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Abstract— Robot control algorithms often rely on measure-
ments of robot joint velocities, which can be estimated by
measuring the time between encoder edges. When encoder
edges occur infrequently, such as at low velocities and/or with
low resolution encoders, this measurement delay may affect
the stability of closed-loop control. This is evident in both the
joint position control and Cartesian impedance control of the
da Vinci Research Kit (dVRK), which contains several low-
resolution encoders. We present a hardware-based method that
gives more frequent velocity updates and is not affected by
common encoder imperfections such as non-uniform duty cycles
and quadrature phase error. The proposed method measures
the time between consecutive edges of the same type but, unlike
prior methods, is implemented for the rising and falling edges of
both channels. Additionally, it estimates acceleration to enable
software compensation of the measurement delay. The method
is shown to improve Cartesian impedance control of the dVRK.

I. INTRODUCTION

This paper presents a hardware-based velocity estimation

method that enables improved control performance, especially

for robots with low-resolution encoders and low gear reduc-

tions. The motivation for this work was provided by the da

Vinci Research Kit (dVRK) [1], Fig. 1, which combines open

source electronics and software with mechanical components

of first-generation da Vinci surgical robots (Intuitive Surgical,

Sunnyvale, CA). The da Vinci consists of a master console

with two 7 degree-of-freedom Master Tool Manipulators

(MTMs) and a patient side cart with several Patient Side

Manipulators and an Endoscopic Camera Manipulator. This

work focuses on the MTMs, which have wrist actuators with

encoders with as few as 16 lines per revolution and gear

ratios as low as 16.58.

The dVRK electronics relies on field-programmable gate

arrays (FPGAs) to process the robot feedback, including

quadrature decoding of the encoder signals, which are

transfered to a control PC via IEEE-1394a (FireWire). The

PC performs joint and Cartesian-level control at loop rates

in excess of 1 kHz. The FPGA firmware (Verilog) and PC

software (primarily C++) are open source. During system

development, it was discovered that the standard proportional-

integral-derivative (PID) joint controller had stability issues

for the MTM wrist actuators. Specifically, the actuators

had a tendency to shake (i.e., exhibit limit cycles). The

dVRK actually uses PD control (no integrator) so the

instability was traced to poor velocity estimation, which

affected the derivative term. The problem was addressed by
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Fig. 1. da Vinci Research Kit: open source FPGA-based controllers
connected to control PC via IEEE 1394a (FireWire), with direct access
to motors and sensors in Master Tool Manipulators (MTMs) and Patient
Side Manipulators (PSMs).

incorporating a heuristic nonlinear gain. Furthermore, the

Cartesian impedance controller exhibited stability problems

for the wrist actuators, especially the final roll axis, so

impedance control was disabled for this actuator.

Section II-A provides an overview of methods for estimat-

ing velocity from quadrature incremental encoders. Fundamen-

tally, these methods all rely on measuring the time between

encoder position changes. Thus, measurements become more

delayed as the joint velocity decreases. Robots with low-

resolution encoders and low gear ratios experience larger

delays because there are fewer counts per joint revolution. As

discussed in Section II-A, this leads to a tradeoff between the

responsiveness of the velocity estimation and its robustness

to imperfections that introduce noise. Unfortunately, noisy or

delayed measurements negatively affect control performance,

including for the Cartesian impedance controller presented

in Section II-B.

In Section III, we propose a novel hardware-based method

that improves the responsiveness of the velocity estimation

by using all encoder edges and by also estimating the

acceleration. This enables the PC software to compensate for

the measurement delay, leading to a solution that provides

timely and robust velocity estimates. Section IV first evaluates

the method on a test platform with two mechanically-coupled

encoders (one high resolution and one low resolution) and

then with the Cartesian impedance controller on the dVRK.

The significance of this work is that it improves the control

performance of the dVRK, a common research platform

currently installed at 30 institutions worldwide.

II. BACKGROUND AND RELATED WORK

A. Velocity Estimation with Quadrature Encoders

Many systems (including the da Vinci) estimate velocity

from quadrature incremental encoders, which contain two

channels (A and B) that produce square waves that are 90

degrees out of phase (Fig. 2). We consider each of the



following as separate events: 1) rising edge of the A channel,

A↑, 2) falling edge of the A channel, A↓, 3) rising edge of

the B channel, B↑, and 4) falling edge of the B channel,

B↓. The joint position is obtained by counting each of these

edges, with the direction determined by identifying which

channel leads the other.

Velocity is estimated by calculating dx/dt, where dx is the

encoder position difference and dt is the sampling interval

(i.e., time between the two encoder position measurements).

Typically, dx or dt is fixed to obtain either a fixed-time or a

fixed-position algorithm, though some variations, such as the

constant elapsed time (CET) method [2], measure time over

multiple counts to achieve a minimum elapsed time.

In cases where the velocity estimation module does not

have direct access to the encoder edges, it is only feasible to

use a fixed-time approach, where the time between the two

position samples is based on the CPU clock. This reduces

the accuracy of the time measurement because it is not

synchronized with respect to the position updates. If, however,

the module has access to the encoder edges, either method

may be used. For the fixed-position methods, measuring

the time between two edges of the same type (full-cycle

measurement, as shown in Fig. 2) increases the measurement

delay but is robust to imperfections in the encoder phase (i.e.,

channels not exactly 90 degrees apart) and the duty cycle (i.e.,

channel high times not exactly equal to low times at constant

velocity). In contrast, measuring the time between the two

most recent edges (a quarter-cycle measurement) leads to

noisy velocity measurements, where much of the noise is

due to these encoder imperfections. At high speeds, the fixed-

position methods suffer from time quantization errors because

fewer clock ticks occur between the encoder edges (small

dt), whereas at low speeds the fixed-time methods are subject

to position quantization errors (small dx) and are also more

affected by encoder imperfections.

Brown et al. compare the fixed-position and fixed-time

methods for different velocity profiles as well as add higher-

order terms on each scheme [3]. Most fixed-position algo-

rithms tested were sensitive to encoder imperfections, while

fixed-time algorithms were sensitive to quantization errors at

low speeds. Adding higher order terms through Taylor series

expansion and backward-difference expansion exaggerated

these errors. While least-square-fit smooths over imperfections

and quantization errors, it has bad transient response because

it acts as a filter.
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Fig. 2. Quadrature incremental encoder feedback, showing four events
(A↑, A↓, B↑, and B↓) and time between consecutive occurrences of the
same event.

Low-resolution encoders and low gear ratios introduce

challenges to the above methods, especially at low velocities

due to the longer delays between encoder edges. We focus

on fixed-position algorithms as they perform better when

there is long delay between signals [4] and, in contrast to the

results reported by Brown et al. [3], they can be implemented

to be insensitive to common encoder imperfections. In

practice, the definition of “low” velocity depends on the

gear ratio that relates motor/encoder revolutions to robot joint

revolutions. Sakata and Fujimoto use a plant model of the

motor dynamics to overcome the inherent delay where the

velocity measurement is always half a cycle behind due to

the nature of averaging over a period [5]. To overcome delays

in measurement without knowledge of motor specifications,

Nandayapa et al. propose to add fractional steps to the position

measurements in between encoder events and show that using

this position for velocity estimation gives more stable results

[6].

Similarly, model and non-model based methods have

been examined to provide robustness against noise. Model-

based algorithms can provide more accurate estimates, but

require a dynamic model and a noise model, which are often

inaccurate or unavailable. Zhu and Sugie [7] show that by

using polynomial fitting on position data with knowledge of

motor dynamics, they can accurately track the velocity for

encoders with as low as 8 pulses per revolution. Kim and Kim

[8] reduce this computational load by fitting on the sparser

transition edges of the encoder. Non-model based algorithms

are often filter-based and introduce delays. Merry et al. [9]

examine some trade-offs in filter length and propose additional

parameters such as skipping edges so filters can examine a

sufficient length of data without being too memory-intensive.

The proposed method differs from the above methods first

by using the rising and falling edges of both encoder channels

for velocity estimation. This improves the responsiveness

of the velocity estimation by a factor of four over the

conventional method of measuring time between one type

of edge on one encoder channel, while preserving that

method’s robustness to encoder imperfections. We consider

only the fixed-position method because for the dVRK, the

encoder resolutions and the maximum speeds with a human

operator are low enough that time quantization error is not

a significant issue. Because this velocity estimation still has

larger delays than the quarter-cycle difference, the method

additionally estimates acceleration. This enables the PC

software to compensate for the measurement delay, leading

to a solution that provides both the responsiveness of the

quarter-cycle measurement and the robustness of the full-cycle

measurement. Note that since the goal of the proposed method

is to provide the best information possible from hardware,

any of the above software algorithms could be adopted to

further improve results.

B. Cartesian Impedance Control

Figure 3 shows the implementation of the dVRK Cartesian

impedance controller. The torque applied to the robot is

calculated similarly to the method described in [10], [11].



Fig. 3. Block diagram of dVRK Cartesian impedance controller

This avoids calculating the inverse Jacobian by using the

Jacobian transpose to calculate the torque applied to each

joint.

In the figure, (q, q̇) are the robot state (joint position and

velocity) as measured by the encoders. This is converted into

Cartesian position x and velocity ẋ by forward kinematics.

A force is applied to the robot based on the error in position,

where the tool tip is compared to the virtual fixture position,

xvf , and the velocity feedback provides damping. A constant

bias force is also applied. The impedance controller then

calculates the Cartesian wrench, W, for translation along, and

rotation around, each of the three axes as follows:

W = P (x− xvf )−Dẋ+Bias (1)

P and D are the proportional and derivative gains and Bias
accounts for constant offsets such as gravity compensation.

III. METHOD

A. Full-cycle Velocity Estimation

We observe that the velocity calculated over a quarter

cycle is noisy, in large part due to the effect of encoder

imperfections, and therefore calculate it over a full encoder

cycle. We measure the time from one instance of an event to

the next instance of the same event, as illustrated in Figure 2.

Setting the cycle time as S and using i to indicate the event,

the velocity over a full cycle (4 encoder events) can be

calculated by:

vi =
4

Si
(2)

B. Acceleration Estimation

While Equation (2) gives a smooth velocity estimation,

the measurements are delayed because the data is estimated

over a full quadrature cycle. Thus, a common approach is to

assume that the currently measured velocity corresponds to

the velocity in the middle of the cycle; i.e., it has a delay of

a half cycle (Si/2). We encountered significant delays at low

velocities when calculating velocity over a full quadrature

cycle compared to that of the quarter-cycle, which led to

unstable controls. To estimate the velocity change over the

last half cycle, we add an acceleration term, a:

vi =
4

Si
+ a

Si

2
(3)

Fig. 4. Illustration of acceleration estimation. S indicates full cycles, which
are robust to encoder imperfections, while T indicates quarter cycles, which
are not. Acceleration can be estimated by the change between quarters of
the same type, Ti−4 and Ti, to be robust to encoder imperfections. In this
example, both quarters are measured from A↑ to B↑ .

The predicted velocity at i is the velocity over Si plus

acceleration over Si/2, assuming constant acceleration. We

estimate acceleration as a backward difference between the

last two full-cycle velocity measurements. Effectively, this

leads to subtraction of two quarter-cycle events that are

separated by a full cycle. For example, if the last two events

were A↑ followed by B↑ (as shown in Figure 4), the

acceleration would be calculated from the difference between

the last quarter and quarter that happened 4 events ago, both of

which would be between A↑ and B↑, assuming no direction

change. As with the velocity estimation, comparing the time

between two events of the same type avoids the effects of

encoder imperfections such as uneven duty cycles and phase

shifts, which are a primary cause of measurement noise.

Mathematically, the change in velocity over the last two

cycles, Si and Si−1, is given by:

Δv =
4

Si
− 4

Si−1

Δv =
4(Ti−4 − Ti)

SiSi−1

(4)

The time difference between these two velocities (assumed

to correspond to the midpoints of the cycles) is given by the

following, where ti indicates the time at event i:

Δt =

(
ti − Si

2

)
−
(
ti − Ti − Si−1

2

)

Δt =
Ti−4 + Ti

2

(5)

Finally, the instantaneous acceleration is simply the quotient

between the change in velocity, Δv, and time, Δt:

a =
Δv

Δt
=

8(Ti−4 − Ti)

SiSi−1(Ti−4 + Ti)
(6)

Substituting Equation (6) into Equation (3) yields:

vi =
4

Si
+

8(Ti−4 − Ti)

SiSi−1(Ti−4 + Ti)

Si

2

vi =
4

Si
+

4(Ti−4 − Ti)

Si−1(Ti−4 + Ti)

(7)



Lastly, for the most up-to-date estimate, we can add a

running counter, Tr, that measures the time since the last

event:

vi =
4

Si
+

8(Ti−4 − Ti)

SiSi−1(Ti−4 + Ti)

(
Si

2
+ Tr

)
(8)

Although this method avoids the noise due to encoder

imperfections of duty cycle and phase, it is sensitive to

quantization error because the difference between quarters is

often only a few counts. This can be avoided by setting a

threshold that prevents acceleration from being used at high

velocities. Quantization error increases linearly with velocity

as the number of counts decreases. But, delays in velocity

are more significant at slow speeds, where large quantization

is not a significant concern.

C. Implementation

To keep track of the quarter measurements, we use a queue

of six 26-bit registers (Figure 5). The first register is a running

counter that is incremented at every clock edge. The clock

speed is 49.152 MHz so the counter overflows in 1.37 s.

Each edge of any type adds an element to the queue, pops off

the last element, and clears the first counter. Thus, the first,

second, and sixth register values are used to calculate the

acceleration as they represent Tr, Ti, and Ti−4, respectively.

Si can be calculated from summing the quarter counters Ti

to Ti−3.

Fig. 5. Queue of running counter and quarter-cycle time measurements,
Ti . . . Ti−4, for edges Ei . . . Ei−4.

The host computer issues asynchronous read requests

on the FireWire bus to obtain feedback data from the

FPGAs at a specified rate, generally 2-3 kHz. In the current

implementation, Si is sent as a 22-bit value, where the last 4

bits are truncated to give an effective count rate of 3.072 MHz

(49.152/16). Ti−4 and Ti are passed back as 20-bit values.

Using 26-bit registers on the FPGA provides robustness

against encoder imperfections because an uneven duty cycle

can cause one quarter cycle to be more than 20-bits long, but

the sum of four quarter cycles should still fit within 26-bits.

On the PC, Si−1 is calculated from Si−1 = Si+(Ti−4−Ti).
We set a threshold to stop using acceleration if Ti is smaller

than 2000 clock counts as it oscillates too much beyond that

point. The exact threshold in velocity varies due to encoder

imperfections and uneven rotation speeds.

Currently, the running counter, Tr, is not separately

provided to the PC due to implementation limitations and thus

Equation (7) is used. As a consolation, if Tr is greater than

Ti−4 the FPGA uses Tr instead of Ti−4 when calculating

Si. This provides smoother decays in cases where the

motor is decelerating, as would be obtained by using Tr

in Equation (8).

IV. EXPERIMENTAL SETUP

We show the proposed method implemented on two

hardware setups. In the first, two encoders, one high-resolution

and one low-resolution, are coupled and driven by a DC

motor. The gearing of the motor was removed so that the

two encoders rotate at the same rate. In the second, we show

the proposed method implemented on the dVRK and test its

Cartesian impedance control with different velocity estimation

methods.

A. Two Encoder Setup

Two encoders are connected as shown in Figure 6. The

left encoder has 600 lines per revolution and we use this as

the ground truth position and velocity data. The right one

has 16 lines per revolution and is attached to a motor.

Fig. 6. Coupled encoders

To test the proposed method, we drive the motor and

estimate the velocity by the proposed method, with and

without acceleration, and compare it to velocity estimated

by the quarter-cycle method (time between last two position

changes). In our experiments, we never exceed one count

difference per sampling time on the low-resolution encoder,

so fixed-time algorithms are not considered.

B. Cartesian Impedance Control

The effect of the proposed velocity estimation on control

performance was tested on the left MTM of the dVRK

(Figure 7), where the resolution of encoders ranges from

1000 lines (4000 counts) per revolution in the first four joints

to 16 lines (64 counts) per revolution in the last three (wrist)

Fig. 7. Master controller of the dVRK robot. The left image shows the
joint that we rotate around the z-axis, while the right image shows the wrist
being lifted around the y-axis, with a weight attached.
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(a) Quarter-cycle estimation
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(b) Full-cycle estimation without acceleration
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(c) Full-cycle estimation with acceleration

Fig. 8. Comparing velocity estimation for 16 lines low-resolution encoder (red) with 600 lines high-resolution encoder (black) for different velocity
estimation methods: (a) quarter cycle oscillates at high velocities, (b) full cycle is noticeably delayed even at high velocities, and (c) full cycle with
acceleration (proposed method) reduces the delay but has some oscillations.

joints. Furthermore, the gear ratios of the last three joints are

33.16, 33.16, and 16.58, which lead to resolutions of 0.17

deg/count, 0.17 deg/count and 0.34 deg/count, respectively.

We perform two experiments, where the first primarily

exercises the last wrist joint and the second excites the

larger joints and the first wrist joint. In each experiment,

the robot is moved to a consistent home position and then

a horizontal plane virtual fixture is created to prevent the

arm from dropping due to gravity. For the first experiment,

the desired (virtual fixture) orientation is set to the home

orientation. The robot is set to Cartesian impedance mode

and we manually rotate the last joint clockwise around the

z-axis until it reaches its limit, as shown in Figure 7-left.

We then release it and measure the step response as the

robot recovers the desired orientation. Cartesian impedance

gains were set at 200 N/m and 5 for linear stiffness and

damping, and 0.15 N m/rad and 0.03 for torsional stiffness

and damping.

In the second experiment, we set the desired orientation so

that the first wrist link (closest to the robot base) is rotated by

90◦ around the y-axis, as shown in Figure 7-right. A weight

of 121.5 g is attached to the wrist link while holding it in the

desired orientation. We then release the link and measure the

robot’s position and orientation as the Cartesian impedance

controller finds a new equilibrium. The two most distal wrist

joints are not affected by the applied weight, and because

they are orthogonal to the one supporting the weight, their

possible motion has no effect on the results. We use the same

impedance gains as before, except that the torsional damping

is set to 0.04 to prevent the weight from hitting another link.

V. RESULTS

A. High and Low Resolution Encoder Comparison

Figures 8a to 8c show velocity estimated by different

methods on the low-resolution encoder compared to a high-

resolution ground truth. The high-resolution velocity is

calculated from the full cycle, without acceleration, since

the measurement delay is small and thus does not require

compensation based on acceleration. The RMS error between

the velocity estimated by the low-resolution encoder and

the ground-truth is 44.12 deg/s for the quarter-cycle method,

23.49 deg/s for the full-cycle method without acceleration,

and 19.48 deg/s for the full-cycle method with accelera-

tion. Without acceleration, we observe from Figure 8b that

measurements, even at fairly high velocities, are noticeably

delayed, and that the delay gets worse closer to 0. While

the quarter-cycle velocity estimation in Figure 8a is the least

delayed, it has large oscillations (noise) at high velocities from

one-pulse differences or pulse-alterations as also observed in

[12]. The proposed method in Figure 8c obtains a reasonable

compromise between delay and noise and has the lowest error

with respect to the ground truth signal.

B. Cartesian Impedance Control

Figure 9 shows the step responses when the last joint is

released after having been rotated to its limit. The quarter-

cycle velocity estimation never settles, while the full-cycle

method has a delayed response. The proposed method (full-

cycle with acceleration) is initially noisy, but settles the fastest.

While the proposed method has more oscillations, in the

dVRK, its shorter settling time resulted in better control

performance.

Figure 10 shows the step response when a weight is dropped

on the third-to-last wrist joint. All methods provide stable

performance because this experiment does not involve the

lowest resolution joint, but the full-cycle estimation without

acceleration is the slowest to respond, as expected.

Table I summarizes the means and standard deviations of

the settling times over 10 trials for displacing the wrist around

the z and y axes, respectively. While not demonstrated in

these experiments, the proposed velocity estimation method

also improves joint control performance with a conventional

PD controller (i.e., without the heuristic nonlinear gain).

TABLE I

MEAN AND STANDARD DEVIATION OF SETTLING TIMES OF ROTATION

AROUND Z AND Y AXES OVER 10 TRIALS.

Settling time (s)
Quarter cycle Full cycle

Without acc With acc
Rotation in z - 1.05 ± 0.62 0.91 ± 0.31
Rotation in y 1.76 ± 0.52 2.05 ± 0.49 1.65 ± 0.41
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Fig. 9. Response of Cartesian impedance controller when torque applied and released about z-axis, which primarily displaces a low-resolution, low-gear
ratio joint.
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(b) Full-cycle estimation without acceleration
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(c) Full-cycle estimation with acceleration

Fig. 10. Step response of Cartesian impedance controller when adding a weight (moment) around y-axis.

VI. CONCLUSIONS

This work proposes a novel method to estimate velocity

using all edges of a quadrature incremental encoder and using

acceleration to overcome delays in measurement to provide

better feedback for closed-loop control. The results show that

this method produces a smoother, more accurate and timely

velocity estimate on a low-resolution encoder. Furthermore,

we showed that the improved velocity estimate leads to more

stable control of a robot that has low-resolution encoders, with

as few as 16 lines per revolution. The implementation (FPGA

firmware and C++ software) is available open source and

improves the performance of the dVRK, currently installed at

30 institutions worldwide. In addition, the proposed technique

could be combined with model-based velocity estimation to

further improve its accuracy, especially when a motor begins

moving and there is insufficient data to calculate acceleration.
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