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Recent studies reveal that at large friction Reynolds number δ+ the inertially-dominated12

region of the turbulent boundary layer is composed of large scale zones of nearly uniform13

momentum segregated by narrow fissures of concentrated vorticity. Experiments show14

that, when scaled by the boundary layer thickness, the fissure thickness is O(1/
√
δ+),15

while the dimensional jump in streamwise velocity across each fissure scales in proportion16

to the friction velocity uτ . A simple model that exploits these essential elements of the17

turbulent boundary layer structure at large δ+ is developed. First, a master wall-normal18

profile of streamwise velocity is constructed by placing a discrete number of fissures19

across the boundary layer. The number of fissures and their wall-normal locations follow20

scalings informed by analysis of the mean momentum equation. The fissures are then21

randomly displaced in the wall-normal direction, exchanging momentum as they move, to22

create an instantaneous velocity profile. This process is repeated to generate ensembles of23

streamwise velocity profiles from which statistical moments are computed. The modelled24

statistical profiles are shown to agree remarkably well with those acquired from direct25

numerical simulations of turbulent channel flow at large δ+. In particular, the model26

robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness27

and kurtosis profiles over a large range of input parameters.28

Key words:29

1. Introduction30

A grand aim of physics is to seek simplification by distilling the most basic elements31

out of complex phenomena. Quantitative models can be constructed from a minimal set32

of postulated elements, and then tested against available empirical data. Satisfactory33

agreement with the data generally suggests that a certain level of physical understanding34

has been attained. In this spirit, we seek in this investigation to develop a simple model of35

the turbulent boundary layer by leveraging a body of research over the past two decades36

that has transformed important aspects of our understanding of such flows. Character-37

izations of statistical structure, in particular, now more clearly reflect the interactions38
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across scales and the influence of increasing scale separation with increasing Reynolds39

number (Klewicki 2010). With this improved understanding come new opportunities to40

more efficiently represent the basic mechanisms that underlie the observed flow properties41

and their Reynolds number dependencies. Specifically, we employ here a complementary42

set of theoretically educed and empirically observed findings to formulate a simple model43

for the streamwise velocity fluctuations in turbulent wall flows. In essence, this model44

leverages the physical space manifestation of scale separation between the momentum45

and vorticity fields that emerges with increasing Reynolds number in these flows.46

The empirical foundation of the present model is provided by the increasingly binary47

spatial structure of the instantaneous spanwise vorticity field with increasing Reynolds48

number, as first revealed by the particle image velocimetry (PIV) measurements of Mein-49

hart & Adrian (1995). These authors observed that, in the outer region of the turbulent50

boundary layer (say y/δ � 0.05, where y is the coordinate normal to the wall and δ is the51

boundary layer thickness), there exist large-scale zones of nearly uniform streamwise (x)52

momentum, which they called uniform momentum zones (UMZs). Meinhart and Adrian53

also observed that adjacent UMZs are separated by slender regions of intense spanwise54

vorticity, ω̃z. Here, •̃ denotes a total instantaneous quantity; that is, ω̃z = Ωz + ωz,55

where henceforth an uppercase variable denotes a temporal or ensemble mean and a56

lowercase variable represents the fluctuation about this mean. For subsequent references57

ũ, ṽ, and w̃ are the total velocity components in x, y, and z directions, respectively.58

Following Priyadarshana et al. (2007), we call the shear-layer-like motions vortical fissures59

(VFs), since the internal vorticity structure of these motions has not yet been well60

documented and may in fact exhibit significant Reynolds number dependence. The spatial61

arrangement of VFs and UMZs causes the instantaneous streamwise velocity profile to62

take on a staircase-like character, with most of the net velocity variation being spatially63

intermittent and concentrated within the VFs (Meinhart & Adrian 1995). The target of64

the present model is to capture essential features of the momentum transport associated65

with this heterogeneous structure.66

Shear-layer-like interfaces and concentrated internal shear layers have long been67

thought to play an important role in the dynamics of turbulent flows (Corrsin & Kistler68

1955; Westerweel et al. 2009; Ishihara et al. 2003; da Silva et al. 2014; Chauhan et al.69

2014a; Kwon et al. 2014; Eisma et al. 2015). In an isothermal constant density viscous70

flow, molecular diffusion is the sole means by which irrotational fluid particles can gain71

vorticity. Corrsin & Kistler (1955) leveraged this physical constraint to advance the72

concept of the viscous superlayer: the wrinkled sheet of viscous vortical fluid comprising73

the corrugated instantaneous interface at the outer edge of a turbulent shear flow.74

Since then, numerous studies have attempted to determine the properties associated75

with turbulent/non-turbulent interfaces (e.g. da Silva et al. (2014)). Owing to the76

difficulties in measuring vorticity directly, with few exceptions (e.g. see Klewicki et al.77

(1992)), most of these investigations have used thresholds on surrogate quantities, e.g.78

velocity magnitudes or jumps in temperature, to identify the bounding interface (Chen79

& Blackwelder 1978). The advent of increasingly high Reynolds number direct numerical80

simulations (DNS) and reasonably well-resolved PIV has allowed for estimates of the81

thickness of, and velocity increment across, the viscous superlayer and, similarly, the82

widths, velocity increments and average spacing (≈ UMZ widths) of the internal shear83

layers (VFs) in wall-bounded flows (Adrian et al. 2000; Chauhan et al. 2014a; Kwon84

et al. 2014; Eisma et al. 2015).85

The present model construction finds its firmest theoretical basis in the region where86

the mean viscous force in the mean momentum balance is sub-dominant, i.e. in the inertial87

domain. This condition is significant since it is commensurate with the VFs occupying a88
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diminishing fraction of the overall flow volume in the limit of very large friction Reynolds89

number δ+ ≡ δuτ/ν, where uτ is the friction velocity and ν is the kinematic viscosity,90

and is physically in accord with the dominance of advective vorticity transport in that91

region. In contrast, the motions bearing high-amplitude vorticity in the near-wall region92

are nearly continuously distributed in space, i.e. spacing filling (Johansson & Alfredsson93

1991; Jimenez & Pinelli 1999; Klewicki & Hirschi 2004), and the vorticity field is much94

more strongly influenced by the mechanism of vorticity stretching (Klewicki 2013b).95

Despite its simplicity, the present modeling framework implicitly reflects and explicitly96

incorporates a number of estimated UMZ and VF properties. Through the use of existing97

PIV measurements, along with threshold crossing analysis of well-resolved ωz time series,98

Klewicki (2013b) provided the first estimates of the average VF width fw as a function99

of δ+. These planar PIV and time-series based estimates exhibit good agreement at100

laboratory scale δ+, indicating that fw/δ ≈ 1.3/
√
δ+, which also approximates the101

Taylor microscale ΛT up to δ+ ≈ 15, 000 (Marusic & Adrian 2010). This scaling with ΛT102

also agrees with the lower-δ+ ωz time series measurements of Klewicki & Falco (1996),103

showing that the average scale of the ωz bearing motions on the inertial domain becomes104

independent of y+, and simultaneously of the detection threshold (> ωzrms). Similarly,105

the recent high resolution PIV measurements of Eisma et al. (2015) at δ+ ≈ 2050 indicate106

that the fissure width is about 40% of the Taylor scale across the entire outer region,107

a result that is essentially identical to earlier ωz event duration analyses (Klewicki &108

Falco 1996) and reinforced by recent PIV analyses at higher δ+ (de Silva et al. 2017).109

Relevant to asymptotic structure, large field-of-view PIV measurements at the Surface110

Layer Turbulence and Environmental Science Test (SLTEST) facility (Klewicki et al.111

1995) by Morris et al. (2007) exploited the near-neutral atmospheric surface layer (ASL)112

to attain a very high Reynolds number condition: δ+ ≈ 600, 000. These data not only113

provide further evidence that UMZs and VFs exist, but also suggest that, at these114

very large δ+, the internal structure of the VFs is spatially complex. Thus, this VF115

structure is potentially different from that observed at lower Reynolds numbers, where116

some observations suggest that the VFs comprise a concatenation of discrete vortices117

(Adrian et al. 2000). Owing to limitations on the spatial resolution of the measurements118

by Morris et al., however, the variation of the internal structure of the VFs with δ+119

remains an open question. Nevertheless, it is intriguing that estimates of the VF thickness120

derived from the PIV measurements of Morris et al. also show good agreement with121

the fw/δ ≈ 1.3/
√
δ+ dependence ascertained at lower δ+. On the other hand, the122

vorticity time series and Taylor scale estimates from the SLTEST site show much smaller123

values than fw/δ as measured by PIV (Klewicki 2013b). This discrepancy between the124

different detection methods is consistent with the possibility that VFs develop an internal125

turbulence structure at sufficiently large δ+.126

Theoretical justification for the 1/
√
δ+ scaling of the dimensionless fissure width127

comes from the mean momentum equation analysis of Klewicki (2013c). Consistently,128

the inertial-layer self-sustaining process (SSP) theory of Chini et al. (2017) and its129

more recent revision by Montemuro (2018), both of which are derived directly from an130

asymptotic reduction of the Navier–Stokes equations, predict that the outer normalized131

fissure thickness scales approximately like 1/δ+
2/5

and 1/δ+
7/16

, respectively. Recent PIV132

measurements by de Silva et al. (2016) further suggest an approximately logarithmic δ+-133

dependence of the average number of fissures (or UMZs) in the outer region, while those134

of Eisma et al. (2015) and de Silva et al. (2017) confirm that the average velocity jump135

across each fissure is slightly greater than uτ . Below we demonstrate that these findings136

are consistent with the present model framework and its theoretical foundations.137

Page 3 of 25



4 J.C. Cuevas Bautista, A. Ebadi, C.M. White, G.P. Chini and J.C. Klewicki

Beyond further structural characterizations, other studies have sought to describe how138

the spatial arrangement of UMZs and VFs affects momentum transport. Priyadarshana139

et al. (2007) reported measurements of velocity-vorticity products in the near-neutral140

ASL (δ+ ≈ 800, 000). These statistics are of interest because wall-normal gradients of141

the Reynolds shear stress and turbulent kinetic energy are related to the differences142

between specific velocity-vorticity correlations. They found evidence that the co-spectra143

between v and ωz (underlying the vωz correlation contributing to the Reynolds shear144

stress gradient, where the overbar refers to a long-time or ensemble average) largely arises145

owing to a scale selection between the v and ωz signals. Under this scale selection, the146

signals derive their greatest co-spectral contributions from motions having wavelengths147

near the respective peaks of the v and ωz spectra, and less so from the wavenumber range148

where these individual spectra overlap. This behaviour occurs at high Reynolds numbers149

when the spectral peaks of v and ωz correspond to distinctly disparate wavenumbers.150

Priyadarshana et al. interpreted these results to be associated with the meandering of151

the slender vortical fissures by the less intense but much larger-scale v motions within the152

UMZs. The large-δ+ asymptotic theory of Montemuro (2018) suggests a complementary153

interpretation: even if the UMZ/VF structure is static, the wall-normal component of154

the streamwise roll velocity in the UMZ is weak and of large scale precisely where there155

exists intense spanwise vorticity within the VF, as required by the SSP force balance.156

Building on the work of Priyadarshana et al. (2007), Morrill-Winter & Klewicki (2013)157

explored scale-separation induced phenomena in greater detail. They found that within158

the inertial domain (where the VFs and UMZs exist) the cospectrum of v and ωz has159

a shape that closely mimics the v spectrum, thus indicating a scale selection that is160

predominantly dictated by the v motions. This finding is consistent with existing evidence161

that the vωz contribution to the Reynolds stress gradient is most significant on the162

inertial domain, and reinforces the hypothesis that the associated momentum transport163

mechanistically derives from the spatial dispersion of motions bearing concentrated ωz164

(Morrill-Winter & Klewicki 2013). The model developed herein is consistent with the165

idea that the advective transport of the VFs occurs at scales that are large relative to166

the VF width, and increasingly so as δ+ → ∞.167

In what follows, we first describe and further justify in § 2 the theoretical basis for168

the present model. Details of the model construction are given in § 3 and results are169

presented in § 4. This discussion is followed, in § 5, by a sensitivity analysis of the170

results to selected parameter variations in the model. In the concluding section (§ 6), the171

strengths and limitations of the model are assessed within the context of boundary layer172

physics.173

2. Model basis174

The primary properties of the model developed here are based upon the self-similar175

dynamical structure of turbulent wall flows as determined via analysis of the mean176

streamwise momentum equation (Wei et al. 2005; Klewicki et al. 2009, 2014; Morrill-177

Winter et al. 2017). Although the analysis has been extensively documented in the178

literature (including in the references just cited), to keep the article self-contained, a179

condensed description of the analysis with a focus on the elements most relevant to the180

present model construction is provided here.181
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Equation (2.1) gives the inner normalized version of the mean momentum equation for182

the boundary layer,183

−
(
U+ ∂U+

∂x+
+ V + ∂U+

∂y+

)
︸ ︷︷ ︸

MI

+
∂2U+

∂y+2︸ ︷︷ ︸
MV

+
∂T+

∂y+︸ ︷︷ ︸
TI

= 0, (2.1)

while for the channel184

1

δ+︸︷︷︸
PG

+
d2U+

dy+2︸ ︷︷ ︸
MV

+
dT+

dy+︸ ︷︷ ︸
TI

= 0. (2.2)

Here T+ ≡ −uv+ represents the Reynolds stress. Note that in both cases the mean185

momentum balance is composed of three terms. From left to right the balance in the186

boundary layer includes mean inertia (MI), the mean viscous force (MV) and turbulent187

inertia (TI), whereas in the channel the mean pressure gradient (PG), the mean viscous188

force (MV) and turbulent inertia (TI) comprise the momentum balance.189

Unlike the balance of terms in the equations for laminar channel or boundary layer flow,190

the terms in these equations are not of leading-order importance uniformly throughout191

the flow. In fact, the dominant balance (involving either two or three of the terms) changes192

with distance from the wall such that there is a well-defined four region structure (Wei193

et al. 2005), revealed through the ratio MV/TI as shown in figure 1. Within three of194

these regions, (2.1) or (2.2) is brought into balance with two large terms dominating one195

small term (regions I, II and IV), while in another region (region III), all three terms196

contribute significantly to the balance. Thus, while all of the three terms in (2.1) or (2.2)197

are of leading order importance over some portion of the wall-normal domain 0 � y � δ, in198

three of the four regions there emerges only two dominant terms. An especially significant199

feature of this structure is that there exists a Reynolds number dependent position from200

the wall at which the mean viscous force becomes sub-dominant. This position is depicted201

by the outer edge of region III located at y+ = 2.6
√
δ+ for channel flow. Beyond this202

location the mean momentum equation is inertially dominated, comprising a balance203

between the pressure gradient and turbulent inertia in the channel and between mean204

inertia and turbulent inertia in the boundary layer. The
√
δ+ dependence of this position205

is analytically predicted by the mean equation theory (Wei et al. 2005). The scaling206

properties of the region widths and their velocity increments for canonical turbulent207

channel flow are summarized in table 1.208

Analysis of the mean momentum equation reveals an underlying similarity structure,209

one consequence of which is a logarithmic mean-velocity-profile solution determined210

by directly integrating the mean equation (Klewicki & Oberlack 2015; Morrill-Winter211

et al. 2017). This logarithmic profile arises as result of distance from the wall or y-212

scaling, distinct from wall-flow representations that assume y-scaling (e.g. Townsend’s213

attached-eddy framework, see Townsend (1976); Perry & Marusic (1995)). Here y-scaling214

is analytically required for the mean momentum equation to admit an invariant form215

that respects the leading order balance of terms with increasing y. Specifically, the mean216

equation can be continuously rescaled into a single parameter-free form that is valid on217

each layer of a continuous and self-similar hierarchy of layers spanning a domain from218

y = O(ν/uτ ) to y = O(δ). On each layer of this hierarchy, the rescaling is such that all of219

the terms in the mean equation are retained at leading order – a condition that reflects the220

changing average scale of the turbulent motions responsible for the wallward momentum221
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Peak Reynolds
stress location

I II III IV

0

-1

y+

M
V
/
T
I

Figure 1. Sketch of the four region structure of turbulent wall-bounded flows at a
representative, large Reynolds number: region I |MI/PG| � |MV | � |TI|; region
II |MV | � |TI| � |MI/PG|; region III |MI/PG| � |MV | � |TI|; region IV
|MI/PG| � |TI| � |MV | (Wei et al. 2005).

Physical Region Magnitude Ordering Δy Increment ΔU Increment

I |PG| ≈ |MV| � |TI| O(ν/uτ ) (� 3) O(uτ ) (� 3)

II |MV| ≈ |TI| � |PG| O(
√

νh/uτ ) (≈ 1.6) O(Uc) (≈ 0.5)

III |PG| ≈ |MV| ≈ |TI| O(
√

νh/uτ ) (≈ 1.0) O(uτ ) (≈ 1)
IV |PG| ≈ |TI| � |MV| O(h) (→ 1) O(Uc) (→ 0.5)

Table 1. Magnitude ordering and scaling behaviors associated with the structure of the leading
order balance of mean forces in canonical turbulent channel flow. Note that PG, MV and TI refer
to the mean pressure gradient, mean viscous force and turbulent inertia terms that, from left
to right, are given in (2.2); Uc is the mean centerline velocity; and h is the channel half-height.
Regions I, II, III and IV are indicated in figure 1.

flux with distance from the wall. The width W of each hierarchy layer physically reflects222

the size of the turbulent motions responsible for wallward momentum transport (Klewicki223

et al. 2014), i.e. those motions associated with negative Reynolds stress. The theory224

prescribes a width and streamwise velocity increment for each layer: in the present model225

construction, a UMZ and its companion VF are effectively interpreted as one such layer226

on the layer hierarchy.227

The sketch in figure 2a depicts that each point on the monotonically decreasing portion228

of the dT+/dy+ profile (i.e. y > ypi, where ypi denotes the peak location of the turbulent229

inertia) uniquely corresponds to a wall-normal position, and at each of these positions230

there resides a layer of finite width that is the member of the layer hierarchy at that point.231

Figure 2b plots these layer widths using DNS data. The layer hierarchy follows from the232

fact that at each distance from the wall, there is an average scale of motion at which233

the dynamics become inertially dominated (refer to region IV in table 1, in which the234

mean viscous forces are negligible). The theory predicts that, on average, the turbulent235

motions contributing to wallward momentum transport become inertially dominated at236

an increasing scale with increasing distance from the wall (Klewicki 2013c). The end237

result is that when uτ and the local layer width W+(y+) are used to normalize the mean238

equation under the requirement that all terms are of leading-order significance, then the239
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Figure 2. (a) Schematic depiction of the self-similar layer hierarchy admitted by the mean
momentum equation. TI = turbulent inertia. (b) Distribution of hierarchy layer widths W+(y+)
as quantified using the channel flow DNS of Lee & Moser (2015). The line styles correspond
to: δ+ = 1000, δ+ = 2000, and δ+ = 5200. In the proposed model, each layer is
associated with a UMZ and a VF.

re-normalized mean momentum equation becomes parameter-free and invariant from one240

layer to the next. As can be seen in figure 2b, wallward of the inertial domain the W+
241

profile is a nonlinear function of y+, but invariant with δ+. On the inertial domain, this242

invariance also holds (emerges) for increasing δ+, but here W+ is well-approximated by243

a linear function of y+, and increasingly so with increasing δ+. Thus, while the layer244

hierarchy is self-similar both interior to and on the inertial domain, analyses on the245

inertial domain are simpler owing to the linear behaviour of W+(y+).246

The linearity of the W+ profile on the inertial portion of the layer hierarchy underlies247

the logarithmic dependence on y+ of the mean velocity profile. Here the mean momentum248

equation analysis predicts the emergence (with increasing δ+) of an increasingly perfect249

dynamic self-similarity from one layer to the next. This self-similarity enables closure of250

the mean momentum equation, so that it can be directly integrated, yielding a similarity251

solution that takes the form of the universal logarithmic mean velocity profile as δ+252

becomes large (Klewicki & Oberlack 2015; Morrill-Winter et al. 2017).253

The absence of a leading-order mean viscous force on this logarithmic layer accords254

with the observed structure of UMZs and VFs. Namely, the viscous/vortical regions in255

the inertial domain occupy a diminishing fraction of the flow volume with increasing256

δ+, as is physically reflected by the existence of the VFs. Conceptually, these motions257

effectively constitute “boundary layers” within the turbulent boundary layer, a notion258

first promoted in Klewicki (2013a) and explored in greater dynamical detail in Chini259

et al. (2017) and Montemuro (2018). A discrete (but valid) version of the hierarchy260

layer structure on the inertial domain provides a theoretically based recipe for assigning261

the wall-normal widths and velocity increments to the hierarchy layers with increasing262

distance from the wall, as described next.263

Owing to their finite width, adjacent layers on the continuous hierarchy obviously264

overlap. By construction, however, the local scaling for any given layer formally holds over265

the extent of that layer. Thus, the most straightforward way to convert the continuous266

hierarchy description into a theoretically valid discrete representation is to stack adjacent267

layers such that the upper edge of one layer is the lower edge of the next. In fact, this268

construction already has been pursued by Klewicki et al. (2014), revealing a number of269

important features associated with the structure of the inertial domain. Among these is270
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that the relative position of the start of one discrete hierarchy layer (y+i ) to the next271

(y+i+1) on the inertial domain is given by272

y+i+1 = y+i +
y+i
φc

≈ φcy
+
i (2.3)

for non-negative integer i, and the mean velocity increment from one layer to the next

U+
i+1 − U+

i ≡ ΔU+ ≈ φ2
c lnφc. (2.4)

In these expressions φc ≈ 1+
√
5

2 ≈ 1.62 is the so-called Fife similarity parameter, and is273

equal to the inverse of the asymptotically constant slope of the W+(y+) profile on the274

inertial domain (see figure 2b). In the analysis, φ is the coordinate stretching function275

that produces an invariant form of the mean momentum equation on each hierarchy276

layer. This asymptotic constancy of φ (i.e. φ → φc) on the inertial domain also reflects277

a constant wall-normal flux of turbulent inertial force. Namely, under normalization by278

W and uτ , the second derivative of the Reynolds stress approaches the constant value279

2/φc. A further mathematical consequence is that φ2
c = 1/κ, where κ is the von Kármán280

constant.281

The number of discrete layers L on the inertial portion of the hierarchy increases282

logarithmically with δ+, and thus under this discrete construction is countably infinite as283

δ+ → ∞. The simplest way to generate an estimate for L is to note that the inertial layer284

starts at y+ ≈ φ2
c

√
δ+ (Klewicki et al. 2014) and that the hierarchy ends at y+ ≈ δ+/2285

(see figure 2b), and that between these wall-normal locations the layers increase in scale286

according to the geometric progression given by (2.3). As an approximation, here we287

assume that this geometric progression extends all the way to δ and from this deduce288

that289

W+
max ≈ δ+ = φL+2

c

√
δ+. (2.5)

Subsequently solving for L yields L = �1.04lnδ+ − 2�, where �•� is the floor function.290

A similar but somewhat more complicated estimation procedure yields an estimate for291

L by accounting for the velocity increments associated with the VFs. As depicted in292

figure 3, these two estimates are nearly identical. Both, however, implicitly rely on the293

asymptotic approximation that all velocity variation occurs within the VFs and, similarly,294

that the VFs are negligibly thick relative to the UMZs. According to the present model295

construction (detailed below), the expectation is that L roughly approximates the number296

of UMZs NUMZ in region IV of figure 1b. These estimates and the recently reported297

measurements of NUMZ by de Silva et al. (2016) are plotted in figure 3. As is apparent,298

the asymptotic predictions consistently over-estimate the measured values. A number of299

sources, however, might contribute to the observed discrepancy. These include finite δ+300

effects not accounted for in the analytical estimates, and the difficulties associated with301

accurately estimating NUMZ experimentally. Regarding the former, at finite δ+ not all of302

the velocity variation is contained in the VFs, and thus must be spread (in some unknown303

manner) throughout the UMZs (Klewicki 2013a). Unraveling precisely how this effect304

modifies the analytical estimates of NUMZ is not straightforward. Nevertheless, one can305

safely surmise that the effect reduces the estimate of NUMZ ; for example, by considering306

the limiting case of smoothly distributed vorticity throughout region IV – a scenario with307

no discernible VFs. For laboratory scale δ+ flows, Klewicki (2013a) estimates that about308

75% of the mean velocity variation is contained within the VFs. Thus, a crude estimate309

for NUMZ at the δ+ of the measurements can be obtained simply by attenuating the310

asymptotic estimates according to the percentage of velocity variation contained in the311
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Figure 3. Number of uniform momentum zones NUMZ within region IV versus Reynolds
number δ+: , as measured by de Silva et al. (2016); ——, as given by L, where L is the
analytically estimated number of inertial hierarchy layers; - - - , as estimated by also accounting
for the velocity increments. —–, - - -, finite δ+ corrections to the asymptotic estimates by
weighting the percentage of mean vorticity contained in the VFs.

VFs, i.e. by multiplying the asymptotic estimates by 0.75. As shown in figure 3, this312

“simple” correction leads to a much better agreement with the data. Nevertheless, for313

the sake of simplicity, in the model construction described below we do not consider314

these effects, but instead invoke the asymptotic δ+ approximation by assigning all mean315

velocity variation to the VFs.316

3. Model construction317

The detailed formulation of the UMZ/VF model is described in this section. The318

discussion is separated into two parts. First, the inertial layer formulation, which enjoys319

the theoretical grounding given in § 2, is outlined. This is followed by an explication of320

the rationale for the model within the sub-inertial (i.e. near-wall) domain.321

3.1. Inertial domain UMZ/VF model322

The UMZ/VF structure on the inertial domain is represented by a set of N discrete323

layers of concentrated vorticity (i.e. VFs) spaced according to (2.3). The velocity incre-324

ment across each VF is given by (2.4). The following additional model prescriptions are325

made: the (wall-normal) fissure width f+
w = 6 (this choice is justified a posteriori in later326

sections); consistent with the theoretical framework, the lower boundary of the inertial327

domain is located at y+nV F+1 = φ2
c

√
δ+, where nV F is the number of subinertial VFs;328

the mean velocity at this location is U+
nV F+1 = 3.5 + 0.5U+

c + 1.26, which respectively329

accounts for the contributions from regions I–III; and the wall-normal position y+NV F
and330

Page 9 of 25



10 J.C. Cuevas Bautista, A. Ebadi, C.M. White, G.P. Chini and J.C. Klewicki

corresponding velocity U+
NV F

of the outer most fissure is obtained by setting the index331

i = (NV F − 1) = L, where NV F is the number of VFs in the inertial region, in (2.3) and332

(2.4).333

A modeling ambiguity arises for VFs of finite width, since the position of the (finite)334

VF is not uniquely prescribed by (2.3). In the absence of further dynamic or kinematic335

constraints, we empirically considered the respective ramifications associated with using336

the lower edge, the centroid and the upper edge as the reference position for any given VF337

at y+i . Of these possibilities, only the centroid prescription avoids the asymmetries inher-338

ent in edge assignment, and leads to a computed mean profile that closely corresponds339

to the actual mean profile. The other choices either consistently under- or over-estimate340

the mean velocity. Concomitantly, associating y+i with the centroid of the i-th VF also341

significantly improves the prediction of the higher statistical moment profiles.342

The uniform velocity within each UMZ is associated with the edge velocities of the
bounding VFs. In this regard, the lower (‘low’) and upper (‘up’) edge velocities of the
i-th VF are defined as follows

U+
i,low =

1

2
(U+

i + U+
i−1), (3.1)

U+
i,up =

1

2
(U+

i + U+
i+1). (3.2)

Consequently, grid points comprising the lower UMZ, between the y+i−1 and y+i centroids,343

have characteristic momentum U+
i,low and the grid points corresponding to the upper344

UMZ have characteristic momentum U+
i,up. Consistent with this set of rules, if there are345

N VFs, then the number of UMZs is N − 1. Beyond the specification of a constant346

freestream velocity boundary condition, the current model formulation does not account347

for a wake structure between the logarithmic region and freestream. For this reason, and348

because channel flow DNS currently attain larger δ+ than do boundary layer DNS, we349

use the channel flow DNS data of Lee & Moser (2015) as a baseline for validating the350

model. This DNS was performed at δ+ 	 5200, with a centerline velocity U+
c 	 26.5.351

Using these parameter values, there are nominally six UMZs beyond the outer edge of352

region III, consistent with the asymptotic estimates given in figure 3.353

3.2. Subinertial domain UMZ/VF model354

The use of (2.3) and (2.4) to estimate the distribution of the vortical fissures and their355

characteristic velocities has a well-founded theoretical basis in an interior domain where356

the flow is inertially dominated, i.e. φ2
c

√
δ+ � y+ � δ+/2. As noted in the preceding357

subsection, we extend application of these formulas to the centerline, and therefore choose358

to compare with channel flow, since the deviation between the outer region mean velocity359

profile and the logarithmic profile tends to zero for channel flow as δ+ → ∞. Closer to the360

wall, the mean momentum equation continues to admit a self-similar form, as evidenced361

by the universal W+ profile in figure 2b. The simple linear relationship between y+362

and W+ is lost, however, and analytical representations have yet to be developed. This363

more complicated W+(y+) function coincides with a leading-order mean viscous force,364

an increasingly space-filling vorticity field as y+ decreases, and an increasing significance365

of vorticity stretching and reorientation; e.g. see Klewicki (2013b).366

While more rigorously based treatment of the subinertial region must await analytical367

prediction of W+, herein we employ an empirical construction that meaningfully retains368

connection to a hierarchy of layers of increasing scale with increasing y+. To do this, we369

first note that within the region where W+ ∝ y+ (i.e. where φ = φc) there is a well-370
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Figure 4. φ̃(y+) vs y+ computed for channel flow DNS of Lee & Moser (2015). The
line styles correspond to: δ+ = 5200, δ+ = 2000, δ+ = 1000, fit

φ̃(y+) = −5.476e−0.218y+

+ 4.203e−0.112y+

+ φc.

defined asymptotic connection between the coordinate stretching function φ(y+) and the371

so-called indicator function. Namely,372

φ2
(
y+

) ≡ φW+ dU+

dy+
= y+

dU+

dy+
. (3.3)

Here, it is useful to recall the analytical result that φ2
c = 1/κ within the inertial sublayer373

(Klewicki 2013c). Although the equality between the two expressions for φ2 in (3.3) does374

not hold on the subinertial domain, the second expression provides a convenient surrogate375

(say, φ̃2) for φ2, since like W+ these profiles do not vary with δ+. Profiles of φ̃ at different376

δ+ are plotted in figure 4. Thus, in the model implementation, φ̃(y+) is approximated377

by a nonlinear curve fit to the DNS data (also shown in figure 4). Use of this analytical378

fit then enables the allocation of spatial steps and their associated velocity increments379

(essentially VFs and UMZs) on the subinertial domain. Here, the velocity increments are380

found by rearranging and linearizing (3.3), which yields381

U+
i+1 = U+

i + φ̃(y+i )
2 ln (y+i+1/y

+
i ). (3.4)

Note that a logarithmic allocation of VFs, as chosen here, satisfies the linearization382

assumption, while preserving the notion of a scale hierarchy. Specifically, Sreenivasan &383

Bershadskii (2006) provide compelling evidence that logarithmic expansions in y provide384

an accurate means of representing the mean velocity and Reynolds stress profiles from385

y = O(ν/uτ ) to y = O(δ) by accounting for the number of hierarchical scales up to any386

given y position.387
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Figure 5. Discrete master velocity profile computed using (2.3) and (2.4) on the inertial
domain, and (3.4) on the subinertial domain.

3.3. Generating statistically independent ensembles388

The master profile (see figure 5), which represents the most probable arrangement
of the VFs, serves as the baseline from which the instantaneous velocity profiles are
generated by repositioning the VFs in the boundary layer according to the following
protocol

y+i,new = y+i ± P [
(y+i − y+i−1)

]
. (3.5)

The statistical distribution P (Gaussian, uniform, exponential, beta, etc.) used to produce389

the new VF centroid position y+i,new is empirically selected and a posteriori validated390

using the statistical moments computed from the instantaneous velocity profiles. The391

velocity is presumed to vary linearly across individual fissures. Note that, since each392

fissure is repositioned independently of its neighbors, multiple fissures are allowed to393

overlap in a given instantaneous profile; these overlaps are more likely to occur in the394

near-wall region. When fissures do overlap, the velocity across a fissure will vary piecewise395

linearly. Also note that, in the present model construction, the outer most VF is not396

allowed to move.397

A critical finding of the a posteriori validation of the model is that satisfactory agree-398

ment with the DNS results can not be obtained simply by repositioning the VFs. (This399

was found to be true regardless of the choice of model input parameters.) Specifically,400

compared to the DNS data, the magnitude of the modelled streamwise velocity variance401

is smaller across the entire channel and the sub-Gaussian behaviour of the velocity402

fluctuations within the inertial domain is not captured. To correct this deficiency, and403

informed by the analyses of Klewicki et al. (2007) and Eyink (2008) showing that an404

outward flux of vorticity is connected with an inward flux of momentum (at least in the405

mean), a momentum exchange mechanism is incorporated into the model. Specifically,406
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when a vortical fissure is repositioned, its characteristic velocity at its new position is407

computed as follows408

U+
i,new = U+

i +ΔU ′, (3.6)

where409

ΔU ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
y+
i −y+

i,new

y+
i+1−y+

i

]
(U+

i+1 − U+
i ), y+i,new > y+i

[
y+
i −y+

i,new

y+
i −y+

i−1

]
(U+

i+1 − U+
i ), y+i,new < y+i

is the momentum gain/loss as the VF moves to its new position (y+i,new). Effectively, (3.6)410

reassigns the momentum distribution in the instantaneous profile compared to the master411

profile based on the wall-normal motion of a VF. Specifically, when a VF moves farther412

from the wall there is a momentum loss compared to the master profile. Conversely, as a413

VF moves toward the wall there is a momentum gain compared to the master profile. The414

magnitude of the momentum loss/gain by a VF is proportional to its relative wall-normal415

displacement compared to the master profile [(y+i − y+i,new)/(y
+
i+1 − y+i )]. The sensitivity416

of the modelled results to the momentum exchange mechanism is explored in § 5.3.417

Figure 6 shows a flowchart of the UMZ/VF dynamical model. First, the flow is divided418

into two dynamically distinct domains: subinertial (0 � y+ � φ2
c

√
δ+) and inertial419

(φ2
c

√
δ+ � y+ � δ+). The fissure width f+

w is then selected as an empirical input to420

the model. Although f+
w ≈ √

δ+ in the inertial domain, for ease of calculation and,421

particularly, for use in the subinertial domain, it is convenient to assign a much smaller422

fixed value. Nevertheless, we emphasize that (as shown in § 5.1) the modelled profiles are423

invariant for f+
w �

√
δ+ in the inertial domain because VF widths are significantly424

smaller than the mean separation between adjacent VFs. Next, the number of VFs425

in each domain is determined (nV F and NV F for subinertial and inertial domains,426

respectively). For the inertial domain NV F = L + 1 while for the subinertial domain427

nV F is an empirical input to the model that is determined once f+
w and the positioning428

of the VFs are specified. In the inertial domain, the centroid of the first fissure is placed429

at y+nV F+1 = φ2
c

√
δ+ with characteristic velocity U+

nV F+1 = 3.5 + 0.5U+
c + 1.26. The430

positioning and the characteristic velocity of the adjacent VFs is given by (2.3) and431

(2.4), respectively. In the subinertial domain, the position of the VF centroid closest to432

the wall is y+1 = (f+
w + 1)/2 with characteristic velocity U+

1 = y+1 such that the lower433

edge of the first VF is at the wall and has zero velocity (i.e. in accord with the no-slip434

boundary condition). Adjacent VFs are logarithmically spaced moving outward from the435

wall. The velocity variation within the VFs in the subinertial domain is computed using436

the empirical relationship (3.4). Once the thickness, location and characteristic velocity437

of the VFs are specified, a master profile (see figure 5) that represents the most probable438

arrangement of VFs is developed using the UMZ construct given by (3.1) and (3.2). The439

VF positions are then perturbed in accord with (3.5), and new velocities are assigned to440

the VFs corresponding to their new wall-normal positions using the momentum exchange441

formula given in (3.6). Note that, in a perturbed profile, subinertial and inertial VFs may442

cross, i.e. subinertial VFs can move into the inertial domain and conversely. This model443

therefore naturally embodies an inner-outer interaction consistent with the description of444

Klewicki et al. (2007) and the modulation studies of Mathis et al. (2009). Following this445

algorithm, a new instantaneous velocity profile associated with the perturbed UMZ/VF446

arrangement is generated. The process is repeated (e.g. 5000 times) to obtain sufficiently447
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Figure 6. Flowchart of the UMZ/VF model construction. Note that NV F equals the greatest
integer less than or equal to 1.04ln(δ+)−1, i.e. L+1, where L roughly approximates the number
of UMZs in region IV.
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Figure 7. Statistical moments of the streamwise velocity computed using the UMZ/VF model
( ): (a) mean, (b) variance, (c) skewness, and (d) kurtosis of the streamwise velocity. Results
are compared to the corresponding statistics extracted from the channel flow DNS of Lee &
Moser (2015) at δ+ = 5200 ( ). The horizontal dashed lines denote the value of the statistical
moment for a Gaussian distribution.

many independent realizations. Finally, the ensembles produced in this way are used to448

calculate statistical moment profiles of the streamwise velocity. It is worth noting that a449

typical run of 5000 realizations takes approximately one minute on a standard PC.450

4. Turbulence statistics451

As described in § 2 and § 3, the UMZ/VF model is grounded in the analysis of the mean452

streamwise momentum equation at high Reynolds numbers but requires the specification453

of a modicum of empirically-determined inputs. In particular, the results presented in454

this section have been produced using a positively-skewed Gaussian distribution with a455

standard deviation σ = 1.6Δy+, a fissure width f+
w = 6 and a log-spaced distribution456

of the VF centroid positions in the subinertial domain. The VFs exchange momentum457

according to (3.6). The criteria used to select these parameters are examined in § 5,458

where a brief discussion of their physical meaning is also given. Figure 7 compares the459

mean U+, variance u+2, skewness S(u+) and kurtosis K(u+) of the streamwise velocity460

u generated from the UMZ/VF model with the corresponding statistics extracted from461

the channel flow DNS of Lee & Moser (2015). These results are discussed in detail below.462

4.1. Mean velocity463

As shown in figure 7(a), the modelled mean velocity profile follows the DNS profile464

closely. The slight discrepancy between the modelled profile and the DNS data in the465

inertial domain primarily is attributable to a limitation of the model with respect to466

the wake region. More specifically, (1) the theoretical basis for the model, while only467
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strictly valid on an interior portion of the inertial domain, is extended into and across the468

wake region; and (2) the far-field boundary condition on the (instantaneous) streamwise469

velocity, intended to represent the ill-defined conditions at the edge of the boundary layer470

or at the centre of the channel, is imprecisely known. Regarding the latter issue, in the471

present construction of the model the outer VF is located at a fixed wall-normal position472

and ascribed a fixed characteristic velocity, given by (2.3) and (2.4), respectively. Unlike473

the other VFs, the outer VF is not allowed to move and exchange momentum. We have474

verified that when the outer VF is allowed to move, the modest deviation of the modelled475

mean velocity profile from the DNS data in the inertial domain is reduced; unfortunately,476

model results for the higher-order statistical profiles are negatively impacted. Despite the477

shortcomings of the the model in the wake region, the so-called indicator function Ξ =478

y+dU+/dy+ computed from the model results nevertheless exhibits a pseudo-plateau479

region in an interior part of the inertial domain as evident in figure 8. This pseudo-plateau480

region indicates logarithmic y-variation of the mean velocity profile in this region with481

a von Kármán constant κ = 1/Ξ ≈ 0.4. Improvements to the model in the wake region482

will be one focus of future studies.483

Importantly, the construction of the master profile is in itself not sufficient to guarantee484

good quantitative agreement between the modelled and DNS mean profiles. Additional485

factors do influence (albeit to a lesser extent) the ensemble-averaged modelled mean486

profile, namely: (i) the inner and outer boundary conditions (i.e. the location and velocity487

of the first and last fissure); (ii) the allowable wall-normal displacement of the VFs (which,488

if too small leads to spatial oscillations in the mean profile); and (iii) the reference489

position where the velocity is assigned for any given VF (e.g. lower edge, upper edge490

or centroid). Regarding the third factor, since the assigned velocity represents the mean491

velocity carried by a fissure, it must be placed at the centroid. If, instead, the assigned492

velocity is associated with the upper (lower) edge of the VF, the modelled mean profile493

lies above (below) the DNS profile.494

4.2. Velocity variance495

As evident in figure 7(b), the model is able to reproduce detailed features of the496

streamwise velocity variance. For instance, the inner peak location and amplitude, as497

well as the inflection point in the outer region, are accurately reproduced. Remarkably,498

another important characteristic quantitatively captured by the model is the apparent499

emergence of a plateau/second peak near the onset of the inertial domain, y+ ≈ 2.6
√
δ+.500

This position also delimits the start of a logarithmic decay of the variance, which501

extends to the end of the inertial domain (Marusic et al. 2013). The model, however,502

fails to capture the variance very close to the wall (y+ � 10). This discrepancy may503

be attributable to a number of factors; e.g. vortex stretching is not mechanistically504

represented in the model. (Note that the same explanation also presumably applies to505

the near-wall discrepancies in the skewness and kurtosis profiles; see below.)506

4.3. Skewness of the velocity fluctuations507

The skewness of the streamwise velocity fluctuations S(u+) is shown in figure 7(c). As508

acknowledged above, the behaviour of the model in the near-wall region y+ � 10 requires509

further refinement, although reasonable agreement with the DNS skewness profile may be510

observed for y+ � 5. In this region, the model is able to reproduce the downward shift in511

the skewness, near y+ ≈ 30, in the vicinity of the sub-Gaussian peak. The sub-Gaussian512

trend in the DNS data is reproduced faithfully by the model out to y ≈ 0.8δ+, where the513

outer boundary condition then has an important influence.514
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Figure 8. The indicator function Ξ = y+dU+/dy+ computed from down-sampled mean
velocity results from the UMZ/VF model ( ) and from the channel flow DNS of Lee & Moser
(2015) at δ+ = 5200 ( ).
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Figure 9. (a) The PDF of spanwise vorticity of opposite sign to that at the wall as computed
from the model results ( ); as computed from the Johns Hopkins turbulence data base DNS
channel flow data at δ+ � 1000 ( ) (Perlman et al. 2007; Li et al. 2008). (b) The master
(n=0) and three representative instantaneous velocity profiles (n=10,100,1000). The red boxes
in the instantaneous profiles highlight occurrences of strong positive instantaneous vorticity.

4.4. Kurtosis of the velocity fluctuations515

The modelled streamwise velocity kurtosis K(u+) profile is given in figure 7(d). The516

downward shift predicted by the UMZ/VF model occurs closer to the wall, i.e. near y+ ≈517

3, relative to the DNS data. As the profile crosses the Gaussian threshold K(u+) = 3,518

however, it consistently exhibits a sub-Gaussian behaviour across the whole domain, in519

accord with the DNS results. In contrast with the skewness profile, the modelled kurtosis520

exhibits good agreement with the DNS even out to the boundary layer edge (y+ = δ+).521
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4.5. PDF of the positive spanwise vorticity522

In addition to investigating the moments of the streamwise velocity, we also examined523

the modelled behaviour of the spanwise vorticity. Figure 9(a) shows the probability of oc-524

currence of strong positive instantaneous vorticity (i.e. opposite in sign to that at the wall)525

throughout the boundary layer. The master (n=0) and three representative instantaneous526

velocity profiles (n=10,100,1000) are shown in figure 9(b). The red boxes in the instanta-527

neous profiles highlight occurrences of strong positive instantaneous vorticity. The data528

in figure 7 was generated according to the following protocol. For each instantaneous529

velocity profile, the vorticity at the wall, ω(y=0), is computed. Then the y-positions530

in each of these instantaneous profiles where ω(y) � −0.1[ω(y=0)] are detected and531

recorded. This procedure is repeated for all realizations. Next, at each y-position across532

the channel domain, the number N(y) of realizations for which ω(y) � −0.1[ω(y=0)]533

is recorded. The probability of occurrence is computed as N(y)/
∫ δ+

0
N(y)dy. As shown534

in Klewicki & Hill (1998), for example, there are frequent positive-vorticity events for535

25 � y+ � 35 in the turbulent boundary layer, as can also be observed in turbulent536

channel flow data (see the solid black curve in figure 9(a) computed following the same537

protocol used for the modelled results). The model also predicts significant near-wall538

positive vorticity, albeit with a peak at y+ ≈ 10. This model discrepancy in the peak539

location of the probability density function (PDF) is conjectured to be attributable to540

neglecting vorticity stretching and reorientation, which drive inter-component transfers541

from ω̃z to ω̃x and ω̃y.542

Collectively, these comparisons indicate that the simple elements used to construct the543

UMZ/VF model are sufficient to quantitatively reproduce observed statistical behaviour544

over the interior of the boundary layer, although inaccuracies both very close to the545

wall and near the boundary layer edge suggest that additional physical processes (e.g.546

near-wall vortex stretching) beyond those retained are significant in those regions. While547

feasible, refinements that incorporate such effects are not pursued here.548

5. Sensitivity analysis549

To assess the sensitivity of the model results to variations in the values of empirically550

chosen parameters, we next systematically adjust key model parameters within physically551

expected ranges and compare the resulting statistics to DNS data. Specifically, the552

impact of varying (i) the VF width, (ii) the probability distribution governing the VF553

displacements and (iii) the sign of the streamwise momentum exchange is investigated in554

sequence.555

5.1. VF width556

The vortical fissure represents a region in the boundary layer across which the stream-557

wise momentum jumps in magnitude from one UMZ to another. As discussed in § 1,558

Klewicki (2013b) and Morrill-Winter & Klewicki (2013) suggest that the inner-normalized559

thickness of a VF in the inertial domain is O(
√
δ+), while, consistently, the measurements560

of Klewicki & Falco (1996) Chauhan et al. (2014b) and de Silva et al. (2017) suggest that561

fw is of the order of the Taylor microscale. Consequently, we investigated the behaviour562

of the model for various fixed, finite values of the VF width, e.g. f+
w = 1, 2, 3, 4, 5, 6 . . .,563

as well as for a distribution of values across the boundary layer. Figure 10 shows four564

different cases: three different profiles for constant fissure widths f+
w = 2, 4 and 6565

uniformly across the entire boundary layer, and a single profile for a variable fissure566

width modelled by a sigmoidal function with two horizontal asymptotes, i.e. f+
w = 2 at567
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Figure 10. Statistical moments of the streamwise velocity field computed by the UMZ/VF
model for various prescribed VF widths. The line styles correspond to: f+

w = 6 (best results),
f+
w = 2, f+

w = 2–80, f+
w = 10, and DNS of Lee & Moser (2015) at δ+ = 5200. The

subplots are the same as figure 7.

the wall and f+
w = 80 in the inertial domain, respectively. As anticipated, the statistical568

comparisons confirm that the model is independent of fw in the inertial region, where569

the VF width is significantly smaller than the width of the adjacent UMZs. On the570

other hand, precise specification of the VF width clearly has a significant impact in the571

vicinity of the wall (y+ � 30), where the model results exhibit larger variation and572

larger discrepancies with the DNS data. The latter observation is likely attributable to573

the intense velocity gradients present in the near-wall region, and the absence of vortex574

stretching in the model. In contrast, we have modelled the velocity jump across the fissure575

with a simplistic linear relationship (§ 3.1).576

5.2. Wall-normal motion577

The wall-normal motion of the VF centroids is dictated by the probability distribution578

P in (3.5). Since the statistical distribution associated with these motions is not known,579

a judicious mix of empiricism and physical reasoning must be employed to select a580

suitable surrogate. Several PDFs were explored but, for brevity, we present only the most581

pertinent results. In short, by optimizing the model we found that the best agreement582

with the channel and boundary layer data was obtained for PDFs derived from the583

Normal distribution family. In this regard, Eisma et al. (2015) and de Silva et al. (2016,584

2017) recently have reported experimental evidence of the fluctuations in the wall-normal585

positions of the edges of the UMZs (here associated with the VF centroids). Crucially,586

they postulate that the PDF of these motions exhibits a near Gaussian distribution with587

a positive skewness in the near-wall region.588

Figure 11, presents results for a skewed Gaussian distribution for a range of standard589
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Figure 11. Statistical moments of the streamwise velocity field computed using the UMZ/VF
model with a positively-skewed Gaussian distribution of wall-normal VF displacements for
various, specified standard deviations. The line styles correspond to: σ = 1.6Δyi (best
results), σ = 0.5Δyi, σ = 1.0Δyi, σ = 2.0Δyi, and DNS of Lee & Moser (2015) at
δ+ = 5200. The subplots are the same as figure 7.

deviations, σ. A key result is that the VFs must displace, on average, at least σ =590

Δy+i units from their original position in order to ensure smooth mean profiles and a591

comparably uniform distribution of UMZs, as is necessary to recover the high-low-high592

UMZ-intermittency structure in the instantaneous streamwise velocity profile (de Silva593

et al. 2016). Conversely, it is observed that an excessive wall-normal displacement causes594

the model to over-predict the higher-order statistical profiles. The results plotted in595

figure 11 reveal that the variance is more sensitive than S(u+) or K(u+) to variations596

in the range of allowable wall-normal displacements. Inspection of this figure suggests597

that σ = 1.6Δy+i provides the most reasonable agreement with the DNS data. Although598

not reproduced here, examination of the residual values between the modelled and DNS599

profiles quantitatively confirms this observation.600

5.3. Streamwise momentum exchange mechanism601

The statistics for three different VF momentum-exchange scenarios are shown in602

figure 12. The three scenarios are (a) the momentum exchange is computed using (3.6)603

in which VFs gain (lose) momentum as they move toward (away) from the wall; (b)604

the VFs lose (gain) momentum as they move toward (away) from the wall by reversing605

the sign of the right-hand side of (3.6); and (c) the momentum exchange is suppressed.606

Inspection of figure 12 shows that the first scenario (i.e. positive exchange momentum)607

clearly exhibits the best agreement with the DNS data. It is also worth noting that, as608

for the other sensitivities, the mean velocity profile is the least sensitive to variations in609
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Figure 12. Statistical moments of the streamwise velocity field computed using the UMZ/VF
model with three different momentum exchange mechanisms. The line styles correspond to:

momentum exchange according to Eq. 3.6 (best results), no momentum exchange,
reverse momentum exchange, in which VFs lose/gain momentum as they move toward/away

from the wall. DNS of Lee & Moser (2015) at δ+ = 5200 is shown by . The subplots are the
same as in figure 7.

the model parameters. In contrast, to reproduce the higher-order statistics in turbulent610

flows, a more detailed representation of the VF dynamics is necessary.611

6. Conclusion612

A simple dynamical model of the UMZ/VF-like structure of the instantaneous stream-613

wise velocity in turbulent boundary layers has been constructed and validated via614

comparison with DNS channel flow data for a boundary-layer equivalent δ+ ≈ 5200. The615

formulation of the model involves separate treatment of two primary domains based upon616

the characteristic four-region structure derived from analysis of the mean momentum617

equation: the inertial domain, where the mean and turbulent inertia are dominant; and618

the subinertial domain, where the mean viscous force is of leading-order importance.619

The velocity and length scaling employed within the inertial region of the model is a620

discrete representation analytically developed from the continuous hierarchy-layer width621

distribution associated with formally constructing an invariant (self-similar) form of the622

mean momentum equation. This analytical scaling has been shown to be consistent with623

experimental characterization of the UMZ/VF structure (see § 2 and § 3). For the624

subinertial domain, a surrogate length and velocity scaling is explored. Here, we exploit625

the self-similar and universal behaviour of the φ function in the near-wall region (see626

figure 4) by using an empirical curve-fit of this function φ̃ to predict the subinertial627

streamwise velocity according to (3.4). Given that the length-scale analysis does not628

show the same behaviour as its inertial counterpart, a logarithmic distribution of VFs629
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in the subinertial region is used. This prescription retains consistency with the number630

of hierarchical layers increasing logarithmically with y. The concatenation of these two631

domains completes the specification of the UMZ/VF master streamwise velocity profile632

over the entire boundary layer. This master profile is used in conjunction with a minimal633

protocol for randomly displacing the VFs to generate realizations of the instantaneous634

streamwise velocity, from which various statistics of the streamwise velocity and spanwise635

vorticity are computed.636

Our study reveals that the most compelling results are obtained by using a positively-637

skewed Gaussian distribution with a standard deviation σ = 1.6Δy+, a fissure width638

f+
w = 6, and a momentum exchange mechanism that is consistent with the known inverse639

fluxes of momentum (inward) and vorticity (outward) relative to the wall. The selection640

criteria for these parameters are thoroughly discussed in § 5. Here, we remark that641

although reproduction of key aspects of the statistical properties of turbulent boundary642

layers also has been achieved using certain other structure-based models that utilize643

different flow structures (e.g. Perry & Chong (1982); Perry & Marusic (1995); Adrian644

(2007)) these models rely to varying degrees on a priori knowledge of the eddy structure645

geometry. In contrast, the present model contains two elements, UMZs and VFs, that646

empirically are known to become distinct as δ+ → ∞. Herein we demonstrate that this647

model, once properly tuned, can reproduce the main characteristics of the first four648

moments of the streamwise velocity. We also note the once tuned, results at different δ+649

acquired using identical model parameters (not shown) suggest that “ideal tuning” of650

the model will produce only a weak Reynolds number dependence. Furthermore, to our651

knowledge, the UMZ/VF model developed here is the only structure-based model that652

robustly captures the sub-Gaussian behaviour of the velocity fluctuations in the inertial653

domain.654

The results in figure 12 indicate that the modelled even higher-order moments, in655

particular, are sensitive to the momentum exhange mechanism. This feature of the656

model allows the VFs to gain or lose momentum as they are displaced toward or away657

from the wall, respectively. We postulate that this mechanism is consistent with the658

mean similarity structure of turbulent wall-flow dynamics as described by Klewicki659

(2013b). Specifically, for turbulent channel flow the turbulent shear-stress gradient can660

be expressed by661

dT

dy
= wωy − vωz. (6.1)

Since the model presented here incorporates the wall-normal repositioning of VFs, the662

only operative net momentum-transport mechanism is associated with the vωz term (i.e.663

wωy = 0). This feature is somewhat similar to Taylor’s vorticity transport theory (Taylor664

1932). The last term in (6.1) thus dictates the vorticity dynamics across the boundary665

layer, e.g. if vωz > 0, it is associated with the advection of momentum away from the666

wall (a mean momentum sink), while if vωz < 0, it is associated with the advection667

of momentum toward the wall (a mean momentum source). These dynamics also are668

supported by the recent experimental evidence of Bautista (2018), where the quadrant669

analysis of the vωz product revealed that the Q4(−v, ωz) events are dominant across the670

entire extent of the boundary layer for a wide range of δ+. In the context of the mean671

vorticity dynamics, these events are associated with the advection of high momentum672

fluid toward the wall. On the other hand, the vorticity stretching mechanism associated673

with the wωy term, and important in the sub-inertial domain, is not included in the674

model. Therefore, we postulate that if this mechanism were to be incorporated into675
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the UMZ/VF model framework, the results in the near-wall region could be improved676

considerably. Nevertheless, the agreement between the DNS and modelled streamwise-677

velocity moments lends credence to the conceptual notion that the turbulent boundary678

layer comprises logarithmically many viscous (if not laminar) internal layers. If this679

conceptual picture is valid, then a crucial question is: what three-dimensional dynamical680

processes nonlinearly sustain the staircase-like structure of the streamwise velocity in681

turbulent wall flows? We are attempting to address this fundamental issue in companion682

work (Chini et al. 2017; Montemuro 2018).683
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