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Recent studies reveal that at large friction Reynolds number 47 the inertially-dominated
region of the turbulent boundary layer is composed of large scale zones of nearly uniform
momentum segregated by narrow fissures of concentrated vorticity. Experiments show
that, when scaled by the boundary layer thickness, the fissure thickness is O(1/v/d+),
while the dimensional jump in streamwise velocity across each fissure scales in proportion
to the friction velocity w,. A simple model that exploits these essential elements of the
turbulent boundary layer structure at large 51 is developed. First, a master wall-normal
profile of streamwise velocity is constructed by placing a discrete number of fissures
across the boundary layer. The number of fissures and their wall-normal locations follow
scalings informed by analysis of the mean momentum equation. The fissures are then
randomly displaced in the wall-normal direction, exchanging momentum as they move, to
create an instantaneous velocity profile. This process is repeated to generate ensembles of
streamwise velocity profiles from which statistical moments are computed. The modelled
statistical profiles are shown to agree remarkably well with those acquired from direct
numerical simulations of turbulent channel flow at large 6. In particular, the model
robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness
and kurtosis profiles over a large range of input parameters.

Key words:

1. Introduction

A grand aim of physics is to seek simplification by distilling the most basic elements
out of complex phenomena. Quantitative models can be constructed from a minimal set
of postulated elements, and then tested against available empirical data. Satisfactory
agreement with the data generally suggests that a certain level of physical understanding
has been attained. In this spirit, we seek in this investigation to develop a simple model of
the turbulent boundary layer by leveraging a body of research over the past two decades
that has transformed important aspects of our understanding of such flows. Character-
izations of statistical structure, in particular, now more clearly reflect the interactions

1 Email address for correspondence: chris.white@unh.edu
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across scales and the influence of increasing scale separation with increasing Reynolds
number (Klewicki 2010). With this improved understanding come new opportunities to
more efficiently represent the basic mechanisms that underlie the observed flow properties
and their Reynolds number dependencies. Specifically, we employ here a complementary
set of theoretically educed and empirically observed findings to formulate a simple model
for the streamwise velocity fluctuations in turbulent wall flows. In essence, this model
leverages the physical space manifestation of scale separation between the momentum
and vorticity fields that emerges with increasing Reynolds number in these flows.

The empirical foundation of the present model is provided by the increasingly binary
spatial structure of the instantaneous spanwise vorticity field with increasing Reynolds
number, as first revealed by the particle image velocimetry (PIV) measurements of Mein-
hart & Adrian (1995). These authors observed that, in the outer region of the turbulent
boundary layer (say y/0 2 0.05, where y is the coordinate normal to the wall and ¢ is the
boundary layer thickness), there exist large-scale zones of nearly uniform streamwise (z)
momentum, which they called uniform momentum zones (UMZs). Meinhart and Adrian
also observed that adjacent UMZs are separated by slender regions of intense spanwise
vorticity, w,. Here, ® denotes a total instantaneous quantity; that is, w, = 2, + w,,
where henceforth an uppercase variable denotes a temporal or ensemble mean and a
lowercase variable represents the fluctuation about this mean. For subsequent references
u, v, and w are the total velocity components in z, y, and z directions, respectively.
Following Priyadarshana et al. (2007), we call the shear-layer-like motions vortical fissures
(VFs), since the internal vorticity structure of these motions has not yet been well
documented and may in fact exhibit significant Reynolds number dependence. The spatial
arrangement of VFs and UMZs causes the instantaneous streamwise velocity profile to
take on a staircase-like character, with most of the net velocity variation being spatially
intermittent and concentrated within the VFs (Meinhart & Adrian 1995). The target of
the present model is to capture essential features of the momentum transport associated
with this heterogeneous structure.

Shear-layer-like interfaces and concentrated internal shear layers have long been
thought to play an important role in the dynamics of turbulent flows (Corrsin & Kistler
1955; Westerweel et al. 2009; Ishihara et al. 2003; da Silva et al. 2014; Chauhan et al.
2014a; Kwon et al. 2014; Eisma et al. 2015). In an isothermal constant density viscous
flow, molecular diffusion is the sole means by which irrotational fluid particles can gain
vorticity. Corrsin & Kistler (1955) leveraged this physical constraint to advance the
concept of the viscous superlayer: the wrinkled sheet of viscous vortical fluid comprising
the corrugated instantaneous interface at the outer edge of a turbulent shear flow.
Since then, numerous studies have attempted to determine the properties associated
with turbulent/non-turbulent interfaces (e.g. da Silva et al. (2014)). Owing to the
difficulties in measuring vorticity directly, with few exceptions (e.g. see Klewicki et al.
(1992)), most of these investigations have used thresholds on surrogate quantities, e.g.
velocity magnitudes or jumps in temperature, to identify the bounding interface (Chen
& Blackwelder 1978). The advent of increasingly high Reynolds number direct numerical
simulations (DNS) and reasonably well-resolved PIV has allowed for estimates of the
thickness of, and velocity increment across, the viscous superlayer and, similarly, the
widths, velocity increments and average spacing (~ UMZ widths) of the internal shear
layers (VFs) in wall-bounded flows (Adrian et al. 2000; Chauhan et al. 2014a; Kwon
et al. 2014; Eisma et al. 2015).

The present model construction finds its firmest theoretical basis in the region where
the mean viscous force in the mean momentum balance is sub-dominant, i.e. in the inertial
domain. This condition is significant since it is commensurate with the VFs occupying a
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UMZ/VF Model of TBL 3

diminishing fraction of the overall flow volume in the limit of very large friction Reynolds
number 6T = du, /v, where u, is the friction velocity and v is the kinematic viscosity,
and is physically in accord with the dominance of advective vorticity transport in that
region. In contrast, the motions bearing high-amplitude vorticity in the near-wall region
are nearly continuously distributed in space, i.e. spacing filling (Johansson & Alfredsson
1991; Jimenez & Pinelli 1999; Klewicki & Hirschi 2004), and the vorticity field is much
more strongly influenced by the mechanism of vorticity stretching (Klewicki 2013b).

Despite its simplicity, the present modeling framework implicitly reflects and explicitly
incorporates a number of estimated UMZ and VF properties. Through the use of existing
PIV measurements, along with threshold crossing analysis of well-resolved w, time series,
Klewicki (2013b) provided the first estimates of the average VF width f,, as a function
of %. These planar PIV and time-series based estimates exhibit good agreement at
laboratory scale §%, indicating that f,/d =~ 1.3/\/(5;+ , which also approximates the
Taylor microscale A7 up to 67 ~ 15,000 (Marusic & Adrian 2010). This scaling with Ap
also agrees with the lower-6" w, time series measurements of Klewicki & Falco (1996),
showing that the average scale of the w, bearing motions on the inertial domain becomes
independent of y, and simultaneously of the detection threshold (> w.,s). Similarly,
the recent high resolution PIV measurements of Eisma et al. (2015) at 6T ~ 2050 indicate
that the fissure width is about 40% of the Taylor scale across the entire outer region,
a result that is essentially identical to earlier w, event duration analyses (Klewicki &
Falco 1996) and reinforced by recent PIV analyses at higher 6+ (de Silva et al. 2017).
Relevant to asymptotic structure, large field-of-view PIV measurements at the Surface
Layer Turbulence and Environmental Science Test (SLTEST) facility (Klewicki et al.
1995) by Morris et al. (2007) exploited the near-neutral atmospheric surface layer (ASL)
to attain a very high Reynolds number condition: 6= =~ 600,000. These data not only
provide further evidence that UMZs and VFs exist, but also suggest that, at these
very large 6T, the internal structure of the VFs is spatially complex. Thus, this VF
structure is potentially different from that observed at lower Reynolds numbers, where
some observations suggest that the VFs comprise a concatenation of discrete vortices
(Adrian et al. 2000). Owing to limitations on the spatial resolution of the measurements
by Morris et al., however, the variation of the internal structure of the VFs with 6+
remains an open question. Nevertheless, it is intriguing that estimates of the VF thickness
derived from the PIV measurements of Morris et al. also show good agreement with
the f,/0 ~ 1.3/V/6+ dependence ascertained at lower 7. On the other hand, the
vorticity time series and Taylor scale estimates from the SLTEST site show much smaller
values than f,,/é as measured by PIV (Klewicki 2013b). This discrepancy between the
different detection methods is consistent with the possibility that VFs develop an internal
turbulence structure at sufficiently large 6.

Theoretical justification for the 1/v/6+ scaling of the dimensionless fissure width
comes from the mean momentum equation analysis of Klewicki (2013¢). Consistently,
the inertial-layer self-sustaining process (SSP) theory of Chini et al. (2017) and its
more recent revision by Montemuro (2018), both of which are derived directly from an
asymptotic reduction of the Navier—-Stokes equations, predict that the outer normalized
fissure thickness scales approximately like 1/ 5+%% and 1 /0 +7/ 16, respectively. Recent PIV
measurements by de Silva et al. (2016) further suggest an approximately logarithmic §+-
dependence of the average number of fissures (or UMZs) in the outer region, while those
of Eisma et al. (2015) and de Silva et al. (2017) confirm that the average velocity jump
across each fissure is slightly greater than u,. Below we demonstrate that these findings
are consistent with the present model framework and its theoretical foundations.
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Beyond further structural characterizations, other studies have sought to describe how
the spatial arrangement of UMZs and VFs affects momentum transport. Priyadarshana
et al. (2007) reported measurements of velocity-vorticity products in the near-neutral
ASL (6% ~ 800,000). These statistics are of interest because wall-normal gradients of
the Reynolds shear stress and turbulent kinetic energy are related to the differences
between specific velocity-vorticity correlations. They found evidence that the co-spectra
between v and w, (underlying the ww, correlation contributing to the Reynolds shear
stress gradient, where the overbar refers to a long-time or ensemble average) largely arises
owing to a scale selection between the v and w, signals. Under this scale selection, the
signals derive their greatest co-spectral contributions from motions having wavelengths
near the respective peaks of the v and w, spectra, and less so from the wavenumber range
where these individual spectra overlap. This behaviour occurs at high Reynolds numbers
when the spectral peaks of v and w, correspond to distinctly disparate wavenumbers.
Priyadarshana et al. interpreted these results to be associated with the meandering of
the slender vortical fissures by the less intense but much larger-scale v motions within the
UMZs. The large-1 asymptotic theory of Montemuro (2018) suggests a complementary
interpretation: even if the UMZ/VF structure is static, the wall-normal component of
the streamwise roll velocity in the UMZ is weak and of large scale precisely where there
exists intense spanwise vorticity within the VF, as required by the SSP force balance.
Building on the work of Priyadarshana et al. (2007), Morrill-Winter & Klewicki (2013)
explored scale-separation induced phenomena in greater detail. They found that within
the inertial domain (where the VFs and UMZs exist) the cospectrum of v and w, has
a shape that closely mimics the v spectrum, thus indicating a scale selection that is
predominantly dictated by the v motions. This finding is consistent with existing evidence
that the vw, contribution to the Reynolds stress gradient is most significant on the
inertial domain, and reinforces the hypothesis that the associated momentum transport
mechanistically derives from the spatial dispersion of motions bearing concentrated w,
(Morrill-Winter & Klewicki 2013). The model developed herein is consistent with the
idea that the advective transport of the VFs occurs at scales that are large relative to
the VF width, and increasingly so as 7 — oo.

In what follows, we first describe and further justify in § 2 the theoretical basis for
the present model. Details of the model construction are given in § 3 and results are
presented in § 4. This discussion is followed, in § 5, by a sensitivity analysis of the
results to selected parameter variations in the model. In the concluding section (§ 6), the
strengths and limitations of the model are assessed within the context of boundary layer
physics.

2. Model basis

The primary properties of the model developed here are based upon the self-similar
dynamical structure of turbulent wall flows as determined via analysis of the mean
streamwise momentum equation (Wei et al. 2005; Klewicki et al. 2009, 2014; Morrill-
Winter et al. 2017). Although the analysis has been extensively documented in the
literature (including in the references just cited), to keep the article self-contained, a
condensed description of the analysis with a focus on the elements most relevant to the
present model construction is provided here.
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Equation (2.1) gives the inner normalized version of the mean momentum equation for
the boundary layer,

Ut out Ut oTt
-(U* vt =0 2.1
( ot oyt ) i dy+2 * oyt ’ 21)
——
MI MV TI
while for the channel
1 d*U* 4T+
— +——+—=0. 2.2
5+ + dyt2 + dyt (22)
N —— =~
PG MV TI
Here TT = —uwv " represents the Reynolds stress. Note that in both cases the mean

momentum balance is composed of three terms. From left to right the balance in the
boundary layer includes mean inertia (MI), the mean viscous force (MV) and turbulent
inertia (TT), whereas in the channel the mean pressure gradient (PG), the mean viscous
force (MV) and turbulent inertia (TT) comprise the momentum balance.

Unlike the balance of terms in the equations for laminar channel or boundary layer flow,
the terms in these equations are not of leading-order importance uniformly throughout
the flow. In fact, the dominant balance (involving either two or three of the terms) changes
with distance from the wall such that there is a well-defined four region structure (Wei
et al. 2005), revealed through the ratio MV/TI as shown in figure 1. Within three of
these regions, (2.1) or (2.2) is brought into balance with two large terms dominating one
small term (regions I, IT and IV), while in another region (region III), all three terms
contribute significantly to the balance. Thus, while all of the three terms in (2.1) or (2.2)
are of leading order importance over some portion of the wall-normal domain 0 < y < 4, in
three of the four regions there emerges only two dominant terms. An especially significant
feature of this structure is that there exists a Reynolds number dependent position from
the wall at which the mean viscous force becomes sub-dominant. This position is depicted
by the outer edge of region III located at y* = 2.64/6F for channel flow. Beyond this
location the mean momentum equation is inertially dominated, comprising a balance
between the pressure gradient and turbulent inertia in the channel and between mean
inertia and turbulent inertia in the boundary layer. The v/6+ dependence of this position
is analytically predicted by the mean equation theory (Wei et al. 2005). The scaling
properties of the region widths and their velocity increments for canonical turbulent
channel flow are summarized in table 1.

Analysis of the mean momentum equation reveals an underlying similarity structure,
one consequence of which is a logarithmic mean-velocity-profile solution determined
by directly integrating the mean equation (Klewicki & Oberlack 2015; Morrill-Winter
et al. 2017). This logarithmic profile arises as result of distance from the wall or y-
scaling, distinct from wall-flow representations that assume y-scaling (e.g. Townsend’s
attached-eddy framework, see Townsend (1976); Perry & Marusic (1995)). Here y-scaling
is analytically required for the mean momentum equation to admit an invariant form
that respects the leading order balance of terms with increasing y. Specifically, the mean
equation can be continuously rescaled into a single parameter-free form that is valid on
each layer of a continuous and self-similar hierarchy of layers spanning a domain from
y=O0(v/u;) toy = O(d). On each layer of this hierarchy, the rescaling is such that all of
the terms in the mean equation are retained at leading order — a condition that reflects the
changing average scale of the turbulent motions responsible for the wallward momentum
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Peak Reynolds
stress location

MV/TI
je=)

FIGURE 1. Sketch of the four region structure of turbulent wall-bounded flows at a
representative, large Reynolds number: region I |MI/PG| ~ |MV| > |TI|; region
II \MV| =~ |TI] > |MI/PG|; region Il |MI/PG| =~ |MV| =~ |TI|; region IV
|MI/PG|~|TI|> |MV| (Wei et al. 2005).

Physical Region Magnitude Ordering Ay Increment AU Increment

I PG|~ [MV|> [Tl O(v/u,) (< 3) O(ur) (<3)
11 IMV| &~ |TI| > |[PG| O(\/vh/u.) (~1.6) O(U.) (~ 0.5)
111 PG|~ [MV| ~ |TI| O(y/vh/ur) (=~1.0) O(u:) (~1)
v PG| ~ |TI| > MV o(h) (—1) O(U.) (- 0.5)

TABLE 1. Magnitude ordering and scaling behaviors associated with the structure of the leading
order balance of mean forces in canonical turbulent channel flow. Note that PG, MV and TI refer
to the mean pressure gradient, mean viscous force and turbulent inertia terms that, from left
to right, are given in (2.2); U, is the mean centerline velocity; and h is the channel half-height.
Regions I, II, IIT and IV are indicated in figure 1.

flux with distance from the wall. The width W of each hierarchy layer physically reflects
the size of the turbulent motions responsible for wallward momentum transport (Klewicki
et al. 2014), i.e. those motions associated with negative Reynolds stress. The theory
prescribes a width and streamwise velocity increment for each layer: in the present model
construction, a UMZ and its companion VF are effectively interpreted as one such layer
on the layer hierarchy.

The sketch in figure 2a depicts that each point on the monotonically decreasing portion
of the dTt /dy™ profile (i.e. y > y,;, where y,; denotes the peak location of the turbulent
inertia) uniquely corresponds to a wall-normal position, and at each of these positions
there resides a layer of finite width that is the member of the layer hierarchy at that point.
Figure 2b plots these layer widths using DNS data. The layer hierarchy follows from the
fact that at each distance from the wall, there is an average scale of motion at which
the dynamics become inertially dominated (refer to region IV in table 1, in which the
mean viscous forces are negligible). The theory predicts that, on average, the turbulent
motions contributing to wallward momentum transport become inertially dominated at
an increasing scale with increasing distance from the wall (Klewicki 2013¢). The end
result is that when u, and the local layer width W (y™) are used to normalize the mean
equation under the requirement that all terms are of leading-order significance, then the
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FIGURE 2. (a) Schematic depiction of the self-similar layer hierarchy admitted by the mean
momentum equation. 71 = turbulent inertia. (b) Distribution of hierarchy layer widths W (y™)
as quantified using the channel flow DNS of Lee & Moser (2015). The line styles correspond
to:r e 5+t = 1000, 6%t = 2000, and —3" = 5200. In the proposed model, each layer is
associated with a UMZ and a VF.

re-normalized mean momentum equation becomes parameter-free and invariant from one
layer to the next. As can be seen in figure 2b, wallward of the inertial domain the W
profile is a nonlinear function of yT, but invariant with 7. On the inertial domain, this
invariance also holds (emerges) for increasing 1, but here W is well-approximated by
a linear function of y*, and increasingly so with increasing §*. Thus, while the layer
hierarchy is self-similar both interior to and on the inertial domain, analyses on the
inertial domain are simpler owing to the linear behaviour of W+ (y™).

The linearity of the W profile on the inertial portion of the layer hierarchy underlies
the logarithmic dependence on yT of the mean velocity profile. Here the mean momentum
equation analysis predicts the emergence (with increasing §7) of an increasingly perfect
dynamic self-similarity from one layer to the next. This self-similarity enables closure of
the mean momentum equation, so that it can be directly integrated, yielding a similarity
solution that takes the form of the universal logarithmic mean velocity profile as §*
becomes large (Klewicki & Oberlack 2015; Morrill-Winter et al. 2017).

The absence of a leading-order mean viscous force on this logarithmic layer accords
with the observed structure of UMZs and VFs. Namely, the viscous/vortical regions in
the inertial domain occupy a diminishing fraction of the flow volume with increasing
d7, as is physically reflected by the existence of the VFs. Conceptually, these motions
effectively constitute “boundary layers” within the turbulent boundary layer, a notion
first promoted in Klewicki (2013a) and explored in greater dynamical detail in Chini
et al. (2017) and Montemuro (2018). A discrete (but valid) version of the hierarchy
layer structure on the inertial domain provides a theoretically based recipe for assigning
the wall-normal widths and velocity increments to the hierarchy layers with increasing
distance from the wall, as described next.

Owing to their finite width, adjacent layers on the continuous hierarchy obviously
overlap. By construction, however, the local scaling for any given layer formally holds over
the extent of that layer. Thus, the most straightforward way to convert the continuous
hierarchy description into a theoretically valid discrete representation is to stack adjacent
layers such that the upper edge of one layer is the lower edge of the next. In fact, this
construction already has been pursued by Klewicki et al. (2014), revealing a number of
important features associated with the structure of the inertial domain. Among these is
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that the relative position of the start of one discrete hierarchy layer (y;7) to the next
(yi':_l) on the inertial domain is given by

Y
i =i+ o beyy (2.3)
(&
for non-negative integer i, and the mean velocity increment from one layer to the next
UL, —U"=AU" =~ ¢ZIn ¢.. (2.4)

In these expressions ¢, ~ 1+T\/5 ~ 1.62 is the so-called Fife similarity parameter, and is
equal to the inverse of the asymptotically constant slope of the W (y™*) profile on the
inertial domain (see figure 2b). In the analysis, ¢ is the coordinate stretching function
that produces an invariant form of the mean momentum equation on each hierarchy
layer. This asymptotic constancy of ¢ (i.e. ¢ — ¢.) on the inertial domain also reflects
a constant wall-normal flux of turbulent inertial force. Namely, under normalization by
W and u,, the second derivative of the Reynolds stress approaches the constant value
2/¢.. A further mathematical consequence is that ¢? = 1/k, where & is the von Kdrman
constant.

The number of discrete layers L on the inertial portion of the hierarchy increases
logarithmically with §7, and thus under this discrete construction is countably infinite as
T — oo. The simplest way to generate an estimate for L is to note that the inertial layer
starts at yt ~ ¢2v6T (Klewicki et al. 2014) and that the hierarchy ends at y ~ 61 /2
(see figure 2b), and that between these wall-normal locations the layers increase in scale
according to the geometric progression given by (2.3). As an approximation, here we
assume that this geometric progression extends all the way to § and from this deduce
that

Wit o~ =l Tt (2.5)
Subsequently solving for L yields L = [1.04ln6" — 2|, where |e]| is the floor function.
A similar but somewhat more complicated estimation procedure yields an estimate for
L by accounting for the velocity increments associated with the VFs. As depicted in
figure 3, these two estimates are nearly identical. Both, however, implicitly rely on the
asymptotic approximation that all velocity variation occurs within the VFs and, similarly,
that the VFs are negligibly thick relative to the UMZs. According to the present model
construction (detailed below), the expectation is that L roughly approximates the number
of UMZs Nyarz in region IV of figure 1b. These estimates and the recently reported
measurements of Nz by de Silva et al. (2016) are plotted in figure 3. As is apparent,
the asymptotic predictions consistently over-estimate the measured values. A number of
sources, however, might contribute to the observed discrepancy. These include finite 6T
effects not accounted for in the analytical estimates, and the difficulties associated with
accurately estimating Ny sz experimentally. Regarding the former, at finite 5 not all of
the velocity variation is contained in the VFs, and thus must be spread (in some unknown
manner) throughout the UMZs (Klewicki 2013a). Unraveling precisely how this effect
modifies the analytical estimates of Ny sz is not straightforward. Nevertheless, one can
safely surmise that the effect reduces the estimate of Ny jpsz; for example, by considering
the limiting case of smoothly distributed vorticity throughout region IV — a scenario with
no discernible VFs. For laboratory scale 6 flows, Klewicki (2013a) estimates that about
75% of the mean velocity variation is contained within the VFs. Thus, a crude estimate
for Nyarz at the 67 of the measurements can be obtained simply by attenuating the
asymptotic estimates according to the percentage of velocity variation contained in the
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FIGURE 3. Number of uniform momentum zones Nyarz within region IV versus Reynolds
number 67: @, as measured by de Silva et al. (2016); , as given by L, where L is the
analytically estimated number of inertial hierarchy layers; - - - | as estimated by also accounting
for the velocity increments. ——, - - -, finite T corrections to the asymptotic estimates by
weighting the percentage of mean vorticity contained in the VFs.

VFs, i.e. by multiplying the asymptotic estimates by 0.75. As shown in figure 3, this
“simple” correction leads to a much better agreement with the data. Nevertheless, for
the sake of simplicity, in the model construction described below we do not consider
these effects, but instead invoke the asymptotic T approximation by assigning all mean
velocity variation to the VFs.

3. Model construction

The detailed formulation of the UMZ/VF model is described in this section. The
discussion is separated into two parts. First, the inertial layer formulation, which enjoys
the theoretical grounding given in § 2, is outlined. This is followed by an explication of
the rationale for the model within the sub-inertial (i.e. near-wall) domain.

3.1. Imertial domain UMZ/VF model

The UMZ/VF structure on the inertial domain is represented by a set of N discrete
layers of concentrated vorticity (i.e. VFs) spaced according to (2.3). The velocity incre-
ment across each VF is given by (2.4). The following additional model prescriptions are
made: the (wall-normal) fissure width f," = 6 (this choice is justified a posteriori in later
sections); consistent with the theoretical framework, the lower boundary of the inertial
domain is located at y,fVF 41 = ¢2V/6F, where nyp is the number of subinertial VFs;
the mean velocity at this location is UJVFH = 3.5 + 0.5U} + 1.26, which respectively
accounts for the contributions from regions I-1II; and the wall-normal position y]J{,VF and
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corresponding velocity Uﬁw of the outer most fissure is obtained by setting the index
it = (Nyp —1) = L, where Ny is the number of VFs in the inertial region, in (2.3) and
(2.4).

A modeling ambiguity arises for VFs of finite width, since the position of the (finite)
VF is not uniquely prescribed by (2.3). In the absence of further dynamic or kinematic
constraints, we empirically considered the respective ramifications associated with using
the lower edge, the centroid and the upper edge as the reference position for any given VF
at yf . Of these possibilities, only the centroid prescription avoids the asymmetries inher-
ent in edge assignment, and leads to a computed mean profile that closely corresponds
to the actual mean profile. The other choices either consistently under- or over-estimate
the mean velocity. Concomitantly, associating yj' with the centroid of the i-th VF also
significantly improves the prediction of the higher statistical moment profiles.

The uniform velocity within each UMZ is associated with the edge velocities of the
bounding VFs. In this regard, the lower (‘low’) and upper (‘up’) edge velocities of the
i-th VF are defined as follows

1

U:low = 5(U1+ + Uitl)’ (31)
1

Utp = §(Ui+ +UL). (3.2)

Consequently, grid points comprising the lower UMZ, between the y;r_l and y;r centroids,

have characteristic momentum U, and the grid points corresponding to the upper

i,low
UMZ have characteristic momentum UiJ_fup. Consistent with this set of rules, if there are
N VFs, then the number of UMZs is N — 1. Beyond the specification of a constant
freestream velocity boundary condition, the current model formulation does not account
for a wake structure between the logarithmic region and freestream. For this reason, and
because channel flow DNS currently attain larger 67 than do boundary layer DNS, we
use the channel flow DNS data of Lee & Moser (2015) as a baseline for validating the
model. This DNS was performed at 6+ ~ 5200, with a centerline velocity U} ~ 26.5.
Using these parameter values, there are nominally six UMZs beyond the outer edge of
region III, consistent with the asymptotic estimates given in figure 3.

3.2. Subinertial domain UMZ/VF model

The use of (2.3) and (2.4) to estimate the distribution of the vortical fissures and their
characteristic velocities has a well-founded theoretical basis in an interior domain where
the flow is inertially dominated, i.e. v+ < yT < 61/2. As noted in the preceding
subsection, we extend application of these formulas to the centerline, and therefore choose
to compare with channel flow, since the deviation between the outer region mean velocity
profile and the logarithmic profile tends to zero for channel flow as 6+ — co. Closer to the
wall, the mean momentum equation continues to admit a self-similar form, as evidenced
by the universal W profile in figure 2b. The simple linear relationship between y™
and W is lost, however, and analytical representations have yet to be developed. This
more complicated W (y™) function coincides with a leading-order mean viscous force,
an increasingly space-filling vorticity field as y™ decreases, and an increasing significance
of vorticity stretching and reorientation; e.g. see Klewicki (2013b).

While more rigorously based treatment of the subinertial region must await analytical
prediction of W7, herein we employ an empirical construction that meaningfully retains
connection to a hierarchy of layers of increasing scale with increasing y*. To do this, we
first note that within the region where W* oc y* (i.e. where ¢ = ¢.) there is a well-
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FIGURE 4. ¢(y*) vs y* computed for channel flow DNS of Lee & Moser (2015). The
line styles correspond to: —38t = 5200, === 5T = 2000, -« 5t = 1000, -e-fit
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defined asymptotic connection between the coordinate stretching function ¢(y™) and the
so-called indicator function. Namely,

2 () — Ldut L dUt

¢* (y©) = oW ar =
Here, it is useful to recall the analytical result that ¢? = 1/ within the inertial sublayer
(Klewicki 2013¢). Although the equality between the two expressions for ¢2 in (3.3) does
not hold on the subinertial domain, the second expression provides a convenient surrogate
(say, ¢ZQ) for ¢2, since like W these profiles do not vary with 1. Profiles of ¢ at different
§T are plotted in figure 4. Thus, in the model implementation, é(y“‘) is approximated
by a nonlinear curve fit to the DNS data (also shown in figure 4). Use of this analytical
fit then enables the allocation of spatial steps and their associated velocity increments
(essentially VFs and UMZs) on the subinertial domain. Here, the velocity increments are
found by rearranging and linearizing (3.3), which yields

(3.3)

Uiy = U+ o(y)? n (v, /y7)- (3.4)
Note that a logarithmic allocation of VFs, as chosen here, satisfies the linearization
assumption, while preserving the notion of a scale hierarchy. Specifically, Sreenivasan &
Bershadskii (2006) provide compelling evidence that logarithmic expansions in y provide
an accurate means of representing the mean velocity and Reynolds stress profiles from
y = O(v/u;) to y = O(d) by accounting for the number of hierarchical scales up to any
given y position.
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FIGURE 5. Discrete master velocity profile computed using (2.3) and (2.4) on the inertial
domain, and (3.4) on the subinertial domain.

3.3. Generating statistically independent ensembles

The master profile (see figure 5), which represents the most probable arrangement
of the VFs, serves as the baseline from which the instantaneous velocity profiles are
generated by repositioning the VFs in the boundary layer according to the following
protocol

y:_new = yz+ +P [(yj_ - y;tl)} . (35)
The statistical distribution P (Gaussian, uniform, exponential, beta, etc.) used to produce
the new VF centroid position y;fnew is empirically selected and a posteriori validated
using the statistical moments computed from the instantaneous velocity profiles. The
velocity is presumed to vary linearly across individual fissures. Note that, since each
fissure is repositioned independently of its neighbors, multiple fissures are allowed to
overlap in a given instantaneous profile; these overlaps are more likely to occur in the
near-wall region. When fissures do overlap, the velocity across a fissure will vary piecewise
linearly. Also note that, in the present model construction, the outer most VF is not
allowed to move.

A critical finding of the a posteriori validation of the model is that satisfactory agree-
ment with the DNS results can not be obtained simply by repositioning the VFs. (This
was found to be true regardless of the choice of model input parameters.) Specifically,
compared to the DNS data, the magnitude of the modelled streamwise velocity variance
is smaller across the entire channel and the sub-Gaussian behaviour of the velocity
fluctuations within the inertial domain is not captured. To correct this deficiency, and
informed by the analyses of Klewicki et al. (2007) and Eyink (2008) showing that an
outward flux of vorticity is connected with an inward flux of momentum (at least in the
mean), a momentum exchange mechanism is incorporated into the model. Specifically,
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when a vortical fissure is repositioned, its characteristic velocity at its new position is
computed as follows

Ut o =Ut+ AU, (3.6)

i,new

where

vi i + + + +
vF—ut Uiy = U )y Vimew > ¥
AU =

i vl + + + +
K3 2, new
s Ul = Uy Yinew < ¥

is the momentum gain/loss as the VF moves to its new position (yl+ hew) - Effectively, (3.6)
reassigns the momentum distribution in the instantaneous profile compared to the master
profile based on the wall-normal motion of a VF. Specifically, when a VF moves farther
from the wall there is a momentum loss compared to the master profile. Conversely, as a
VF moves toward the wall there is a momentum gain compared to the master profile. The
magnitude of the momentum loss/gain by a VF is proportional to its relative wall-normal
displacement compared to the master profile [(y;” — v;,..,)/ (45,1 — ¥;7)]. The sensitivity
of the modelled results to the momentum exchange mechanism is explored in § 5.3.
Figure 6 shows a flowchart of the UMZ/VF dynamical model. First, the flow is divided
into two dynamically distinct domains: subinertial (0 < yT < ¢? V%) and inertial
(p2V/0+ <yt < 6T). The fissure width f is then selected as an empirical input to
the model. Although f =~ V6% in the inertial domain, for ease of calculation and,
particularly, for use in the subinertial domain, it is convenient to assign a much smaller
fixed value. Nevertheless, we emphasize that (as shown in § 5.1) the modelled profiles are
invariant for ff < V0+ in the inertial domain because VF widths are significantly
smaller than the mean separation between adjacent VFs. Next, the number of VFs
in each domain is determined (nyr and Nyp for subinertial and inertial domains,
respectively). For the inertial domain Nyp = L + 1 while for the subinertial domain
nyp is an empirical input to the model that is determined once f;5 and the positioning
of the VFs are specified. In the inertial domain, the centroid of the first fissure is placed
at y;fVF_H = ¢2V/6F with characteristic velocity U:ww+1 = 3.5 + 05U} + 1.26. The
positioning and the characteristic velocity of the adjacent VFs is given by (2.3) and
(2.4), respectively. In the subinertial domain, the position of the VF centroid closest to
the wall is y; = (f} + 1)/2 with characteristic velocity U;" = yi" such that the lower
edge of the first VF is at the wall and has zero velocity (i.e. in accord with the no-slip
boundary condition). Adjacent VFs are logarithmically spaced moving outward from the
wall. The velocity variation within the VFs in the subinertial domain is computed using
the empirical relationship (3.4). Once the thickness, location and characteristic velocity
of the VF's are specified, a master profile (see figure 5) that represents the most probable
arrangement of VFs is developed using the UMZ construct given by (3.1) and (3.2). The
VF positions are then perturbed in accord with (3.5), and new velocities are assigned to
the VFs corresponding to their new wall-normal positions using the momentum exchange
formula given in (3.6). Note that, in a perturbed profile, subinertial and inertial VFs may
cross, i.e. subinertial VFs can move into the inertial domain and conversely. This model
therefore naturally embodies an inner-outer interaction consistent with the description of
Klewicki et al. (2007) and the modulation studies of Mathis et al. (2009). Following this
algorithm, a new instantaneous velocity profile associated with the perturbed UMZ/VF
arrangement is generated. The process is repeated (e.g. 5000 times) to obtain sufficiently
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N . User-defined parameters: . .
Sub-inertial domain = Inertial domain
0 <yt <g2vet fi, P ¢ nvE P2V/T <yt < ot
1

y y

Assign position and velocity of the VF centroids:
1,:1(7'LVF—1

yi =12 +1

i—1
AvE—1
vi =uf (abc\/ﬁ/yf') v

Assign position and velocity of the VF centroids:
i=nyp+1--- NVF*I)

Nyp=L+1
y:vp+1 :¢gm

Yl = deyl (Eq. 2.3)
U =yf Uf o1 =35+ 05U +1.26
Uy = U +6(y7)%n (ya/y7) (Eq. 3.4) U =Uf + 02 (ya/uf)  (Bq. 2.4

1
Create master profile:

Velocity profile within VFs
(Eq.3.1)

(Eq. 3.2)

|
Master profile
]

y

Create instantaneous profile:

= Perturb VFs in wall-normal
direction, using P (Eq. 3.5)

* Momentum exchange (Eq. 3.6)

1
Instantaneous profile

Statistical
convergence?

Statistical analysis

1
Mean Variance Skewness Kurtosis
(Figure 7a) (Figure 7b) (Figure 7¢) (Figure 7d)
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FIGURE 6. Flowchart of the UMZ/VF model construction. Note that Ny r equals the greatest
integer less than or equal to 1.04in(67) —1, i.e. L+1, where L roughly approximates the number

of UMZs in region IV.
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FIGURE 7. Statistical moments of the streamwise velocity computed using the UMZ/VF model
(-®): (a) mean, (b) variance, (c) skewness, and (d) kurtosis of the streamwise velocity. Results
are compared to the corresponding statistics extracted from the channel flow DNS of Lee &
Moser (2015) at 67 = 5200 (—). The horizontal dashed lines denote the value of the statistical
moment for a Gaussian distribution.

many independent realizations. Finally, the ensembles produced in this way are used to
calculate statistical moment profiles of the streamwise velocity. It is worth noting that a
typical run of 5000 realizations takes approximately one minute on a standard PC.

4. Turbulence statistics

As described in § 2 and § 3, the UMZ/VF model is grounded in the analysis of the mean
streamwise momentum equation at high Reynolds numbers but requires the specification
of a modicum of empirically-determined inputs. In particular, the results presented in
this section have been produced using a positively-skewed Gaussian distribution with a
standard deviation o = 1.6Ay™, a fissure width f;7 = 6 and a log-spaced distribution
of the VF centroid positions in the subinertial domain. The VF's exchange momentum
according to (3.6). The criteria used to select these parameters are examined in § 5,
where a brief discussion of their physical meaning is also given. Figure 7 compares the
mean U™, variance u2, skewness S(u™) and kurtosis K (u™) of the streamwise velocity
u generated from the UMZ/VF model with the corresponding statistics extracted from
the channel flow DNS of Lee & Moser (2015). These results are discussed in detail below.

4.1. Mean velocity

As shown in figure 7(a), the modelled mean velocity profile follows the DNS profile
closely. The slight discrepancy between the modelled profile and the DNS data in the
inertial domain primarily is attributable to a limitation of the model with respect to
the wake region. More specifically, (1) the theoretical basis for the model, while only
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strictly valid on an interior portion of the inertial domain, is extended into and across the
wake region; and (2) the far-field boundary condition on the (instantaneous) streamwise
velocity, intended to represent the ill-defined conditions at the edge of the boundary layer
or at the centre of the channel, is imprecisely known. Regarding the latter issue, in the
present construction of the model the outer VF is located at a fized wall-normal position
and ascribed a fixed characteristic velocity, given by (2.3) and (2.4), respectively. Unlike
the other VFs, the outer VF is not allowed to move and exchange momentum. We have
verified that when the outer VF is allowed to move, the modest deviation of the modelled
mean velocity profile from the DNS data in the inertial domain is reduced; unfortunately,
model results for the higher-order statistical profiles are negatively impacted. Despite the
shortcomings of the the model in the wake region, the so-called indicator function = =
yTdU™ /dy™ computed from the model results nevertheless exhibits a pseudo-plateau
region in an interior part of the inertial domain as evident in figure 8. This pseudo-plateau
region indicates logarithmic y-variation of the mean velocity profile in this region with
a von Kérmén constant k = 1/=5 ~ 0.4. Improvements to the model in the wake region
will be one focus of future studies.

Importantly, the construction of the master profile is in itself not sufficient to guarantee
good quantitative agreement between the modelled and DNS mean profiles. Additional
factors do influence (albeit to a lesser extent) the ensemble-averaged modelled mean
profile, namely: (i) the inner and outer boundary conditions (i.e. the location and velocity
of the first and last fissure); (ii) the allowable wall-normal displacement of the VFs (which,
if too small leads to spatial oscillations in the mean profile); and (iii) the reference
position where the velocity is assigned for any given VF (e.g. lower edge, upper edge
or centroid). Regarding the third factor, since the assigned velocity represents the mean
velocity carried by a fissure, it must be placed at the centroid. If, instead, the assigned
velocity is associated with the upper (lower) edge of the VF, the modelled mean profile
lies above (below) the DNS profile.

4.2. Velocity variance

As evident in figure 7(b), the model is able to reproduce detailed features of the
streamwise velocity variance. For instance, the inner peak location and amplitude, as
well as the inflection point in the outer region, are accurately reproduced. Remarkably,
another important characteristic quantitatively captured by the model is the apparent
emergence of a plateau/second peak near the onset of the inertial domain, y* ~ 2.6V/0+.
This position also delimits the start of a logarithmic decay of the variance, which
extends to the end of the inertial domain (Marusic et al. 2013). The model, however,
fails to capture the variance very close to the wall (y* < 10). This discrepancy may
be attributable to a number of factors; e.g. vortex stretching is not mechanistically
represented in the model. (Note that the same explanation also presumably applies to
the near-wall discrepancies in the skewness and kurtosis profiles; see below.)

4.3. Skewness of the velocity fluctuations

The skewness of the streamwise velocity fluctuations S(u™) is shown in figure 7(c). As
acknowledged above, the behaviour of the model in the near-wall region y* < 10 requires
further refinement, although reasonable agreement with the DNS skewness profile may be
observed for ™ > 5. In this region, the model is able to reproduce the downward shift in
the skewness, near y = 30, in the vicinity of the sub-Gaussian peak. The sub-Gaussian
trend in the DNS data is reproduced faithfully by the model out to y ~ 0.86, where the
outer boundary condition then has an important influence.
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FIGURE 8. The indicator function & = y"dU"/dy" computed from down-sampled mean
velocity results from the UMZ/VF model (@) and from the channel flow DNS of Lee & Moser
(2015) at 6 = 5200 (—).
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FIGURE 9. (a) The PDF of spanwise vorticity of opposite sign to that at the wall as computed
from the model results (-@); as computed from the Johns Hopkins turbulence data base DNS
channel flow data at 6t ~ 1000 (—) (Perlman et al. 2007; Li et al. 2008). (b) The master
(n=0) and three representative instantaneous velocity profiles (n=10,100,1000). The red boxes
in the instantaneous profiles highlight occurrences of strong positive instantaneous vorticity.

515 4.4. Kurtosis of the velocity fluctuations

516 The modelled streamwise velocity kurtosis K (u™) profile is given in figure 7(d). The
si7 - downward shift predicted by the UMZ/VF model occurs closer to the wall, i.e. near y* =~
sis 3, relative to the DNS data. As the profile crosses the Gaussian threshold K (u™) = 3,
sio however, it consistently exhibits a sub-Gaussian behaviour across the whole domain, in
s20 accord with the DNS results. In contrast with the skewness profile, the modelled kurtosis
1 exhibits good agreement with the DNS even out to the boundary layer edge (y* = 61).
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4.5. PDF of the positive spanwise vorticity

In addition to investigating the moments of the streamwise velocity, we also examined
the modelled behaviour of the spanwise vorticity. Figure 9(a) shows the probability of oc-
currence of strong positive instantaneous vorticity (i.e. opposite in sign to that at the wall)
throughout the boundary layer. The master (n=0) and three representative instantaneous
velocity profiles (n=10,100,1000) are shown in figure 9(b). The red boxes in the instanta-
neous profiles highlight occurrences of strong positive instantaneous vorticity. The data
in figure 7 was generated according to the following protocol. For each instantaneous
velocity profile, the vorticity at the wall, w(y=0), is computed. Then the y-positions
in each of these instantaneous profiles where w(y) > —0.1[w(y =0)] are detected and
recorded. This procedure is repeated for all realizations. Next, at each y-position across
the channel domain, the number N(y) of realizations for which w(y) > —0.1jw(y=0)]

is recorded. The probability of occurrence is computed as N(y)/ f06+ N(y)dy. As shown
in Klewicki & Hill (1998), for example, there are frequent positive-vorticity events for
25 < yT < 35 in the turbulent boundary layer, as can also be observed in turbulent
channel flow data (see the solid black curve in figure 9(a) computed following the same
protocol used for the modelled results). The model also predicts significant near-wall
positive vorticity, albeit with a peak at y* a 10. This model discrepancy in the peak
location of the probability density function (PDF) is conjectured to be attributable to
neglecting vorticity stretching and reorientation, which drive inter-component transfers
from @, to &, and @,.

Collectively, these comparisons indicate that the simple elements used to construct the
UMZ/VF model are sufficient to quantitatively reproduce observed statistical behaviour
over the interior of the boundary layer, although inaccuracies both very close to the
wall and near the boundary layer edge suggest that additional physical processes (e.g.
near-wall vortex stretching) beyond those retained are significant in those regions. While
feasible, refinements that incorporate such effects are not pursued here.

5. Sensitivity analysis

To assess the sensitivity of the model results to variations in the values of empirically
chosen parameters, we next systematically adjust key model parameters within physically
expected ranges and compare the resulting statistics to DNS data. Specifically, the
impact of varying (i) the VF width, (ii) the probability distribution governing the VF
displacements and (iii) the sign of the streamwise momentum exchange is investigated in
sequence.

5.1. VF width

The vortical fissure represents a region in the boundary layer across which the stream-
wise momentum jumps in magnitude from one UMZ to another. As discussed in § 1,
Klewicki (2013b) and Morrill-Winter & Klewicki (2013) suggest that the inner-normalized
thickness of a VF in the inertial domain is ()(\/(5Tr ), while, consistently, the measurements
of Klewicki & Falco (1996) Chauhan et al. (2014b) and de Silva et al. (2017) suggest that
fw is of the order of the Taylor microscale. Consequently, we investigated the behaviour
of the model for various fixed, finite values of the VF width, e.g. f.f =1,2,3,4,5,6...,
as well as for a distribution of values across the boundary layer. Figure 10 shows four
different cases: three different profiles for constant fissure widths f} = 2,4 and 6
uniformly across the entire boundary layer, and a single profile for a variable fissure
width modelled by a sigmoidal function with two horizontal asymptotes, i.e. f;} = 2 at
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FIGURE 10. Statistical moments of the streamwise velocity field computed by the UMZ/VF
model for various prescribed VF widths. The line styles correspond to: -@-f; = 6 (best results),
Bl =2, Af) =280, 9 f) = 10, and —DNS of Lee & Moser (2015) at 6" = 5200. The
subplots are the same as figure 7.

the wall and f,; = 80 in the inertial domain, respectively. As anticipated, the statistical
comparisons confirm that the model is independent of f,, in the inertial region, where
the VF width is significantly smaller than the width of the adjacent UMZs. On the
other hand, precise specification of the VF width clearly has a significant impact in the
vicinity of the wall (y™ < 30), where the model results exhibit larger variation and
larger discrepancies with the DNS data. The latter observation is likely attributable to
the intense velocity gradients present in the near-wall region, and the absence of vortex
stretching in the model. In contrast, we have modelled the velocity jump across the fissure
with a simplistic linear relationship (§ 3.1).

5.2. Wall-normal motion

The wall-normal motion of the VF centroids is dictated by the probability distribution
P in (3.5). Since the statistical distribution associated with these motions is not known,
a judicious mix of empiricism and physical reasoning must be employed to select a
suitable surrogate. Several PDFs were explored but, for brevity, we present only the most
pertinent results. In short, by optimizing the model we found that the best agreement
with the channel and boundary layer data was obtained for PDFs derived from the
Normal distribution family. In this regard, Eisma et al. (2015) and de Silva et al. (2016,
2017) recently have reported experimental evidence of the fluctuations in the wall-normal
positions of the edges of the UMZs (here associated with the VF centroids). Crucially,
they postulate that the PDF of these motions exhibits a near Gaussian distribution with
a positive skewness in the near-wall region.

Figure 11, presents results for a skewed Gaussian distribution for a range of standard
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FIGURE 11. Statistical moments of the streamwise velocity field computed using the UMZ/VF
model with a positively-skewed Gaussian distribution of wall-normal VF displacements for
various, specified standard deviations. The line styles correspond to: -@-c = 1.6Ay; (best
results), Vo = 0.5Ay;, <o = 1.0Ay;, B0 = 2.0Ay;, and —DNS of Lee & Moser (2015) at
5% =5200. The subplots are the same as figure 7.

deviations, o. A key result is that the VFs must displace, on average, at least o =
ij units from their original position in order to ensure smooth mean profiles and a
comparably uniform distribution of UMZs, as is necessary to recover the high-low-high
UMZ-intermittency structure in the instantaneous streamwise velocity profile (de Silva
et al. 2016). Conversely, it is observed that an excessive wall-normal displacement causes
the model to over-predict the higher-order statistical profiles. The results plotted in
figure 11 reveal that the variance is more sensitive than S(u™) or K(u™) to variations
in the range of allowable wall-normal displacements. Inspection of this figure suggests
that o = 1.6 Ay;" provides the most reasonable agreement with the DNS data. Although
not reproduced here, examination of the residual values between the modelled and DNS
profiles quantitatively confirms this observation.

5.3. Streamwise momentum exchange mechanism

The statistics for three different VF momentum-exchange scenarios are shown in
figure 12. The three scenarios are (a) the momentum exchange is computed using (3.6)
in which VFs gain (lose) momentum as they move toward (away) from the wall; (b)
the VFs lose (gain) momentum as they move toward (away) from the wall by reversing
the sign of the right-hand side of (3.6); and (c¢) the momentum exchange is suppressed.
Inspection of figure 12 shows that the first scenario (i.e. positive exchange momentum)
clearly exhibits the best agreement with the DNS data. It is also worth noting that, as
for the other sensitivities, the mean velocity profile is the least sensitive to variations in
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FIGURE 12. Statistical moments of the streamwise velocity field computed using the UMZ/VF
model with three different momentum exchange mechanisms. The line styles correspond to:
-®-momentum exchange according to Eq. 3.6 (best results), *¥no momentum exchange,
—+reverse momentum exchange, in which VF's lose/gain momentum as they move toward/away
from the wall. DNS of Lee & Moser (2015) at 6+ = 5200 is shown by —. The subplots are the
same as in figure 7.

the model parameters. In contrast, to reproduce the higher-order statistics in turbulent
flows, a more detailed representation of the VF dynamics is necessary.

6. Conclusion

A simple dynamical model of the UMZ/VF-like structure of the instantaneous stream-
wise velocity in turbulent boundary layers has been constructed and validated via
comparison with DNS channel flow data for a boundary-layer equivalent 5+ a2 5200. The
formulation of the model involves separate treatment of two primary domains based upon
the characteristic four-region structure derived from analysis of the mean momentum
equation: the inertial domain, where the mean and turbulent inertia are dominant; and
the subinertial domain, where the mean viscous force is of leading-order importance.
The velocity and length scaling employed within the inertial region of the model is a
discrete representation analytically developed from the continuous hierarchy-layer width
distribution associated with formally constructing an invariant (self-similar) form of the
mean momentum equation. This analytical scaling has been shown to be consistent with
experimental characterization of the UMZ/VF structure (see § 2 and § 3). For the
subinertial domain, a surrogate length and velocity scaling is explored. Here, we exploit
the self-similar and universal behaviour of the ¢ function in the near-wall region (see
figure 4) by using an empirical curve-fit of this function & to predict the subinertial
streamwise velocity according to (3.4). Given that the length-scale analysis does not
show the same behaviour as its inertial counterpart, a logarithmic distribution of VF's
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in the subinertial region is used. This prescription retains consistency with the number
of hierarchical layers increasing logarithmically with y. The concatenation of these two
domains completes the specification of the UMZ/VF master streamwise velocity profile
over the entire boundary layer. This master profile is used in conjunction with a minimal
protocol for randomly displacing the VFs to generate realizations of the instantaneous
streamwise velocity, from which various statistics of the streamwise velocity and spanwise
vorticity are computed.

Our study reveals that the most compelling results are obtained by using a positively-
skewed Gaussian distribution with a standard deviation ¢ = 1.6Ay™, a fissure width
fF =6, and a momentum exchange mechanism that is consistent with the known inverse
fluxes of momentum (inward) and vorticity (outward) relative to the wall. The selection
criteria for these parameters are thoroughly discussed in § 5. Here, we remark that
although reproduction of key aspects of the statistical properties of turbulent boundary
layers also has been achieved using certain other structure-based models that utilize
different flow structures (e.g. Perry & Chong (1982); Perry & Marusic (1995); Adrian
(2007)) these models rely to varying degrees on a priori knowledge of the eddy structure
geometry. In contrast, the present model contains two elements, UMZs and VFs, that
empirically are known to become distinct as 7 — oco. Herein we demonstrate that this
model, once properly tuned, can reproduce the main characteristics of the first four
moments of the streamwise velocity. We also note the once tuned, results at different 5+
acquired using identical model parameters (not shown) suggest that “ideal tuning” of
the model will produce only a weak Reynolds number dependence. Furthermore, to our
knowledge, the UMZ/VF model developed here is the only structure-based model that
robustly captures the sub-Gaussian behaviour of the velocity fluctuations in the inertial
domain.

The results in figure 12 indicate that the modelled even higher-order moments, in
particular, are sensitive to the momentum exhange mechanism. This feature of the
model allows the VF's to gain or lose momentum as they are displaced toward or away
from the wall, respectively. We postulate that this mechanism is consistent with the
mean similarity structure of turbulent wall-flow dynamics as described by Klewicki
(2013b). Specifically, for turbulent channel flow the turbulent shear-stress gradient can
be expressed by

% = W, — V5. (6.1)
Since the model presented here incorporates the wall-normal repositioning of VFs, the
only operative net momentum-transport mechanism is associated with the 7w, term (i.e.
Wi, = 0). This feature is somewhat similar to Taylor’s vorticity transport theory (Taylor
1932). The last term in (6.1) thus dictates the vorticity dynamics across the boundary
layer, e.g. if v, > 0, it is associated with the advection of momentum away from the
wall (a mean momentum sink), while if 7w, < 0, it is associated with the advection
of momentum toward the wall (a mean momentum source). These dynamics also are
supported by the recent experimental evidence of Bautista (2018), where the quadrant
analysis of the vw, product revealed that the Q4(—v,w,) events are dominant across the
entire extent of the boundary layer for a wide range of §7. In the context of the mean
vorticity dynamics, these events are associated with the advection of high momentum
fluid toward the wall. On the other hand, the vorticity stretching mechanism associated
with the wiw, term, and important in the sub-inertial domain, is not included in the
model. Therefore, we postulate that if this mechanism were to be incorporated into
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the UMZ/VF model framework, the results in the near-wall region could be improved
considerably. Nevertheless, the agreement between the DNS and modelled streamwise-
velocity moments lends credence to the conceptual notion that the turbulent boundary
layer comprises logarithmically many viscous (if not laminar) internal layers. If this
conceptual picture is valid, then a crucial question is: what three-dimensional dynamical
processes nonlinearly sustain the staircase-like structure of the streamwise velocity in
turbulent wall flows? We are attempting to address this fundamental issue in companion
work (Chini et al. 2017; Montemuro 2018).

This study was supported by National Science Foundation Award No. 1437851 and
partially supported by the Australian Research Council. The authors are thankful to
C.M de Silva et al. (The University of Melbourne), R. Moser (University of Illinois), J.
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