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ABSTRACT

Network theory is used to formulate an atomistic material
network. Spectral sparsification is applied to the network as a
method for approximating the interatomic forces. Local molecu-
lar forces and the total force balance is quantified when the inter-
nal forces are approximated. In particular, we compare spectral
sparsification to conventional thresholding (radial cut-off dis-
tance) of molecular forces for a Lennard—Jones potential and a
Coulomb potential. The spectral sparsification for the Lennard—
Jones potential yields comparable results while spectral sparsi-
fication of the Coulomb potential outperforms the thresholding
approach. The results show promising opportunities which may
accelerate molecular simulations containing long-range electri-
cal interactions which are relevant to many multifunctional ma-
terials.

INTRODUCTION

Molecular dynamics (MD) is a frequently used numerical
tool for simulating the properties of fluids, solids, and molecules
[1,2]. Atoms are treated as point masses and numerical inte-
gration of Newton’s equations yields their trajectories over time.
A variety of useful micro- and macroscopic information can be
extracted from ensembles of simulated atoms including, but not
limited to, mechanical [1, 3,4] and thermal properties [5-7].

Large scale MD simulations containing millions of atoms
are computationally expensive [8]. These computations require

*Address all correspondence to this author.

many time steps to obtain statistically meaningful thermody-
namic relations [1,2]. The time step is constrainted by the high-
est frequency of atomic vibrations: typically on the order of fem-
toseconds. As such, nanosecond simulations will necessitate mil-
lions of time steps [1].

Extensive effort on improving the computational speed of
MD simulations have focused on massively parallel implemen-
tation of MD simulations [1]. Both specialized hardware and
novel algorithms have been developed [1,9-12]. However, many
algorithms suffer accuracy limitations when the forces are long-
range. For short-range potentials such as Lennard—Jones, these
algorithms typically use a cutoff distance above which interac-
tions are neglected (referred to as thresholding). This is often suf-
ficient for short-range forces from isotropic potentials; however,
minimizing the error becomes uncertain when using long-range
forces or angular dependent forces. These long-range forces are
particularly pervasive in a variety of smart materials, including
ferroelectric single crystals, electrostrictive polymers, and mag-
netostrictive materials.

Here, we examine the structure of the molecular interactions
using network theory and utilize the network-based tools to de-
velop computationally inexpensive representations of the molec-
ular interactions. Network theory has long been used to describe
various complex systems including airplane scheduling, social
interactions and electric grids [13]. It has also been used in en-
gineering systems such as fluid dynamics [14-17], chemical net-
works [18] and dynamics of granular matter [19,20], but minimal
research has investigated its application to solid mechanics. A
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network consists of a series of points (nodes) and their pairwise
interactions (edges) [13]. The tools of network theory describe
the bulk structure based on the underlying interactions that gov-
ern the system dynamics [13].

Given a network-based representation of a system, one can
consider determining a sparse network representation to distill
the network to its core features or to extract its important struc-
ture and correlation with material properties. One technique is
known as the spectral sparsification method, which quantifies
the spectra of the graph while finding its sparse representation
[21,22]. The goal of the current work is to determine whether
spectral sparsification is a viable algorithm for speeding up com-
putation and reducing errors in MD simulations.

The application of spectral sparsification to molecular dy-
namics is described using examples based upon a simple
Lennard—Jones potential and a Coulombic potential. It is shown
that spectral sparsification can conserve system properties but re-
organizes atomic interaction force distribution in order to achieve
a sparse model. After first introducing molecular dynamics and
network theory, the atomistic model is numerically implemented
and errors using thresholding versus sparsification are quantified.
Finally, we conclude with suggestions for future work and poten-
tial applications.

Molecular Dynamics

Molecular dynamics models consist of a large collection of
atoms as point masses and calculates atomic trajectories (X) via
Newton’s law

Y F=ma, (1)

where F are the local forces within the solid, m is the mass and
a = X is the acceleration [1,2]. The force is typically calculated
from the negative gradient of a potential

F=-VU, (2)

where U is the potential energy. The most simple potentials are
pair functions based on the distance between two atoms

Uij =U(rij), 3

where r;; is the interatomic distance between atoms i and j [2].
The absolute position of atom i is denoted by r;.
The Lennard—Jones potential is given by

12 6
Uf]r’: [(£> — (g) ] ’ )
r,'j r,-j

where &) is the energy well and o is the zero potential distance.
The potential U;; defines the energy between two specific atoms
and the total energy is calculated by summing all pairwise poten-
tials.

The Coulomb potential is given by

kqiq;

C
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Emlij
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which describes interactions between charges where k is
Coulomb’s constant, &, is the medium permitivity, and ¢; and
q; are the charges of the two atoms [23].

Network Theory

We first define relations associated with nodes and edges that
are utilized in network theory. This is followed by its application
in describing and sparsifying atomistic interactions and sparsifi-
cation methods.

Formulation A network is a collection of vertices which
are connected by edges [13]. A graph G is an ordered set G =
(V,E,w(E)) consisting of the nonempty set V = {v|,va,...,vn}
of vertices or nodes, the set E of edges describing connected pairs
of vertices, and the function w(E) which assigns each edge a
numerical weight [13]. If the weights are all set to zero or one,
the graph is called unweighted. In contrast, if the weights take
positive real numbers, the graph is said to be weighted. A graph
is directed if w;; # wj;. Otherwise, it is undirected where w;; =
wj;. A complete graph is a graph in which all pairs of vertices
have an edge between them.

Network connections are frequently algebraically described
by the adjacency matrix A € RV

(6)

wij if(i,j) €E
Ajj= )
0  otherwise.
The adjacency matrix of an undirected graph is symmetric.

The second matrix associated with graphs is the graph
Laplacian L € RV

k; ifi=j
L,’j =q —Wij if (i,j) cE @)
0 otherwise,
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where k; = };jA;; is the degree of vertex i. The graph Lapla-
cian is considered analogous to the continuous Laplacian oper-
ator (—V?). The graph Laplacian and the adjacency matrices
form the basis of graph-theoretic framework and most evalua-
tions of the structure of a graph are generally assessed by exam-
ining these two matrices [13].

Application to Atomistic Interactions With respect
to atomistic networks, there are different physical properties that
may be projected onto the network. In this work, we take the in-
dividual atoms as the nodes. The edge weights could be a func-
tion of distance, the pairwise potential energy, or the pairwise
force. Since the force is a vector quantity, the magnitude of the
force is considered for the scalar edge weights. The atomistic
network edge is therefore given by the magnitude of the force
between two atoms separated by r;;

wij = |Fijl. ®)

While there are many different metrics for which the net-
work structure can be used [13], we consider the degree and de-
gree distribution. The degree is defined on each node by

ki = ZAi - 9)

The degree distribution can then be represented by a his-
togram to illustrate changes in properties of the graph as a func-
tion of the internal molecular forces. The nodal degree is one
of the most prominent metrics used in network theory [13]. It
is particularly important to the current application because de-
scribes the total force on each particle.

Atomistic Network Sparsification Sparsification in-
volves approximating a network, G, with a sparse network Gy
[21]. Sparsification is based on the idea of network similarity. A
number of different methods have been described based on dif-
ferent graph topology metrics [24,25]. Spectral sparsification has
been identified as being advantageous for studying dynamics on
networks [14].

For spectral sparsification, an approximation order denoted
by ¢ is chosen to have the sparse graph satisfy

(1—en v <VLw < (14+ep’ Ly (10)

for all v € RN where L is the graph Laplacian, L is the spar-
sified graph Laplacian [21]. If € = O there is no sparsification

of the network while € = 1 gives the maximum amount of spar-
sification allowed by the algorithm. The algorithm for spectral
sparsification is described by the following four steps [14,21]:

1. Calculate the Moore—Penrose pseudoinverse of the Lapla-
cian matrix, L*, and use it to calculate the effective resis-
tance by the formula

Rij=(pi—q))"L* (pi—q;), (11)

where p and g are the vector representation of the nodes. For
example, the node labeled one will have p; = (1,0,...,0) =
q1-

2. Select an edge at random with the probability of keeping
the edge proportional to its effective resistance, R; j. This
probability is, pi; = Rij/ Li; Rij.

3. Add the selected edge to the sparse graph Gg with weight
Wij = wij/qpij, wWhere g is the number of samples g =
8Nlog,(N)/€>.

4. Sample g times and sum up weights that are selected more
than once. Any edges that are not selected are removed.

Spectral sparsification provides a novel way to potentially
speed up and reduce error in MD simulations especially when
dealing with long-range forces. The preceding algorithm is
implemented and tested in this paper using a two-dimensional
square model with a circular hole. In particular, we demonstrate
that spectral sparsification accurately conserves the total force in
the presence of long-range forces relative to conventional molec-
ular dynamic threshold approximations. Multiple other methods
exist, e.g fast multipole method [26-30]; however, the present
analysis serves as a simple alternative to facilitate computational
speed-up without introducing large errors.

Implementation and Results

The present analysis looks at both the Lennard—Jones poten-
tial and the Coulomb potential by considering a two-dimensional
test problem consisting of a crystalline material with a circular
hole (see Figure 1). We compare example graphs generated with-
out sparsification, with thresholding at the most frequently used
radial cutoff length, and spectral sparsification with varying edge
densities as governed by &, introduced in (10).

We define near equilibrium position, as the atom positions
located in the minimum energy position for a perfect, infinitely
large, zero temperature crystal. This means near equilibrium
does not account for surface relaxation on the boundary of our
finite crystal or relaxation around the hole. For a test problem,
we use a square with a hole in the middle as shown in Figure 1.
The test configuration has a width and height of 30 unit cells with
a hole in the center with a radius of 5 unit cells. Note that for the
Lennard—Jones potential, the atoms have no charge.
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FIGURE 1. CHARGE AND ATOM ARRANGEMENT FOR TEST-
ING SPARSIFICATION OF THE COULOMB AND LENNARD
JONES POTENTIALS.

Figures 2 and 3 show images of the original graph, thresh-
olding at r.,, = 2.50 and an example graph from spectral spar-
sification with € = 1. Figures 2 and 3 shows these graphs based
on the Lennard Jones potential and the Coulomb potential, re-
spectively. Note that both spectral sparsification and threshold-
ing remove the interactions across the hole. For Lennard-Jones,
the spectrally sparsified graph has fewer edges than threshold-
ing. For the Coulombic potential, thresholding generates a more
sparse graph, however it does so by removing significant long-
ranged forces.

We examine the net normalized forces versus the fraction of
edges removed in Figures 4 and 5. The normalized net force F is
defined by

YA

F= ,
Ziinj

12)

where Aj; and A;; are the adjacency matrices of the sparsified
and original graphs, respectively. This is the sum of the magni-
tude of all the force interactions in the network. To quantify the
amount of edge sparsification, the fraction of remaining edges F,
is evaluated with

Ne

Fezl—N—g, 13)

where NJ is the number of nonzero edges in the sparsified
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FIGURE 2. LENNARD-JONES FORCE GRAPHS WITH SPAR-
SIFICATION BY THRESHOLDING AND SPECTRAL SPARSIFI-
CATION. THE COLOR REPRESENTS THE NORMALIZED EDGE
WEIGHT.

graph and N¢ is the number of nonzero edges in the original
graph. Spectral sparsification shows superior conservation of to-
tal forces; particularly for the case of the Coulomb potential.

Figures 6 and 7 show the average normalized error of the
degree at each node. In terms of molecular mechanics, this error
describes the change in the magnitude of forces on each atom.
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FIGURE 3. COULOMB FORCE GRAPHS WITH SPARSIFICA-
TION BY THRESHOLDING AND SPECTRAL SPARSIFICATION.
THE COLOR IS THE NORMALIZED EDGE WEIGHT.

The average normalized error is defined as

) (14)

1
S AS.— VA
NTJA]] HZ & Z N

where || - || represents the Euclidean norm and N is the number
of nodes in the graph.

In Figure 6, we see that both spectral sparsification and
thresholding have a low and comparable error, for the Lennard—
Jones potential.

o o
o el

Net Force
o
~

o
(M)

=0-Spectral Sparsification
=6-Thresholding

0 L L L L
0.95 0.96 0.97 0.98 0.99 1
Fraction of Edges Removed

FIGURE 4. },Y;|F;;| FOR LENNARD JONES POTENTIAL FOR
BOTH SPECTRAL SPARSIFICATION AS A FUNCTION OF THE
FRACTION OF EDGES REMOVED.
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FIGURE 5. },;Y; |F;j| FOR COULOMB POTENTIAL FOR BOTH
SPECTRAL SPARSIFICATION AS A FUNCTION OF THE FRAC-
TION OF EDGES REMOVED.

However, for the Coulomb potential, the error in the spec-
tral sparsification is significantly lower than for thresholding with
similar fractions of edges removed, as shown in Figure 7. This
suggests spectral sparsification has the ability improve simula-
tions with long-range interactions.

It is important to note that sparsification maintains the mean
degree distribution while maintaining a small error. In contrast,
thresholding does not maintain degree distributions. An example
of the changes in degree distribution is presented in Figure 8 for
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FIGURE 6. AVERAGE LOCAL NORMALIZED ERROR ESTI-
MATE FOR THE LENNARD-JONES POTENTIAL.
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FIGURE 7. AVERAGE LOCAL NORMALIZED ERROR ESTI-
MATE FOR THE COULOMB POTENTIAL.

the Lennard—Jones potential. Qualitatively, spectral sparsifica-
tion keeps the average degree constant while varying the degree
distribution. While the distribution contains randomness, the al-
gorithm keeps the Laplacian eigenvalue spectra similar. Keeping
the average degree distribution constant and retaining the Lapla-
cian spectra means spectral sparsification better approximates the
forces in comparison to thresholding.
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FIGURE 8. NORMALIZED DEGREE DISTRIBUTION FOR VAR-
IOUS SPARSIFICATION LEVELS. THE DEGREE DISTRIBUTION
REPRESENTS THE SUM OF THE FORCE INTERACTION ON
EACH ATOM. THE PROBABILITY IS THE NUMBER OF ATOMS
WITH DEGREE IN WITHIN RANGE DIVIDED BY THE TOTAL
NUMBER OF ATOMS.

Conclusions

We have shown that spectral sparsification can provide a
sparse representation of a material network while providing good
approximations of the interatomic forces. In particular, we
have shown that spectral sparsification produces lower error than
thresholding for long-range electrostatic forces based on our two
dimensional example problem. Importantly, sparsification main-
tains a conserved net force. This is significant because it suggests
that sparsification is likely to have a lower error for macroscopic
properties relative to thresholding. However, it does not neces-
sarily keep the force on individual particles constant. It remains
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to be seen if this significantly affects MD simulations.

Moving from the graph of the magnitude of forces to the
kinematics and implementation into molecular dynamics simu-
lations remains a task to be addressed in future work. It should
be noted that there are a number of situations which should in-
vestigated. The work presented here dealt with a spherically
symmetric potential on a two—dimensional plane. Sparsifica-
tion might show improved results in anisotropic potentials (e.g.
dipole-dipole interactions). Apart from dealing with anisotropic
effects, the material studied here is crystalline. Spectral sparsifi-
cation will likely be useful for random fields. Additionally, this
work has not dealt with amorphous solids with defects. This is
another area where spectral sparsification might perform well to
approximate heterogeneous media on a network.

While full discussion of the computational costs and speed
is beyond the scope of this paper, we give some preliminary esti-
mates for comparison. For long-range forces, there are a number
of different methods for summing long-range forces which range
in computational costs of &'(n) to &'(n?) [26-30]. Thresholding
has a cost of &'(n) [1]. The presented sparsification algorithm is
limited by calculation of the Moore-Penrose inverse which has
a cost of &(mn?), but otherwise has a cost of ¢ (nlogn) How-
ever, a discussion of parallel implementation as well as how the
algorithm fits within the molecular dynamics simulations, e.g.
number of edges cut and teh frequency of the algorithm, should
be addressed.

In summary, the preliminary results are promising for ap-
proximating long—range atomistic forces in atomistic simulations
with spectral sparsification. Such long-range forces are perva-
sive in multifunctional materials that exhibit strong polarization
and magnetization effects including ferroelectric and ferromag-
netic materials. There is also a host of other graph theoretic met-
rics not considered here which may be extracted from the edge
distributions of our networks [13]. Such measures may provide
further insight into structure-property relations and dynamic evo-
lution in complex, multifunctional media.
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Appendix A: Graph Resistance

Effective graph resistance is proposed as generalization from
networks of resistors (total resistance) of a graph [21]. The ef-
fective resistance between two nodes is similar to the effective
resistance between two nodes in a circuit calculated by Ohm’s
law V = IR.¢. In the case of networks of resistors, the weight of
each edge is equivalent to the conductance w;; = 1/R;;. When

calculating the effective resistance, the current is always taken
to be I = 1, so the effective resistance Ri ; 1s then the potential
difference across the network when unit current is put in at node
i and unit current is removed at node j. The entire network re-
sistance is simply the sum of the individual effective resistances
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