
Yukta: Multilayer Resource Controllers to Maximize Efficiency

Raghavendra Pradyumna Pothukuchi, Sweta Yamini Pothukuchi, Petros Voulgaris, and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract—
Since computers increasingly execute in constrained environ-

ments, they are being equipped with controllers for resource
management. However, the operation of modern computer
systems is structured in multiple layers, such as the hardware,
OS, and networking layers—each with its own resources.
Managing such a system scalably and portably requires that we
have a controller in each layer, and that the different controllers
coordinate their operation. In addition, such controllers should
not rely on heuristics, but be based on formal control theory.

This paper presents a new approach to build coordinated
multilayer formal controllers for computers. The approach
uses Structured Singular Value (SSV) controllers from Robust
Control Theory. Such controllers are especially suited for
multilayer computer system control. Indeed, SSV controllers
can read signals from other controllers to coordinate multilayer
operation. In addition, they allow designers to specify the
discrete values allowed in each input, and the desired bounds
on output value deviations. Finally, they accept uncertainty
guardbands, which incorporate the effects of interference
between the controllers. We call this approach Yukta. To assess
its effectiveness, we prototype it in an 8-core big.LITTLE board.
We build a two-layer SSV controller, and show that it is very
effective. Yukta reduces the E×D and the execution time of a
set of applications by an average of 50% and 38%, respectively,
over advanced heuristic-based coordinated controllers.

Keywords-Multilayer computer control, Energy efficiency,
Resource management, Robust control theory.

I. INTRODUCTION

Computing devices are increasingly operating in con-
strained environments, where resources such as energy,
power, or memory bandwidth are limited, and measures such
as temperature, Quality of Service (QoS), or throughput
need careful control. This has prompted computers to
include controllers that manage multiple resources during
execution [1], [2], [3], [4], [5], [6].

Modern computing systems are organized in multiple
layers, each with its own resources and with partial infor-
mation about the current execution — e.g., the hardware,
Operating System (OS), and networking layers. To meet
the multiple resource constraints in an execution, each layer
has information available to it that can be used to manage
resources from its perspective. There are many proposals on
managing resources in a multilayer environment (e.g., [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26]).

One approach is to have a single, monolithic controller that
takes signals from all the layers and controls the resources in
all the layers. This solution is complex to develop, difficult
to maintain, cannot interoperate across systems, and is not

scalable [7], [8], [10], [11], [14], [21]. Indeed, to build these
controllers, designers have to understand the inner details of
all the layers. Moreover, when one of the layers needs to
be modified, these controllers require a complete re-design.
Sometimes, this design is infeasible, as when hardware and
OS come from different vendors.

An alternative is to have a controller at each layer, and have
them operate in an uncoordinated, decoupled way. However,
without coordination, the overall behavior can be greatly
suboptimal [7], [10], [12], [13], [14], [22]. The different
controllers may interfere destructively.

An example of such interference is described by Vega
et al. [24] in an IBM POWER7. In this system, there
is a per-core hardware DVFS controller that changes the
core’s frequency to maintain high utilization and meet
power requirements. In the OS, there is a task scheduler
that tries to consolidate threads onto cores and power-
gate the resulting unused cores to save power. When the
multicore’s load goes down, it is expected that the scheduler
will consolidate threads to reduce power without hurting
performance. Unfortunately, the DVFS controller immediately
reduces the frequency to increase utilization, preventing the
scheduler from consolidating threads and power-gating cores.

There is a need to use modular controllers in each layer
of a multilayer system that collaborate through a mutually
agreed interface, without a monolithic or decoupled design.
This is the position taken by industry, where hardware and
software companies such as ARM and Linaro are working
on coordinated hardware-software approaches [6]. Other
examples where hardware and software power management
modules coordinate with each other include IBM [27] and
Intel systems [1], [5], [28]. In these designs, each layer
performs its own resource management, and interacts with
the other layers through well-defined interfaces.

Unfortunately, most existing coordinated, multilevel de-
signs rely substantially on heuristics [8], [13], [14], [27].
Heuristic designs are highly specific to particular choices,
and do not address the general problem. Their algorithms
may become unusable when a different hardware or software
platform is used. Moreover, even highly-tuned heuristics can
perform poorly on application corner cases [12], [29]. The
solution, then, is to use formal methodologies such as control
theory, whose properties are well studied [30].

Currently, there are no formal control methods to develop
coordinated multilayer controllers for computers. Popular
formal control designs such as PID controllers [30] and
similar Single Input Single Output (SISO) proposals [1],

[31], [32], [33] can only monitor one goal and change
one parameter. Some designs [11], [12], [25], [26] use a
collection of separate SISO controllers, but cannot manage
the interaction between the goals [34], [35], [36]. There are
controller designs that operate on Multiple Inputs and Single
Output (MISO) [37], [38], [39], [40] or Multiple Inputs and
Multiple Outputs (MIMO) [34], [35], [41]. However, all these
controllers are intended for standalone use, and do not have
channels for coordination between multiple controllers. Some
designs employ heuristics to make up for this deficit [11],
but this defeats the purpose of formal control methods.
Importantly, existing designs are not natively robust to the
large uncertainty that appears in the presence of multiple
controllers, each acting with partial system information.

In this paper, we present a new approach to build coor-
dinated multilayer formal controllers for computer systems.
We consider Robust Control Theory [30], which focuses
on uncertain environments, and pick the popular Structured
Singular Value (SSV) controller [30], [42], [43], [44]. This
is a MIMO controller with four traits that make it suitable
for computer system control.

First, SSV controllers can read External Signals, which
provide information that the controller cannot directly change,
but can use to make better decisions; we use them to
pass coordinating information between the controllers in
different layers. Second, SSV control designers can specify
the maximum bounds on the deviations of outputs from their
goals, enabling more accurate computer controllers. Third,
the design of SSV controllers accepts uncertainty guardbands,
which are useful to incorporate the effects of interference
between independently-designed controllers. Finally, SSV
control designers can provide the discretized values allowed
in each input — unlike with other controllers, where inputs
are assumed to have continuous unlimited values.

We call this approach of using multilayer SSV controllers
for computer system control Yukta. With Yukta, controllers
at different layers can be built with little interaction. This
modular design is essential for controlling complex systems
like computers. To assess its effectiveness, we prototype it in
an 8-core big.LITTLE processor board running Linux. We
build a two-layer SSV controller, and show that it is very
effective. Yukta reduces the E×D (Energy × Delay) and the
execution time of a set of applications by an average of 50%
and 38%, respectively, beyond what advanced heuristic-based
coordinated controllers attain. Our contributions are:

1) Applying MIMO SSV control from robust control theory
for systematic computer resource efficiency.

2) Yukta, an approach for independent teams to design
coordinated multilayer controllers with MIMO SSV.

3) A prototype of Yukta on a big.LITTLE multicore board
and its evaluation.

II. BACKGROUND

A. Multilayer Control

There are many works on managing resources from
different layers of a computer system (e.g., [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26]). As indicated before, designs
vary depending on whether they manage resources in a
monolithic, decoupled, or coordinated manner. In addition,
as we will see in Section VII, they also vary depending
on whether they use heuristics, control-theoretic methods,
machine learning, or optimization theory. To our knowledge,
Yukta is the first approach that uses control-theoretic methods
to build coordinated, modular multilayer controllers.

B. Robust Control for Uncertain Environments

Control theory has been used to design computer con-
trollers (e.g., [1], [12], [25], [26], [31], [32], [33], [34], [35],
[37], [38], [39], [40]). Most of these proposals use a SISO
approach, where the controller only changes one parameter
(input) to control one goal (output) [1], [31], [32], [33] —
e.g., it changes a core’s frequency to control the frame rate
of the application. Some designs use a MISO approach,
where the controller changes multiple parameters to control
one goal [37], [38], [39], [40] — e.g., it changes a core’s
frequency and L2 cache size to control the core’s utilization.
Finally, other designs use a MIMO approach, where the
controller changes multiple parameters to control multiple
goals [34], [35] — e.g., it changes a core’s frequency and
issue queue to control the core’s performance and power
consumption. In this case, each of the outputs depends
on each of the inputs. The MIMO approach is the most
applicable to computer architecture, since multiple goals
(performance, power) are typically coupled with each other.

Computers are complex, and program behavior is deter-
mined by many factors. As a result, controlling computer
environments intrinsically involves dealing with uncertain
dynamics and approximate models.

A branch of control theory that focuses on hard-to-predict
environments is Robust Control Theory [30]. In this field,
variability and uncertainty of the system dynamics at runtime
is an integral part of the controller synthesis process. Among
the robust controller methodologies, one of the most mature
and better understood, with standard packages and tools, is
Structured Singular Value (SSV) control [30], [42], [43], [44].

SSV controllers have four traits that make them desirable
in uncertain environments such as computers. One is the
ability to take-in external signals at runtime. The other three
are the ability to accept designer-specified (i) bounds on the
deviations of the outputs from their targets, (ii) uncertainty
guardbands, and (iii) descriptions of the allowed discrete
settings for the inputs. We consider each in turn.

First, SSV controllers can read at runtime an additional
type of signals called External Signals, unlike other formal

controllers. These signals provide information on measures
that the controller cannot directly change, but this information
helps the controller make better decisions. For example, a
DVFS hardware controller may take, as an external signal,
the number of active application threads from the OS.

Second, designers can specify bounds on the allowed
deviation of the outputs from their targets or goals. The
controller guarantees that the output values will be within
these bounds — subject to the existence of inputs that
generate such output values. This is in contrast to non-robust
controllers, which generally try to keep the outputs close to
the targets, but cannot guarantee any bounds.

Third, when building robust controllers, the designer
specifies model uncertainty guardbands. They are typically
expressed in percentages. For example, a 20% uncertainty
means that, due to limitations of the model or other unan-
ticipated effects, the values of the outputs can possibly be
±20% different than predicted by the model.

The designer sets the uncertainty guardband based on a
combination of suggestions from theory, system insight, and
actual experimentation. Guardbands enable the controller
to work correctly in scenarios that are very different from
modeled executions. Unlike non-robust controllers, SSV
controllers do not become slow unless significantly large
guardbands (e.g., over 400%) are used [43]. On the other
hand, if the guardband is not large enough and is exhausted
at runtime, the controller detects it dynamically, and may no
longer provide all the guarantees expected.

Finally, robust controllers accept a description of the
allowed input settings. The designer can specify the range of
values taken by the inputs and their discrete values (Saturation
and Quantization). This is in contrast to typical non-robust
controllers, such as PID controllers [30], where each input is
assumed to take values that are continuous and unbounded.
This makes SSV controllers natively applicable to computing
systems, which have discrete resources.

C. Mathematical Theory of SSV Controllers

Figure 1 shows the representation of a system when
designing an SSV controller. M is the model of the system
that we want to control. M describes how the inputs (u) and
external signals generate the outputs (y). K is the controller we
have to design. In practice, there are real world inaccuracies
shown as ∆ in the figure. One is due to the true system
behavior deviating from the model (∆u), caused by any
behavior of the system not captured by the model. This
is the model uncertainty for which we specify guardbands.
Another constraint is due to the inputs taking only a discrete
(or quantized) and limited (or saturated) set of allowed
values (∆in) instead of unlimited values. This is the input
discretization. The external signals may also have such effects,
but we omit them in this discussion.

The system inside the dotted line boundary in Figure 1
is called the nominal closed loop because it contains the

Wip Wnl Dnl Wu Du

P0
+-

K

Wop

External
signals

Outputs

Inputs

P

K

D

Output
targets

Tracking
errors

Exogeneous
inputs, w

Exogeneous
outputs, z

Control
inputs, u Measurements, y

Wn2

Perturbation
inputs, d

Perturbation
outputs, f

M

D

Exogeneous
inputs, w

Exogeneous
outputs, z

Perturbation
inputs, d

Perturbation
outputs, f

1

,

n

u

op ip

 
 
 
 
 
 

D

D  D
D

Dnl Du

P+_ K
External
signals

Output
targets Outputs, z

Nonlinearities Uncertainty

Exogeneous
inputs, w

Controller Model

N

D

Exogeneous
inputs, w

Exogeneous
outputs, z

Fictitious
inputs, d

Fictitious
outputs, f

Din Du

M+_ K
External
signals

Output
targets

Outputs, y

Controller Model
Inputs, u

Din Du

P+_ K
External
signals

Output
targets

SSV
Controller Model

Uncertainty
guardbands

Input
discretization

Closed-loop system, M

N

D

Exogeneous
inputs

Exogeneous
outputs

Perturbation
inputs

Perturbation
outputs

Closed loop
system

Consolidated
imperfections

Output deviation
boundsB

Input weightsW

Figure 1: System representation when designing an SSV
controller.

components without any imprecisions. Consolidating the
individual ∆ components into an overall ∆, and denoting
the nominal closed loop of Figure 1 as N, we can represent
the system as Figure 2. In this figure, signals generated
from elsewhere (i.e., external signals and output targets or
references) are called exogenous inputs (w). The outputs of
the system that can actually be measured outside are called
exogenous outputs (z). The ∆ block interacts with the system
through fictitious signals called perturbation inputs (d) and
perturbation outputs (f) that capture the effects of model
uncertainty and discrete inputs.

Wip Wnl Dnl Wu Du

P0
+-

K

Wop

External
signals

Outputs

Inputs

P

K

D

Output
targets

Tracking
errors

Exogeneous
inputs, w

Exogeneous
outputs, z

Control
inputs, u Measurements, y

Wn2

Perturbation
inputs, d

Perturbation
outputs, f

M

D

Exogeneous
inputs, w

Exogeneous
outputs, z

Perturbation
inputs, d

Perturbation
outputs, f

1

,

n

u

op ip

 
 
 
 
 
 

D

D  D
D

Dnl Du

P+_ K
External
signals

Output
targets Outputs, z

Nonlinearities Uncertainty

Exogeneous
inputs, w

Controller Model

N

D

Exogeneous
inputs, w

Exogeneous
outputs, z

Fictitious
inputs, d

Fictitious
outputs, f

Din Du

M+_ K
External
signals

Output
references

Outputs, y

Controller Model
Inputs, u

Din Du

P+_ K
External
signals

Output
targets

SSV
Controller Model

Uncertainty
guardbands

Input
discretization

Closed-loop system, M

N

D

Exogeneous
inputs

Exogeneous
outputs

Perturbation
inputs

Perturbation
outputs

Closed loop
system

Consolidated
imperfections

Output deviation
boundsB

Input weightsW

Figure 2: The ∆-N representation of the control problem.

The controller K in the closed loop N is robust if it: (i)
keeps N stable, (ii) generates optimal inputs according to
designer-specified input weights W , and (iii) keeps all visible
outputs z within bounds B of the targets – for all possible
model inaccuracies smaller than the specified ∆. Robust
control theory [30] uses the Structural Singular Value (SSV)
defined as follows to assess a controller’s robustness:

SSV (N,∆, B,W) =
1

min {s | det(I − s×N × [∆;B−1;W−1]) = 0}
(1)

where [∆;B−1;W−1] is a diagonal matrix with the inaccu-
racies (∆), the inverse of the bounds (B), and the inverse of
the input weights (W) in the diagonal; N is the closed-loop
matrix that gives the outputs (z, f) as a function of the inputs
(w, d); and I is the identity matrix. Finally, s is a factor that
makes the determinant (det) of I − s×N × [∆;B−1;W−1]
equal to zero.

Physically, s is a scaling factor that multiplies the ∆, 1/B,
and 1/W given by the designer. The minimum scaling factor
min(s) gives the worst-case inaccuracy (min(s) × ∆) that
the controller tolerates, the worst-case bounds (1/min(s) ×
B) that it provides, and the worst-case weights (1/min(s) ×
W) that it supports. So, if min(s) is larger than 1, it means
that the controller can handle the ∆, B, and W requested by
the designer. On the other hand, if min(s) is smaller than 1,
the controller is not robust; the specified ∆ is too large, the
specified B is too small, and/or the specified W is too small.

To design an SSV controller (K), the designer specifies
the model of the system (M), the set of ∆ values to tolerate,
and the desired B and W values. Then, MATLAB selects an
initial controller and solves Equation 1 to find its min(s). If

the min(s) value is smaller than 1, MATLAB changes the
controller, and then looks for the new min(s) for the new
controller. MATLAB continues this search until it finds a
controller with a min(s) value that is as close as possible to
(and higher than) 1, which will make SSV (N,∆, B,W) as
close as possible to (and lower than) 1. If MATLAB cannot
find a controller with such a min(s) value, the designer selects
lower ∆, 1/B, and 1/W values, and restarts.

Compare this approach to the design of a non-SSV
controller such as a PID controller [30]. In such case,
the designer can only specify the model M and obtains
a controller K. There is no way to specify inaccuracies ∆,
bounds B, and weights W in the controller design. As a
result, such controllers are less useful in complex multilayer
environments like computing systems.

D. Taxonomy of Controllers

Table I presents our taxonomy of designs from control
theory. The choices that we select in this paper are italicized.
First, the model of the system can be obtained with analytical
principles (white box), experimental data (black box), or
a combination of both (gray box). Black box models are
best when the internals of the system are unknown or too
complicated to describe, as in computers. Next, among the
different modes of control, we use MIMO (Multiple Input
Multiple Output) controllers because, as indicated before, we
target multiple tightly-coupled goals that depend on multiple
inputs [30], [34], [35].

Table I: Space of design choices from control theory.
Modeling White Box (Analytical), Black Box (Data Driven), Gray

Box

Mode SISO, MISO, SIMO, MIMO

Organization Decoupled, Centralized, Cascaded, Collaborative

Approach Classical, Robust, Gain Scheduling, Adaptive

Type PID, LQG, MPC, SSV

Then, we consider the different organizations of MIMO
controllers for multilayer systems. Decoupled or Centralized
designs cannot achieve modularity and coordination simulta-
neously. In a Cascaded design [21], controllers are organized
as a nested loop, where each controller sets the targets for the
immediately inner one. Only the innermost controller changes
the system inputs. This method is also suboptimal. Instead, we
identify as the best choice a Collaborative architecture, where
independent controllers communicate to attain coordination.

There are several approaches used to ensure that the con-
troller works correctly under uncertainty or highly-changing
conditions. The Classical one is to design controllers with
additional stability margins [45]. This works for simple
systems. Robust control explicitly optimizes controllers for
large uncertainty, and is applicable to computer environments.
The controllers have low complexity and low overheads.
In Gain Scheduling, multiple controllers are used — each

suited for a particular type of execution [46]. At runtime,
some logic chooses when each of the controllers is active,
based on the execution. This approach requires additional
modeling efforts and expensive selection logic at runtime.
Lastly, Adaptive control synthesizes a new controller online
whenever changing conditions are detected [12]. It has higher
runtime overhead.

Finally, for the controller type, PID controllers are popu-
larly used for their simplicity, but are not useful to control
MIMO systems. For MIMO systems, Linear Quadratic Gaus-
sian (LQG) controllers [35] and Model Predictive Controllers
(MPC) [34] have been proposed. However, these controllers
are not natively optimized for uncertainty and, instead,
trade-off optimality and fast response time for robustness.
Moreover, they do not have channels to communicate among
controllers. As indicated above, SSV controllers are suitable
for computer system control.

III. YUKTA: MULTILAYER SSV CONTROL

A. Challenge: Controlling Multiple Layers

The operation of a computer involves interactions between
multiple layers, including the hardware, OS, and networking
layers. In such an environment, designing a single, unified
formal controller that senses and actuates on signals from
all the layers is both impractical and non-portable. This
is because each layer has its own specialized design team,
which is intimately familiar with the control signals in that
layer, but not with those of other layers. Moreover, any
controller designed by this team should be useful even if
the other layers’ implementation changes — e.g., the same
hardware controller should work for different OSs. Hence,
control should be organized in multiple layers, with a per-
layer controller. However, as indicated above, a Decoupled
design with independent controllers is also undesirable.

B. Solving the Problem with SSV Controllers

To address the challenge of controlling multiple layers,
we propose using Collaborative MIMO SSV controllers. In
this solution, there is preferably an SSV controller in each
layer. Less desirably, there is an SSV controller at least in
the layer that controls outputs requiring accurate control (e.g.,
temperature or power), and other types of controllers in the
other layers. We call this general approach Yukta. In the
following discussion, we assume an SSV controller in each
layer; in the evaluation section, this is relaxed.

SSV control is suitable for multilayer computer control. To
see why, compare the traits of SSV control as per Section II-B
to the needs of computer systems.

First, SSV controllers take external signals. Traditionally,
these signals were used by the controller to monitor “external
disturbances”. In computer systems, we use them to pass
information from the controller of one layer to that of another
layer at runtime. The second controller can use the signals
to make better decisions, although it cannot control such

Begin

Select inputs and
specify discretization
Select outputs and
specify deviation bounds

Begin

Select inputs and
specify discretization
Select outputs and
specify deviation bounds

Controller
interface

Decide
external
signals

Decide
external
signals

Obtain

model

Obtain

model

Set
uncertainty
guardband

Set
uncertainty
guardband

Design

controller
Check

Design

controller
Check

Deploy
Layer 1

Layer 2

Figure 3: Process to design a Yukta multilayer SSV controller.

signals. For example, an OS controller can pass the number
of running threads as an external signal to a hardware DVFS
controller.

Second, in SSV controllers, designers can specify bounds
for the output value deviations. This ability allows the design
of more accurate computer controllers. In addition, if any
output is passed as an external signal to another layer’s
controller, the availability of precise output bounds helps the
pair of controllers improve their coordination.

An important case is when two controllers have the same
output — e.g., both the hardware and the OS controllers
limit the temperature. In non-SSV controllers, this output is
liable to large value oscillations, as both controllers attempt
to push its value up, overreach the limit, then push its value
down, and overreach again. Instead, two SSV controllers
can coordinate. If each controller knows the bounds that the
other controller has set for the output value, it will take a
more measured action based on the expected response of the
other controller.

Third, consider the ability to design SSV controllers
with uncertainty guardbands. In a multilayer controller, one
controller’s actions may indirectly affect the outputs that a
second controller is supposed to control. This interference can
be incorporated in the SSV controller design by increasing
the uncertainty guardband of the second controller.

Finally, with SSV controllers, designers can specify realis-
tic inputs, rather than assuming that inputs take continuous,
unlimited values. In computer systems, inputs typically take
a discrete set of values within a range. For example, core
frequency can only take a few discrete values. In our SSV
design, we provide, for each input, a notion of allowed
discrete values. This information enables more accurate
controller design. In addition, if an input is passed as an
external signal to another layer’s controller, it allows better
coordination between controllers.

Figure 4 shows the envisioned Yukta control system for
a two-layer system. Each controller takes external signals
from the other controller.

Hardware
Controller

Software
Controller

Hardware

Operating
System

App
Targets for
objectives

Monitored

values of

objectives

External
Inputs

Layer 1(e.g., OS)

Layer 2 (e.g., Hardware)

SSV Controller

SSV Controller

Multilayered
system

External
signals

External
signals

Output
references SSV

Controller

SSV
Controller

Multilayered
system

External
signals

External
signals

+

_Optimizer

Output
references

Optimizer

Design

goals

+

_

Figure 4: Yukta multilayer SSV controller.

C. Designing SSV Controllers

Figure 3 shows the process of designing a Yukta multilayer
SSV controller. In each layer, a team initiates the design
of the layer’s controller by selecting the input signals and
their discretized values, the output signals and their deviation
bounds, and the external signals that the controller takes.

Then, the teams exchange Interface information. This is
meta-information about external signals and common outputs.
Specifically, for outputs common to both controllers, the
teams exchange their layer’s deviation bounds; for an external
signal to a controller from a second layer, the second layer
team passes the allowed discrete values if the signal is an
input in the second layer, or the deviation bounds if it is an
output in the second layer.

After this communication step, each team develops a
model of the system according to their layer’s perspective
(possibly with the System Identification methodology [47]),
sets its controller’s uncertainty guardband, designs the SSV
controller using MATLAB controller synthesis routines [48],
and validates it. Finally, the designs of all the layers are
combined, validated as a group, and deployed.

This process can work across companies. For example,
Intel Skylake [1] includes new hardware control algorithms
for which some parameters must be set by the user or the OS.
Soon after the processor release, Microsoft announced power
management features in the Windows OS to take advantage
of these features [5].

If the timelines of the two teams do not overlap, or
close communication between teams is not desired, an
approach like Figure 3 can still work, albeit less effectively.
Teams can use historically-available or standard information
from the other layer for their external signals. An example
is how OS teams use the popular P-state interface of
processors [49], [50]. Alternatively, a team can do without any
extra information for their external signals. In this case, the
team should increase their uncertainty guardband. This works
because SSV controllers withstand inaccurate assumptions.

A multilayer SSV controller can be used in two ways. The
basic use is when we want each output to meet a certain
target value. In this case, the controllers will attain output
values within the allowed bounds around the target values.

A second use is when we want some outputs (or combina-
tion thereof) to maximize or minimize their value, subject to
other outputs to be within certain limits. An example is to
minimize E ×D subject to a power constraint. In this case,

the controller needs to perform some search to find the best
configuration. Hence, each SSV controller is augmented with
an optimizer module (Figure 5). We discuss the operation of
the optimizer in Section IV-D.

Hardware
Controller

Software
Controller

Hardware

Operating
System

App
Targets for
objectives

Monitored

values of

objectives

External
Inputs

SSV
Controller

SSV
Controller

Multilayered
system

External
signals

External
signals

+

_Optimizer

Output
targets

Optimizer

Design

goals

+

_

Layer 1(e.g., OS)

Layer 2 (e.g., Hardware)

SSV
Controller

SSV
Controller

Multilayered
system

External
signals

External
signals

+
_

_+

Targets

Targets

e.g., power

e.g., power target

SSV
Controller

_+Targets Subsystem
e.g., frequency

Inputs Outputs

e.g., power target

SSV
Controller

_+Targets Subsystem
e.g., frequency

Inputs Outputs

External
signals

Output
targets

Figure 5: Yukta controller augmented with optimizers.

D. Scalability to Several Layers

In an environment with several layers, we envision the
controller of a given layer to communicate mostly or only
with the controllers of its two neighboring layers. This
is consistent with the design of abstractions in a layered
structure. As layer i passes signals to layer i+1, such signals
already implicitly include the contribution of layers i-1, i-2,
etc. The latter layers should not need to communicate directly
with layer i+1.

IV. PROTOTYPING YUKTA

We prototype a multilayer SSV controller in a challenging
environment: an ODROID XU3 board [51], which has an
8-core asymmetric processor running Linux. The processor
is Samsung Exynos 5422, built using ARM big.LITTLE
technology [52]. It has a cluster of four little cores (the
in-order, low power Cortex A7), and a cluster of four big
cores (the out-of-order, high performance Cortex A15). The
multicore runs Ubuntu 15.04, which contains the HMP
(Heterogeneous Multi-Processing) task scheduler [53], [54].
This scheduler was designed for ARM big.LITTLE platforms.
The scheduler can turn cores on/off dynamically (called CPU
hotplugging) based on requests from a thermal management
module. Figure 6 shows a picture of our experimental
platform.

Figure 6: The ODROID XU3 used for our prototype.

We prototype a two-layer SSV controller. One controller
controls hardware parameters (hardware controller), and
another controls thread scheduling parameters (software/OS
controller). Our goal for the hardware controller is to
minimize E×D while keeping power and temperature below
certain limits. Our goal for the software controller is to simply

minimize E×D. It relies on the hardware controller to keep
power and temperature within limits.

Our choice of controllable parameters is limited by what is
feasible on the board. We cannot actuate on internal structures
of the processor, such as its pipeline configuration. Similarly,
the HMP scheduler for big.LITTLE systems has dependencies
on parts of the OS [55], [56], so we need to carefully choose
what we modify. Since our goals involve minimizing E×D,
we also design optimizer modules for each of the controllers.
The resulting system is shown in Figure 7. In the following
sections, we consider each controller in turn.

Ubuntu 15.04

A7

Hardware

SSV controller

Software

SSV controller

Powerlittle

Powerbig

Temperature

Performance

Performancelittle

Performancebig

D Spare compute

A15 A15

A15A15A7

A7

A7

frequencylittle

frequencybig

#coreslittle

#coresbig Little Big

#threadsbig

Avg #threads per nonidle corelittle

Avg #threads per nonidle corebig

Figure 7: Prototyped controllers on the ODROID XU3.

A. Designing a Hardware Controller

Table II shows the inputs, outputs, and external signals
for the hardware controller. The controller actuates on four
system inputs: number of big cores, number of little cores,
frequency of the big cluster, and frequency of the little cluster.
The number of active cores in either cluster can vary from 1
to 4. The big cluster frequency can vary from 0.2 to 2.0 GHz,
and the little cluster frequency from 0.2 to 1.4 GHz, both
in steps of 0.1 GHz. As per Section II-B, SSV designs take
saturation and quantization information for each input signal.
Hence, we give the possible values that each input can take.

We set the weights of each input. The relative weights
of the inputs determine the eagerness of the controller to
change each input. Specifically, the controller will change
low-weight inputs more eagerly than high-weight ones. Since
the overhead of changing a cluster’s frequency is comparable
to the overhead of turning a core on/off with hotplugging,
we set the weights of all the inputs to be the same.

Additionally, the absolute values of these weights deter-
mine the aggressiveness of the controller response. High
absolute weights produce a sluggish controller, which changes
the inputs only slowly when the outputs are perturbed from
their target value. Low input weights produce an eager
controller, which changes the inputs quickly. Neither extreme
is desirable in processor control. We perform a sensitivity
analysis of weight values in Section VI-E3. Based on that,
we set all the weights to 1 (Table II).

The hardware controller monitors four system outputs: the
performance of the workload measured in total billions of
instructions committed per second (BIPS), the big cluster
power, the little cluster power, and the hot-spot temperature.
To set the bounds of the output deviations, we proceed as
follows. When we characterize the processor with a training
set of applications to build the system model (Section IV-C),

Table II: Parameters of the hardware controller in our prototype multilayer SSV system in an ODROID XU3 board.
Goal Inputs Outputs External Signals Uncertainty

Signals Weights Signals Bounds

Minimize E × D subject to
Powerbig < Powermax

big ,
Powerlittle < Powermax

little,
and Temp < Tempmax

#big cores 1 Performance ±20% #threadsbig ,
avg #threads per non-idle core in clusterbig ,
and avg #threads per non-idle core in clusterlittle

±40%#little cores 1 Powerbig ±10%
frequencybig 1 Powerlittle ±10%
frequencylittle 1 Temp ±10%

Table III: Parameters of the software controller in our prototype multilayer SSV system in an ODROID XU3 board.
Goal Inputs Outputs External Signals Uncertainty

Signals Weights Signals Bounds

Minimize
E × D

#threadsbig 2 Performancelittle ±20% #big cores, #little
cores, frequencybig ,
and frequencylittle

±50%Avg #threads per non-idle core in clusterbig 2 Performancebig ±20%
Avg #threads per non-idle core in clusterlittle 2 ∆ SpareComputebig−little ±20%

we record the range of values exhibited by each output. We
then set the bounds to be a percentage of such range.

Of the four outputs considered, the power of both clusters
and the temperature are critical for the integrity of the board.
Hence, we assign them a bounds range that is ±10% of their
maximum range; for the performance, since it is less critical,
we assign a ±20% bounds range. The synthesis routines
inform the designer when tighter bounds than those specified
can be achieved. Alternatively, if any of these bounds is
too tight, the MATLAB SSV controller synthesis routines
will fail to build the controller. At runtime, the controller
keeps the deviations of all outputs within these bounds for
feasible targets. If it cannot, it keeps the deviations at least
proportional to their relative bounds values as given by the
designer. We perform a sensitivity analysis of bounds ranges
in Section VI-E1.

We provide three external signals to the hardware controller
(Table II). They are the signals that the software controller
actuates on (i.e., its inputs). We will discuss them later.

Finally, as we generate the SSV controller, we need to
provide an uncertainty guardband. Uncertainty is the result
of limitations in how the model describes the real system,
and of unpredictability in various system components. An
example of the latter is aspects of the HMP scheduler, which
sometimes packs multiple threads on a core while leaving
another core idle. In Section VI-E2, we evaluate several
uncertainty guardbands for the hardware controller. Based
on that, we pick a guardband of ±40%. If the guardband is
too large, MATLAB routines cannot build a controller that
can deliver the output deviation bounds. If the guardband is
too small, the controller will report so at runtime.

In contrast to these few intuitive parameters, industry-
grade heuristic controllers have an order of magnitude
more parameters. For example, in the Samsung Exynos
5422 hardware we use, to change the big cluster frequency
based on the current temperature, there are many thresholds
(each with its own rule) [57], [58], [59]. These rules
are used to assess the impact of the temperature, detect
whether temperature is rising or falling, and then change the
big cluster frequency. Furthermore, to control all the four

hardware outputs (i.e., performance, power of big and little
clusters, and temperature), the Samsung Exynos 5422 uses
several tens of interdependent settings that require tuning.
Our approach eliminates the need for this extensive tuning.

B. Designing a Software Controller

Table III shows the inputs, outputs, and external signals
for the software controller. The controller assigns the appli-
cation’s threads to cores. Ignoring any differences between
threads, the first decision is how to partition the threads
between the big and little clusters. The second decision is
how to assign the threads in a cluster to cores, possibly
leaving some cores idle. For example, in a cluster with 4
threads and 4 cores, it may be better to assign two threads per
core, enabling the hardware controller to power-off two cores.
Therefore, the software controller actuates on three inputs:
the number of threads assigned to the big cluster (leaving
the rest for the little cluster), the average number of threads
running on each non-idle big core, and the average number
of threads running on each non-idle little core (Table III).

To set the input weights, we first note that changing any of
the three inputs involves migrating a thread. Since the change
overhead is roughly the same for all three inputs, we assign
the same weight to all inputs. However, we want the software
controller to react more conservatively to output changes
than the hardware controller. This is because applications
change the number of threads dynamically in an unpredictable
manner for the controller — e.g., some threads block on
I/O. We do not want the controller to react immediately and
cause oscillations. Consequently, we set the weight of all
inputs to 2 (Table III), which happens to be twice the weight
of the hardware controller’s inputs.

The controller monitors three outputs: performance of the
big cluster threads (in total committed BIPS), performance
of the little cluster threads, and difference in Spare Compute
Capacity (SC) between the big and little clusters. At a high
level, the higher the difference in SC is, the more threads
the controller will move from the little to the big cluster.

The SC of a cluster is estimated as follows. SC should be
raised when there are many cores in the cluster that are both
on and idle. On the other hand, SC should be lowered when

the cluster has many threads multiplexed on the busy cores;
these threads could be spread over all the cores that are on.
So, we define a cluster’s SC as:
SC = #idle cores on− (#threads− #cores on) (2)

Since we consider all outputs to have similar importance, we
set their deviation bounds to ±20% of their maximum range
— like the non-critical outputs in the hardware controller.

To coordinate with the hardware controller, the software
controller takes as external signals all the signals that the
hardware controller actuates on. Finally, the uncertainty
guardband used for the software controller should be higher
than that of the hardware controller. This is because the
main action of the software controller (i.e., assign threads to
cores) is directly affected by an unpredictable event: dynamic
changes in the number of application threads. After evaluating
several uncertainty guardbands (not shown in the paper), we
set the guardband value to ±50%.

C. Modeling the Controlled System
The process of designing a controller requires that we

build a model of the controlled system — i.e., the ODROID
board. To build the models for both controllers, we use
the System Identification methodology [47]. This black-box
methodology involves running a training set of applications
on the ODROID board, while setting the signals that would
be actuated by the controller (i.e., the inputs) and the
external signals in a variety of ways, and recording the
changes in the signals that would be observed by the
controller (i.e., the outputs). Then, the input and output data is
passed to MATLAB, which uses the Box-Jenkins polynomial
model [60] to obtain a dynamic model of the system. The
model generated for both controllers has dimension four —
i.e., it predicts the value of an output at time T as a function
of the values of all the outputs at times T-1, ... T-4, and
the values of all the inputs at times T, ... T-3. The system
identification methodology is widely used, and captures many
subtleties of the input-output dependencies.

D. Designing Optimizers
The goal of each of the optimizers is to provide in-

creasingly better targets for the output signals, so that the
corresponding controller can tune the input signals (Figure 5).
To see how they operate, consider the hardware controller.
The optimizer reads the outputs of the system (Perf, Powerbig ,
Powerlittle, and Temp), computes the resulting E×D, and
changes the output targets passed to the controller (Perf0,
Powerbig 0, Powerlittle 0, and Temp0) to attain a lower E×D.
This will trigger the controller to actuate on the input signals
(#big cores, #little cores, freqbig , and freqlittle) so the system
converges to the new output targets. The optimizer will then
read the new outputs and repeat the process, progressively
generating better targets that produce lower E×D values.

Recall that E×D is proportional to Power/Perf2. Hence, to
lower E×D, the optimizer keeps increasing Perf0 a lot while

increasing Powerbig 0 and Powerlittle 0 a little. When the
result is that E×D has increased, the optimizer discards the
latest move, and moves in the opposite direction: it decreases
Perf0 a little while decreasing Powerbig 0 and Powerlittle 0

a lot. Eventually, the optimizer settles into a desirable set of
output targets.

V. EXPERIMENTAL METHODOLOGY

A. Infrastructure

The ODROID XU3 has on-board power sensors that
measure the power drawn by the big and little clusters. These
sensors update every 260 ms. There are on-chip sensors that
measure temperature. We set up performance counters on all
cores using the Linux perf API [61] to measure the number
of instructions committed per second. The number of cores
in each cluster and the cluster frequency can be changed
by writing to appropriate cpufreq files. Thread scheduling is
performed through sched setaffinity system calls.

The controllers are invoked every 500 ms. This time is
determined by the update period of the power sensors. Many
prior works that use real systems use comparable sampling
intervals (e.g., 0.5 s – 2 s in [10], [11], [24]). Both controllers
are implemented as independent privileged processes, as we
cannot add hardware modules to the board.

The power and temperature limits that we use in our eval-
uation are constrained by the emergency power and thermal
heuristics of the board. These heuristics are automatically
triggered when power or temperature increase beyond preset
thresholds for extended periods of time [57], [58], [59]. We
identify the minimum thermal threshold that triggers these
heuristics and use it as the limit for temperature. Similarly,
we set the limits for the power consumed by the little and big
clusters to be below the emergency-triggering values. The
limits we use are 0.33 W, 3.3 W, and 79 ◦C for the power of
the little cluster, power of the big cluster, and temperature.

We evaluate Yukta with 8-threaded PARSEC programs
with native datasets (blackscholes, bodytrack, facesim, flu-
idanimate, raytrace, x264, canneal, streamcluster), 8 copies of
SPEC06 programs with train datasets (h264ref, mcf, omnetpp,
gamess, gromacs, dealII), and program mixes. For training,
we use a different set of programs: swaptions and vips from
PARSEC, astar and perlbench from SPECINT06, and milc
and namd from SPECFP06.

B. Schemes for Comparison

In our ODROID XU3 board, we implement the four two-
level controllers shown in Figure 8. Table IV lists their names
and describes them in detail.

HW heuristic

OS heuristic

HW heuristic

OS heuristic

HW SSV

OS heuristic

HW SSV

OS SSV

(a)

HW heuristic

OS heuristic

HW heuristic

OS heuristic

HW SSV

OS heuristic

HW SSV

OS SSV

(b)

HW heuristic

OS heuristic

HW heuristic

OS heuristic

HW SSV

OS heuristic

HW SSV

OS SSV

(c)

HW heuristic

OS heuristic

HW heuristic

OS heuristic

HW SSV

OS heuristic

HW SSV

OS SSV

(d)
Figure 8: Two-level controllers evaluated.

h26 mcf omn gam gro dea SAv bla bod fac flu ray x26 can str PAv Avg
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

Coordinated
heuristic

Decoupled
heuristic

Yukta:
HW SSV+OS heuristic

Yukta:
HW SSV+OS SSV

(a) Normalized Energy×Delay

h26 mcf omn gam gro dea SAv bla bod fac flu ray x26 can str PAv Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e

Coordinated
heuristic

Decoupled
heuristic

Yukta:
HW SSV+OS heuristic

Yukta:
HW SSV+OS SSV

(b) Normalized execution time

Figure 9: Energy×Delay (a), and execution time (b) for the four two-layer controller schemes considered.

Table IV: Description of the controllers.

Scheme Description of the OS and HW controllers

(a) Coordinated
heuristic

OS: Scheduler with power and performance heuristics.
Uses number, type, and frequency of cores.

HW: Increases frequency and #cores while operation is
safe. Uses thread distribution to make decisions.

(b) Decoupled
heuristic

OS: Roubd-robin assignment of threads to cores.

HW: Sets frequency, #cores to maximum value. On a
violation, it reduces frequency first, then #cores.

(c) Yukta: HW SSV+
OS heuristic

OS: Like the OS controller in Coordinated heuristic.

HW: SSV design from Section IV-A.

(d) Yukta: HW SSV+
OS SSV

OS: SSV design from Section IV-B.

HW: SSV design from Section IV-A.

In the Coordinated heuristic scheme, the OS controller is

similar to the HMP task scheduler from ARM, Linaro and

Samsung [53], [54], except that it is modified to optimize

E×D. The OS controller coordinates with the hardware

controller in that it uses the number, type, and frequency

of the available cores to schedule threads. The hardware

controller sets the number of cores and their frequency to

maximum values until the power or temperature exceeds the

limits; when this happens, it finds a lower, safe frequency

value for that cluster. It coordinates with the OS controller

in that it uses how the threads are distributed across all the

cores to determine the safe frequency. This OS-hardware

scheme is representative of industry-standard controllers in

big.LITTLE systems, and we use it as a baseline.

The Decoupled heuristic scheme takes uncoordinated

decisions at each layer. The OS controller distributes threads

on cores in a round-robin manner. The hardware controller

is similar to the Performance power governor in Linux [62].

It sets the number of cores and their frequency to maximum

values whenever temperature and power are within limits.

When the limits are exceeded, it uses threshold-based rules

to temporarily reduce frequency first, and then the number

of cores — irrespective of the number of threads.

We design two schemes based on our proposed coordinated

Yukta methodology. The first one, Yukta: HW SSV+OS heuris-
tic, uses an SSV hardware controller as in Section IV-A and

a heuristic-based OS controller like the one in Coordinated

heuristic. The second one, Yukta: HW SSV+OS SSV, uses an

SSV hardware controller as in Section IV-A and an SSV OS

controller as in Section IV-B.

VI. EVALUATION

A. Multilayer Controller Evaluation

Figure 9 compares our four two-layer controller schemes

running our applications. Figure 9(a) shows the E ×D of

the applications, and Figure 9(b) the execution time. In each

chart, the bars from left to right correspond to individual

SPEC applications, the average of the SPEC applications

(SAv), individual PARSEC applications, the average of the

PARSEC applications (PAv), and the average of all the

applications (Avg). Each application has a bar for each of

the four controller schemes. The bars are normalized to

Coordinated heuristic.

Figure 9(a) shows that Decoupled heuristic has higher

E×D than Coordinated heuristic. On average, decoupling the

controllers results in a 52% higher E×D. On the other hand,

using Yukta causes E×D to decrease. On average, Yukta: HW
SSV+OS heuristic has a 37% lower E×D than Coordinated
heuristic. Furthermore, having both SSV controllers as in

Yukta: HW SSV+OS SSV results in an average E ×D that is

50% lower than Coordinated heuristic. Thus, SSV controllers

offer substantial improvements over existing systems.

The execution times in Figure 9(b) show similar results.

Decoupled heuristic increases the execution time by 30% on

average. On the other hand, Yukta: HW SSV+OS SSV reduces

the time by 29% on average, and Yukta: HW SSV+OS SSV
by even more, namely a substantial 38% on average.

To gain insight into the impact of the Yukta controllers,

we focus on the execution of the blackscholes application

(labeled bla in Figure 9). This application begins with a

single thread and later executes 8 parallel threads. The work

in the parallel phase does not have large variations. Figure 10

shows the power consumed by the big cluster in blackscholes

as a function of time, for the four controller schemes. Recall

that the limit in sustained power is 3.3W.

The figure shows that, under all schemes, the power

fluctuates. At certain points, it goes over the limit but,

immediately after, the system reacts and brings the power

down again. What varies between the four schemes is the

0 50 100 150 200 250 300

Time (s)

0

1

2

3

4

5

6

7

8

Po
w

er
bi
g

(W
)

(a) Coordinated heuristic

0 50 100 150 200 250 300

Time (s)

0

1

2

3

4

5

6

7

8

Po
w

er
bi
g

(W
)

(b) Decoupled heuristic

0 50 100 150 200 250 300

Time (s)

0

1

2

3

4

5

6

7

8

Po
w

er
bi
g

(W
)

(c) Yukta: HW SSV+OS heuristic

0 50 100 150 200 250 300

Time (s)

0

1

2

3

4

5

6

7

8

Po
w

er
bi
g

(W
)

(d) Yukta: HW SSV+OS SSV

Figure 10: Power consumed by the big cluster in blackscholes as a function of time for the four controller schemes.

0 50 100 150 200 250 300

Time (s)

0

2

4

6

8

Pe
rf

or
m

an
ce

(B
IP

S)

(a) Coordinated heuristic

0 50 100 150 200 250 300

Time (s)

0

2

4

6

8
Pe

rf
or

m
an

ce
(B

IP
S)

(b) Decoupled heuristic

0 50 100 150 200 250 300

Time (s)

0

2

4

6

8

Pe
rf

or
m

an
ce

(B
IP

S)

(c) Yukta: HW SSV+OS heuristic

0 50 100 150 200 250 300

Time (s)

0

2

4

6

8

Pe
rf

or
m

an
ce

(B
IP

S)

(d) Yukta: HW SSV+OS SSV

Figure 11: Performance of blackscholes in BIPS, as a function of time for the four controller schemes.

number and amplitude of these peaks and valleys, and the

average value of the power in the steady-state periods. In

general, a better controller will minimize the number and

amplitude of these peaks and valleys, and keep the power in

the steady-state periods as close as possible to 3.3W.

In Decoupled heuristic (Figure 10(b)), there are many

oscillations. In this scheme, the hardware controller increases

the number of cores and their frequency to the maximum,

while the OS controller simply assigns threads round-robin.

This causes the power to go over the limit and trigger the

emergency system, which reduces the frequency of the cores

and shuts off some cores. The power then drops to low values,

and the hardware controller again increases the number of

cores and their frequency to the maximum. The result is

continuous power oscillation.

The Coordinated heuristic scheme (Figure 10(a)) drasti-

cally reduces the amplitude and number of these peaks and

valleys. This is thanks to the coordination between the two

controllers: the hardware controller knows the distribution of

the active threads, and the OS controller knows the number,

type, and frequency of the active cores.

As we move to Yukta: HW SSV+OS heuristic (Figure 10(c))

and, especially, Yukta: HW SSV+OS SSV (Figure 10(d)), the

number of peaks and valleys decreases. Moreover, the power

during the steady-state periods gets closer to 3.3W. The Yukta

controllers control power much better.

These differences in power control translate directly into

different performance. Figure 11 shows the performance of

blackscholes in BIPS, as a function of time, for the four

schemes. We see that the performance of the Decoupled
heuristic scheme (Figure 11(b)) oscillates, and the application

takes nearly 320 seconds to complete. In the Coordinated
heuristic scheme (Figure 11(a)), the steady-state performance

increases, and the application completes in 270 seconds.

Finally, in Yukta: HW SSV+OS heuristic (Figure 11(c)) and

Yukta: HW SSV+OS SSV (Figure 11(d)), the steady-state

performance keeps increasing, and the application completes

sooner, in 205 and 180 seconds, respectively.

B. Comparing to LQG Control

We compare Yukta to the recently-proposed state-of-the-

art MIMO LQG (Linear Quadratic Gaussian) controller [35].

Like Yukta, such controller can change many inputs to meet

many output targets, and accepts weights for inputs and

outputs. Unlike Yukta, however, it does not accept External

signals, deviation bounds for outputs, saturation/quantization

of inputs, or design with uncertainty guardbands.

Since an LQG controller cannot use External Signals, we

evaluate the two ways in which it can be used for multilayer

control: one that has independent LQG controllers in the

hardware and OS layers (Decoupled HW LQG+OS LQG),

and one that has a single LQG controller that manages both

layers (Monolithic LQG). The latter is the use in [35]. We use

input and output weights comparable to our SSV controllers.

Figures 12 and 13 compare the E × D and execution

time, respectively, of Coordinated heuristic, Decoupled HW
LQG+OS LQG, Monolithic LQG, and Yukta: HW SSV+OS
SSV. The bars are normalized to Coordinated heuristic. We

see that, on average, Decoupled HW LQG+OS LQG delivers

E × D and performance similar to Coordinated heuristic.

This is because each controller works independently without

coordination, making the system inefficient.

h26 mcf omn gam gro dea SAv bla bod fac flu ray x26 can str PAv Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

Coordinated
heuristic

Decoupled
HW LQG+OS LQG

Monolithic
LQG

Yukta:
HW SSV+OS SSV

Figure 12: Comparing E ×D for LQG-based designs.

h26 mcf omn gam gro dea SAv bla bod fac flu ray x26 can str PAv Avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

E
xe

cu
ti

on
T

im
e

Coordinated
heuristic

Decoupled
HW LQG+OS LQG

Monolithic
LQG

Yukta:
HW SSV+OS SSV

Figure 13: Comparing performance for LQG-based designs.

Monolithic LQG delivers better results, thanks to the

centralized decisions taken by the controller. On average, it

reduces E ×D by 20% and execution time by 11% relative

to Coordinated heuristic. This is consistent with the 16%

E ×D reduction reported in [35]. However, these gains are

small compared to those of Yukta: HW SSV+OS SSV, which

attains average reductions of 50% in E × D and 38% in

execution time.

The reason for this gap is that LQG controllers have several

limitations, as listed above. First, they assume that inputs

are continuous and have no bounds. Hence, a controller

sometimes attempts to change an input beyond its physical

limit, and observes no output change. Only later does the

controller try changing another input. This slows down the

configuration search. For example, in bodytrack, the LQG

controller wastes 9% of the time trying to change an input

beyond its limit and observing no change.

Second, LQG controllers accept no output bounds; they

try to keep output deviations to be proportional to the inverse

of the output weights. As a result, the optimizer steers the

system to a less optimal configuration, or takes longer to

find the best configuration. For example, it can be shown

that, in bodytrack, the LQG controller takes on average 6

sampling intervals to make the big cluster power converge to

a specified target; the SSV controller can achieve this in 2

sampling intervals. Over the entire application, the optimizer

takes 90 intervals to find the optimum targets for the LQG

controller, while it takes only 30 for the SSV one.

Finally, LQG controllers are not natively optimized for

uncertainty. The framework that generates LQG controllers

uses uncertainty guardbands to discard unstable designs [35],

[41]. When this happens, it changes the output weights,

which slows down the controller. In the framework that

generates SSV controllers, instead, uncertainty is an explicit

parameter. Hence, the resulting controller is optimal within

the uncertainty guardband. Overall, LQG controllers are no

match for Yukta designs.

C. Heterogeneous Workloads

We evaluate four heterogeneous workloads created by

combinations of 4-threaded PARSEC codes and 4 copies

of SPEC codes: blmc (blackscholes+mcf), stga (streamclus-

ter+gamess), blst (blackscholes+streamcluster), and mcga
(mcf+gamess).

Figure 14 compares the normalized E × D of these

workloads under all the heuristic, LQG and Yukta-based

designs we built. The results are similar to the homogeneous

workloads, with the Yukta-based designs exhibiting the

lowest E ×D, then Monolithic LQG, and then Coordinated
heuristic. The reduction in Yukta: HW SSV+OS SSV is

47%, which is close to the 50% attained before. This

demonstrates the robustness of the Yukta-based designs in

diverse environments.

blmc stga blst mcga Avrg
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

Coordinated
heuristic
Decoupled
heuristic

Decoupled
HW LQG+OS LQG

Monolithic
LQG

Yukta:
HW SSV+OS heuristic

Yukta:
HW SSV+OS SSV

Figure 14: Comparing E ×D for heterogeneous workloads.

D. Implementing a Hardware SSV Controller

A hardware implementation of our hardware SSV con-

troller is a simple state machine. It is characterized by the

dimensionality of its state (N), and the number of inputs

(I), outputs (O), and external signals (E). It implements the

following equations in hardware [30]:

x(T + 1) = A× x(T) +B ×Δy(T) (3)

u(T) = C × x(T) +D ×Δy(T) (4)

where x is the state of the controller (N-entry vector), Δy
is the external signals and the deviation of outputs from

their targets (vector of O+E entries), u is the new inputs

(I-entry vector), A is the controller evolution matrix (N×N),

B is the matrix of impact of output deviations on the state

(N×(O+E)), C is the state-to-input conversion matrix (I×N),

and D is the matrix of feed-through of output deviations to

inputs (I×(O+E)). In our case, I=4, O=4, E=3, and N=20.

At every ms-level invocation [1], the controller performs

these computations, which are nearly 700 32-bit fixed-point

operations (additions and multiplications), and needs to store

nearly 2.6KB of data. We have measured that performing

these computations on an ARM Cortex A7 core consumes

≈20-25mW and takes ≈28μs. We envision that a hardware

state machine implementation of this functionality would

consume a few mW and have negligible area.

E. Hardware SSV Controller Analysis

1) Analysis of Output Deviation Bounds: The hardware

controller of Yukta: HW SSV+OS SSV in Section IV has

deviation bounds of ±20% for its performance output (i.e.,

±1 BIPS in absolute terms). In this section, we change them

to ±30% (i.e., ±1.5 BIPS) and ±50% (i.e., ±2.5 BIPS).

Since the OS controller also monitors the performance of

each of the clusters, we also increase the bounds for the OS

controller proportionally, to ±30% and ±50% for the big

and little clusters.

We perform two experiments. In the first one, we set fixed

targets for each of the outputs. Specifically, for the hardware

controller, we set the performance target to 5.5 BIPS, the

power of the big and little clusters to 2.5 W and 0.2 W,

respectively, and the temperature of the big cluster to 70◦C.

For the OS controller, we set the performance targets of the

little and big clusters to 1 BIPS and 4.5 BIPS, respectively,

and the difference in SC between big and little clusters to 1.
Figure 15(a) shows the performance of the computer sys-

tem as a function of time for the three output deviation bounds

(absolute values of bounds are shown for convenience).

The data is for blackscholes. Ignoring the initialization and

termination stages, we see that the performance remains close

to the target, and within the deviation bounds. The tighter

the bounds are, the closer the performance is to the target.

0 50 100 150 200 250 300
Time (s)

0
1
2
3
4
5
6
7

Pe
rf

or
m

an
ce

(B
IP

S)

±1 BIPS ±1.5 BIPS ±2.5 BIPS

(a) Tracking 5.5BIPS of performance.

Coordinated
heuristic

±1 BIPS ±1.5 BIPS ±2.5 BIPS
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

(b) Minimizing E×D.

Figure 15: Sensitivity to the output deviation bounds.

The second experiment is like the one in Section VI-A,

where we minimize E ×D. Figure 15(b) shows the E ×D
of Yukta: HW SSV+OS SSV for the different output deviation

bounds (absolute values of bounds shown for convenience),

and of Coordinated heuristic. The bars are the average of all

the applications, and are normalized to Coordinated heuristic.
We see that the E ×D with deviation bounds of ±20%

(±1 BIPS), ±30% (±1.5 BIPS), and ±50% (±2.5 BIPS) is

50%, 41%, and 30% lower than with Coordinated heuristic,

respectively. As bounds grow wider, the execution is less

optimal: output changes that would cause a controller with

tight bounds to actuate, do not cause a controller with loose

bounds to actuate.
2) Analysis of Uncertainty Guardband: We examine

uncertainty guardbands from ± 40% to ± 500%. Figure 16(a)

shows how the output deviation bounds guaranteed by the

controller change with different uncertainty guardbands.

These bounds are normalized to those in Section IV-A,

namely ±20% for performance, and ±10% for the rest.

40% 100% 250% 400% 500%
Uncertainty guardband

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

m
in

.b
ou

nd
s

Performance
Powerbig

Powerlittle
Temperature

(a) Normalized output bounds.

Coordinated
heuristic

40% 100% 250% 400% 500%
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y×

D
el

ay

(b) E×D.

Figure 16: Sensitivity to the uncertainty guardband.

The figure shows that the guaranteed output deviation

bounds increase slowly with the uncertainty guardband. Even

for a ± 250% guardband, we can synthesize a controller

with similar deviation bounds as for a ± 40% guardband.

This is thanks to using robust control theory.

Figure 16(b) shows E×D for different uncertainty guard-

bands, all normalized to Coordinated heuristic. For ± 40%

guardband, E×D is 50% lower than the baseline. For large

guardbands, E×D increases for two reasons. First, the

controller is slower to respond to the optimizer-generated

targets. Second, the output bounds grow larger, which causes

the controller to work less effectively. Overall, we use ±
40% as our default guardband.

3) Analysis of Input Weights: We examine input weights

from 0.5 to 2 for all the inputs. This results in controllers

that respond at different speeds to output changes. In our

experiment, we consider the big cluster power output and

set its target value to 2.5W. Figure 17 shows the big cluster

power as a function of time for the different input weights.

The data corresponds to blackscholes.

20 40 60 80 100 120 140
Time (s)

0
1
2
3
4
5
6
7

P
ow

er
bi
g

(W
)

W = 0.5 W = 1 W = 2

Figure 17: Big cluster power for different input weights.

Ideally, the power should remain at 2.5W for the whole

execution. However, at 45 s, the application launches multiple

threads, causing power to rise suddenly. The controller with

input weights of 0.5 responds rapidly, creating a series of

quick power oscillations. The system is too ripply. The

controller with input weights of 2 is slow to change its

inputs, keeping the big cluster power high for about 40 s,

before stabilizing at the target value. Finally, a controller

with input weights of 1 responds at modest speed and has

no oscillations. Hence, we use input weights of 1.

VII. OTHER RELATED WORK

Expanding on Sections I and II, we discuss additional

aspects of prior work on multilayer control. We consider

controller organization (Table I) and methodology.

Organization: Decoupled controllers are simple to design

and modular, while monolithic controllers can achieve better

results due to a global view of the system. However,

decoupled techniques can exhibit destructive interference

between controllers, even at a single layer [7], [14], [21],

[24], [35], [63]. In turn, monolithic techniques have design

complexity and are less maintainable, scalable, or portable [7],

[8], [10], [11], [14], [21].

Some designs use decoupled controllers that are coordi-

nated implicitly by the use of controller ranking [8], [11],

[12], [25], [26]. In these designs, each controller runs at

a slower timescale than its immediately higher-ranked one.

The highest-ranked controller adjusts one resource first, to
attain the most important goal. Each subsequent lower-ranked
controller modifies a different resource, to meet a different
goal. Bhattacharya et al. [64] and Maggio et al. [34] show that
such designs may have responsiveness and stability issues.

Graybox [16] creates middleware that exposes useful
OS information to the application to coordinate software
controllers. Other authors argue for collaborative control [14].
However, as we see next, most of the existing collaborative
controllers (e.g., [13], [14], [27]) have limitations.
Methodology: Multilayer controllers can be based on heuris-
tics, control theory, machine learning, or optimization theory.
Many works rely on heuristics to modify parameters and co-
ordinate controllers [8], [13], [14], [27]. However, researchers
have shown how heuristics can fail [12]. Other designs use
a combination of heuristics and control theory [11], [21],
heuristics and optimization [65], or just optimization [66].
The xTune framework [18] uses Monte Carlo simulations
at runtime to pick the statistically-best action from a list of
designer-specified actions. Some designs use a combination of
machine learning and PID control [12], [67]. Muthukaruppan
et al. [10] use price theory for big.LITTLE systems.

VIII. CONCLUSION

To address the challenge of computers increasingly op-
erating in constrained environments, this paper presented
a new approach to build coordinated multilayer formal
controllers for computer systems. The approach uses SSV
controllers from robust control theory. These controllers can
read External Signals from other controllers to coordinate
multilayer operation. In addition, they allow designers to
specify the discrete values allowed in each input, and the
desired bounds on output value deviations. Finally, they
accept Uncertainty Guardbands, which incorporate the effects
of interference between the different controllers. We called
this approach Yukta. To assess its effectiveness, we prototyped
it in an 8-core big.LITTLE board. We built a two-layer SSV
controller, and showed it was very effective. Yukta reduced
the E×D and the execution time of a set of applications by an
average of 50% and 38%, respectively, over what advanced
heuristic-based coordinated controllers attain. We expect
that the Yukta design can be applied to many computing
environments.

ACKNOWLEDGMENTS

This work was supported in part by NSF under grants
CCF-1536795 and CCF-1649432.

REFERENCES

[1] E. Rotem, “Intel Architecture, Code Name Skylake Deep Dive: A New
Architecture to Manage Power Performance and Energy Efficiency,”
Intel Developer Forum, Aug. 2015.

[2] B. Sinharoy, R. Swanberg, N. Nayar, B. Mealey, J. Stuecheli,
B. Schiefer, J. Leenstra, J. Jann, P. Oehler, D. Levitan, S. Eisen,
D. Sanner, T. Pflueger, C. Lichtenau, W. Hall, and T. Block, “Advanced
features in IBM POWER8 systems,” IBM Jour. Res. Dev., vol. 59,
no. 1, pp. 1:1–1:18, Jan. 2015.

[3] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power Management
of the Third Generation Intel Core Micro Architecture formerly
Codenamed Ivy Bridge,” in Hot Chips, Aug. 2012.

[4] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weiss-
mann, “Power-Management Architecture of the Intel Microarchitecture
Code-Named Sandy Bridge,” IEEE Micro, vol. 32, Mar. 2012.

[5] Terry Myerson, “Windows 10 Embracing Silicon Innovation,”
https://blogs.windows.com/windowsexperience/2016/01/15/windows-
10-embracing-silicon-innovation/, 2016, Windows Blog.

[6] I. Rickards and A. Kucheria, “Energy Aware Scheduling (EAS)
progress update,” http://www.linaro.org/blog/core-dump/energy-aware-
scheduling-eas-progress-update/.

[7] P. Tembey, A. Gavrilovska, and K. Schwan, “A Case for Coordinated
Resource Management in Heterogeneous Multicore Platforms,” in
Computer Architecture. Springer Berlin Heidelberg, 2012.

[8] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques,”
in ASPLOS, 2016.

[9] J. Donald and M. Martonosi, “Techniques for Multicore Thermal
Management: Classification and New Exploration,” in ISCA, 2006.

[10] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price The-
ory Based Power Management for Heterogeneous Multi-cores,” in
ASPLOS, 2014.

[11] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical Power Management for Asymmetric Multi-
core in Dark Silicon Era,” in DAC, 2013.

[12] H. Hoffmann, “JouleGuard: Energy Guarantees for Approximate
Applications,” in SOSP, 2015.

[13] J. Flinn, E. de Lara, M. Satyanarayanan, D. S. Wallach, and
W. Zwaenepoel, “Reducing the Energy Usage of Office Applications,”
in Middleware, 2001.

[14] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker, “Agile Application-aware Adaptation for Mobility,”
in SOSP, 1997.

[15] “Distributed Extensible Open Systems (the DEOS project),” http:
//www.cc.gatech.edu/systems/projects/DEOS/, 2004, Georgia Institute
of Technology - College of Computing.

[16] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, “Information and
Control in Gray-box Systems,” in SOSP, 2001, pp. 43–56.

[17] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian,
“DYNAMO: A Cross-Layer Framework for End-to-End QoS and
Energy Optimization in Mobile Handheld Devices,” IEEE J. Sel.
Areas Commun., vol. 25, no. 4, pp. 722–737, May 2007.

[18] M. Kim, M.-O. Stehr, C. Talcott, N. Dutt, and N. Venkatasubramanian,
“xTune: A Formal Methodology for Cross-layer Tuning of Mobile
Embedded Systems,” ACM Trans. Embed. Comput. Syst., vol. 11,
no. 4, pp. 73:1–73:23, Jan. 2013.

[19] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta,
A. Nicolau, S. Shukla, and N. Venkatasubramanian, “A Cross-Layer
Approach for Power-Performance Optimization in Distributed Mobile
Systems,” in IPDPS, 2005.

[20] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated Power-
performance Optimization in Manycores,” in PACT, 2013.

[21] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“No ”Power” Struggles: Coordinated Multi-level Power Management
for the Data Center,” in ASPLOS, 2008.

[22] V. Vardhan, D. G. Sachs, W. Yuan, A. F. Harris, S. V. Adve, D. L.
Jones, R. H. Kravets, and K. Nahrstedt, “GRACE-2: Integrating Fine-
Grained Application Adaptation with Global Adaptation for Saving
Energy,” Intl. J. Embed. Sys., vol. 4, no. 2, pp. 152–169, 2009.

[23] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “A

Taxonomy of Compositional Adaptation,” Michigan State University,
Tech. Rep., 2004.

[24] A. Vega, A. Buyuktosunoglu, H. Hanson, P. Bose, and S. Ramani,
“Crank It Up or Dial It Down: Coordinated Multiprocessor Frequency
and Folding Control,” in MICRO, 2013.

[25] A. Filieri, H. Hoffmann, and M. Maggio, “Automated Multi-objective
Control for Self-adaptive Software Design,” in ESEC/FSE, 2015.

[26] S. Shevtsov and D. Weyns, “Keep It SIMPLEX: Satisfying Multiple
Goals with Guarantees in Control-based Self-adaptive Systems,” in
FSE, 2016, pp. 229–241.

[27] M. Broyles, C. J. Cain, T. Rosedahl, and G. J. Silva, “IBM EnergyScale
for POWER8 Processor-Based Systems,” IBM, Tech. Rep., Nov. 2015.

[28] E. Rotem, U. C. Weiser, A. Mendelson, R. Ginosar, E. Weissmann,
and Y. Aizik, “H-EARtH: Heterogeneous Multicore Platform Energy
Management,” Computer, vol. 49, no. 10, pp. 47–55, Oct. 2016.

[29] “CPU throttling broken for Atom BayTrail CPUs under Windows
10,” https://communities.intel.com/thread/78086, 2015, Intel Support
Community.

[30] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons, 2005.

[31] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron,
“Control-theoretic Dynamic Frequency and Voltage Scaling for Multi-
media Workloads,” in CASES, 2002.

[32] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Formal Online
Methods for Voltage/Frequency Control in Multiple Clock Domain
Microprocessors,” in ASPLOS, 2004.

[33] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable Power Control for
Many-core Architectures Running Multi-threaded Applications,” in
ISCA, 2011.

[34] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann,
“Automated Control of Multiple Software Goals Using Multiple
Actuators,” in ESEC/FSE, 2017.

[35] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using
Multiple Input, Multiple Output Formal Control to Maximize Resource
Efficiency in Architectures,” in ISCA, June 2016.

[36] V. Hanumaiah, “Unified Framework for Energy-proportional Com-
puting in Multicore Processors: Novel Algorithms and Practical
Implementation,” Ph.D. dissertation, Arizona State University, 2013.

[37] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained Power
Control for Chip Multiprocessors with Online Model Estimation,” in
ISCA, 2009.

[38] F. Zanini, C. Jones, D. Atienza, and G. De Micheli, “Multicore
Thermal Management using Approximate Explicit Model Predictive
Control,” in ISCAS, May 2010.

[39] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “A Distributed and
Self-calibrating Model-Predictive Controller for Energy and Thermal
Management of High-Performance Multicores,” in DATE, Mar. 2011.

[40] X. Fu, K. Kabir, and X. Wang, “Cache-Aware Utilization Control
for Energy Efficiency in Multi-Core Real-Time Systems,” in ECRTS,
2011.

[41] R. P. Pothukuchi and J. Torrellas, A Guide to Design MIMO Controllers
for Processors, http://iacoma.cs.uiuc.edu/iacoma-papers/mimoTR.pdf,
Apr. 2016.

[42] J. C. Doyle, J. E. Wall, and G. Stein, “Performance and Robustness
Analysis for Structured Uncertainty,” in IEEE Conference on Decision
and Control, Dec. 1982.

[43] S. Skogestad, M. Morari, and J. C. Doyle, “Robust control of
ill-conditioned plants: high-purity distillation,” IEEE Trans. Autom.
Control, vol. 33, no. 12, pp. 1092–1105, Dec. 1988.

[44] D.-W. Gu, P. H. Petkov, and M. M. Konstantinov, Robust Control
Design with MATLAB, 2nd ed. Springer, 2013.

[45] R. P. Pothukuchi, A. Ansari, B. Gopireddy, and J. Torrellas, “Sthira:
A Formal Approach to Minimize Voltage Guardbands under Variation
in Networks-on-Chip for Energy Efficiency,” in PACT, 2017.

[46] A. M. Rahmani, B. Donyanavard, T. Müch, K. Moazzemi, A. Jantsch,

O. Mutlu, and N. Dutt, “SPECTR: Formal Supervisory Control and
Coordination for Many-core Systems Resource Management,” in
ASPLOS, 2018.

[47] L. Ljung, System Identification : Theory for the User, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[48] MATLAB and Robust Control Toolbox Release 2016a. Natick,
Massachusetts: The MathWorks Inc., 2016.

[49] Taylor IoT Kidd, “Power Management States: P-States, C-States,
and Package C-States,” https://software.intel.com/en-us/articles/power-
management-states-p-states-c-states-and-package-c-states, 2014, Intel
Developer Zone.

[50] Microsoft, “Processor power management in Windows 7 and Windows
Server 2008 R2,” https://msdn.microsoft.com/en-us/library/windows/
hardware/dn613983(v=vs.85).aspx, 2012, Microsoft Developer Net-
work.

[51] HardKernel, “ODROID-XU3,” http://www.hardkernel.com/main/
products/prdt info.php?g code=g140448267127.

[52] ARM R©, “big.LITTLE Technology: The Future of Mobile,”
https://www.arm.com/files/pdf/big LITTLE Technology the Futue
of Mobile.pdf, 2013, White Paper.

[53] B. Jeff, “big.LITTLE Technology Moves Towards
Fully Heterogeneous Global Task Scheduling,” https:
//www.arm.com/files/pdf/big LITTLE technology moves towards
fully heterogeneous Global Task Scheduling.pdf, Nov. 2013, White
Paper.

[54] H. Chung, M. Kang, and H.-D. Cho, “Heterogeneous Multi-Processing
Solution of Exynos 5 Octa with ARM R© big.LITTLETM Technology,”
https://www.arm.com/files/pdf/Heterogeneous Multi Processing
Solution of Exynos 5 Octa with ARM bigLITTLE Technology.
pdf, 2013, White Paper.

[55] U. Rezki and V. Wool, “Doing big.LITTLE right: little and big
obstacles,” in ELC, Mar. 2015.

[56] M. Anderson, “Implementation of the Global Task Scheduler in
big.LITTLE Android Platforms,” in ELC, Mar. 2015.

[57] D. Kim and A. Daniel, “Kernel driver exynos tmu,” https://www.
kernel.org/doc/Documentation/thermal/exynos thermal, Online Docu-
mentation.

[58] “Samsung Exynos TMU Implementation,” https://github.com/
hardkernel/linux/blob/odroidxu3-3.10.y/drivers/thermal/exynos
thermal.c, Source Code.

[59] “Samsung Exynos TMU Header,” https://github.com/hardkernel/linux/
blob/odroidxu3-3.10.y/arch/arm/mach-exynos/include/mach/tmu.h,
Source Code.

[60] P. Newbold, “The Principles of the Box-Jenkins Approach,” J. Oper.
Res. Soc., vol. 26, no. 2, pp. 397–412, 1975.

[61] “perf: Linux profiling with performance counters,” https://perf.wiki.
kernel.org/.

[62] D. Brodowski and N. Golde, “Linux CPUFreq Governors,” https:
//www.kernel.org/doc/Documentation/cpu-freq/governors.txt, Online
Documentation.

[63] R. Bitirgen, E. İpek, and J. F. Martı́nez, “Coordinated Management of
Multiple Interacting Resources in Chip Multiprocessors: A Machine
Learning Approach,” in MICRO, 2008.

[64] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar,
“The Need for Speed and Stability in Data Center Power Capping,”
in IGCC, 2012.

[65] C. J. Hughes and S. V. Adve, “A Formal Approach to Frequent Energy
Adaptations for Multimedia Applications,” in ISCA, 2004.

[66] J. Heo, D. Henriksson, X. Liu, and T. Abdelzaher, “Integrating
Adaptive Components: An Emerging Challenge in Performance-
Adaptive Systems and a Server Farm Case-Study,” in RTSS, 2007.

[67] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, “CALOREE:
Learning Control for Predictable Latency and Low Energy,” in
ASPLOS, 2018.

