulation step, Gear’s method discretizes the swing
equation to 10 secs for the operation of the buses. A
quadratic program is used to optimize Equation (10)
during the 5-min rolling window. The interior-point-
convex option is selected for the quadprog optimization
function in Matlab with violation threshold below 1078 for
the constraints. The first 35-minute integration between
the building load and the grid’s buses operations is shown
in Figure 7.
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Figure 7: Stabilized buses’ angle.
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Figure 8: Distributed power from buses.

It is obvious from Figure 7 that the bus angles stabilized
very quickly. Authors additionally check whether the
buses reached the desired set points of power distributions
by examining the trajectories for all the power supplied in
terms of per-unit system (p.u.) in Figure 8. A per-unit
system expresses a quantity as fraction of the defined
based unit quantity. For this study, the base power is set
to 100 MW. Figure 8 shows the first 3 buses’ operation
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trajectories. Although there are certain up and down
ramps at the beginning seconds, all the buses stabilized
quickly to reach the stabilized statuses.
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Figure 9: Simulation of 9 buses.
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Figure 10: Beginning stage of the 9 buses.

All the frequencies of the 9 buses during the power
balance operation are presented in Figure 9 and Figure 10.
All buses are supposed to be maintained near 60 Hertz.
Most of the buses are not deviated much from the 60 Hertz
threshold. The reason for certain buses to have a bit of
deviation of frequency threshold is owing to the loose
constraints from the initial settings to find feasible
solutions for Equation (10).

Discussions

The proposed building-grid integration with occupancy-
based building control connects buildings, people, and
grid in three levels. At the building level, several control
strategies are demonstrated using state-of-the-art
algorithms. Fast solvers should be always the first priority
owing to the speciality of the computation scale to
simulate hundreds of buildings. A new linear-
programming based MPC approach is proposed. The
improvement of control performances show different
potentials of the energy consumption saving. At the
people level, all the building control strategies are
evaluated by two innovative discomfort indexes. Those
discomfort indexes measure the violations between the
maximum tolerance of the people comfort and the
deviation from the desired comfort level. The building

occupants’ thermal comfort are maintained with the
intelligent control of the HVAC system based on
occupants’ presence prediction. The uncertainty of the
presence predictions cause most of the comfort level
violations. However, no significant comfort violations
could be observed for the proposed control strategy of the
buildings. The last but not the least is the grid level. The
building MPC generates load in community scale
independently of grid with much slower time step.
Coupling between the building load and the grid operation
needs an alternative discretization approach to regulate
the angles, the frequencies and the generating powers of
the grid buses. By combining Gear’s discretization with
an MPC approach, the performances of the reliability and
resiliency of the grid are quantified.

Conclusion

The proposed research in this paper expands traditional
optimization and optimal control studies for buildings and
power grids. The project develops: 1) an innovative
modelling framework to control buildings in large scale
based on linear programming, 2) integration of the
occupancy modelling for building control, 3) and the
design and coordination of coupled controls for a large-
scale network of buildings and generator buses. The
attempt to formulate such a complex sustainability
problem as a coupled large-scale control problem creates
a new paradigm for studies of the impacts of smart,
connected communities on energy supply and demand
along with operational stability of power networks.

Future studies need to be conducted to enhance the
performance of this framework. First, the building models
need to be developed based on more realistic examples by
introducing 1) AHU models for commercial buildings and
2) compressor performance curve for residential
buildings. Currently, authors are seeking for real test beds
and data sources from SCE’s Johanna and Santiago
substations in Central Orange County of California. The
smart test beds in the 2500 buildings of all the substations
could also leverage the success of the decentralized and
distributed approaches that are still under developing by
authors. The final point is that the building-grid coupling
controls tested now are linearized. It is very important to
additionally address the nonlinearities of the buildings
and the grid with novel modelling approaches. In
conclusion, future studies will introduce more realistic
nonlinear building and grid models in a larger simulation
scale that truly represents a smart city scale, while
advanced techniques are going to be developed to handle
nonlinearities during the operation and uncertainty of the
occupancy comfort violations. The work will be very
useful in urban smart city planning, designing, and
operation stages. Practical implementations are possible
with real-time data fitting of the models and integration
with high performance computing techniques.
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