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ABSTRACT

Network theory is used to formulate an atomistic material

network. Spectral sparsification is applied to the network as a

method for approximating the interatomic forces. Local molecu-

lar forces and the total force balance is quantified when the inter-

nal forces are approximated. In particular, we compare spectral

sparsification to conventional thresholding (radial cut-off dis-

tance) of molecular forces for a Lennard–Jones potential and a

Coulomb potential. The spectral sparsification for the Lennard–

Jones potential yields comparable results while spectral sparsi-

fication of the Coulomb potential outperforms the thresholding

approach. The results show promising opportunities which may

accelerate molecular simulations containing long-range electri-

cal interactions which are relevant to many multifunctional ma-

terials.

INTRODUCTION

Molecular dynamics (MD) is a frequently used numerical

tool for simulating the properties of fluids, solids, and molecules

[1, 2]. Atoms are treated as point masses and numerical inte-

gration of Newton’s equations yields their trajectories over time.

A variety of useful micro- and macroscopic information can be

extracted from ensembles of simulated atoms including, but not

limited to, mechanical [1, 3, 4] and thermal properties [5–7].

Large scale MD simulations containing millions of atoms

are computationally expensive [8]. These computations require

∗Address all correspondence to this author.

many time steps to obtain statistically meaningful thermody-

namic relations [1, 2]. The time step is constrainted by the high-

est frequency of atomic vibrations: typically on the order of fem-

toseconds. As such, nanosecond simulations will necessitate mil-

lions of time steps [1].

Extensive effort on improving the computational speed of

MD simulations have focused on massively parallel implemen-

tation of MD simulations [1]. Both specialized hardware and

novel algorithms have been developed [1,9–12]. However, many

algorithms suffer accuracy limitations when the forces are long-

range. For short-range potentials such as Lennard–Jones, these

algorithms typically use a cutoff distance above which interac-

tions are neglected (referred to as thresholding). This is often suf-

ficient for short-range forces from isotropic potentials; however,

minimizing the error becomes uncertain when using long-range

forces or angular dependent forces. These long-range forces are

particularly pervasive in a variety of smart materials, including

ferroelectric single crystals, electrostrictive polymers, and mag-

netostrictive materials.

Here, we examine the structure of the molecular interactions

using network theory and utilize the network-based tools to de-

velop computationally inexpensive representations of the molec-

ular interactions. Network theory has long been used to describe

various complex systems including airplane scheduling, social

interactions and electric grids [13]. It has also been used in en-

gineering systems such as fluid dynamics [14–17], chemical net-

works [18] and dynamics of granular matter [19,20], but minimal

research has investigated its application to solid mechanics. A
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network consists of a series of points (nodes) and their pairwise

interactions (edges) [13]. The tools of network theory describe

the bulk structure based on the underlying interactions that gov-

ern the system dynamics [13].

Given a network-based representation of a system, one can

consider determining a sparse network representation to distill

the network to its core features or to extract its important struc-

ture and correlation with material properties. One technique is

known as the spectral sparsification method, which quantifies

the spectra of the graph while finding its sparse representation

[21, 22]. The goal of the current work is to determine whether

spectral sparsification is a viable algorithm for speeding up com-

putation and reducing errors in MD simulations.

The application of spectral sparsification to molecular dy-

namics is described using examples based upon a simple

Lennard–Jones potential and a Coulombic potential. It is shown

that spectral sparsification can conserve system properties but re-

organizes atomic interaction force distribution in order to achieve

a sparse model. After first introducing molecular dynamics and

network theory, the atomistic model is numerically implemented

and errors using thresholding versus sparsification are quantified.

Finally, we conclude with suggestions for future work and poten-

tial applications.

Molecular Dynamics
Molecular dynamics models consist of a large collection of

atoms as point masses and calculates atomic trajectories (x) via

Newton’s law

∑F = ma, (1)

where F are the local forces within the solid, m is the mass and

a = ẍ is the acceleration [1, 2]. The force is typically calculated

from the negative gradient of a potential

F =−∇U, (2)

where U is the potential energy. The most simple potentials are

pair functions based on the distance between two atoms

Ui j =U(ri j), (3)

where ri j is the interatomic distance between atoms i and j [2].

The absolute position of atom i is denoted by ri.

The Lennard–Jones potential is given by

ULJ
i j = ε0

[

(

σ

ri j

)12

−

(

σ

ri j

)6
]

, (4)

where ε0 is the energy well and σ is the zero potential distance.

The potential Ui j defines the energy between two specific atoms

and the total energy is calculated by summing all pairwise poten-

tials.

The Coulomb potential is given by

UC
i j =

kqiq j

εmri j

, (5)

which describes interactions between charges where k is

Coulomb’s constant, εm is the medium permitivity, and qi and

q j are the charges of the two atoms [23].

Network Theory
We first define relations associated with nodes and edges that

are utilized in network theory. This is followed by its application

in describing and sparsifying atomistic interactions and sparsifi-

cation methods.

Formulation A network is a collection of vertices which

are connected by edges [13]. A graph G is an ordered set G =
(V,E,w(E)) consisting of the nonempty set V = {v1,v2, ...,vN}
of vertices or nodes, the set E of edges describing connected pairs

of vertices, and the function w(E) which assigns each edge a

numerical weight [13]. If the weights are all set to zero or one,

the graph is called unweighted. In contrast, if the weights take

positive real numbers, the graph is said to be weighted. A graph

is directed if wi j 6= w ji. Otherwise, it is undirected where wi j =
w ji. A complete graph is a graph in which all pairs of vertices

have an edge between them.

Network connections are frequently algebraically described

by the adjacency matrix A ∈ ℜN×N

Ai j =

{

wi j if (i, j) ∈ E

0 otherwise.
(6)

The adjacency matrix of an undirected graph is symmetric.

The second matrix associated with graphs is the graph

Laplacian L ∈ ℜN×N

Li j =











ki if i = j

−wi j if (i, j) ∈ E

0 otherwise,

(7)
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where ki = ∑ j Ai j is the degree of vertex i. The graph Lapla-

cian is considered analogous to the continuous Laplacian oper-

ator (−∇2). The graph Laplacian and the adjacency matrices

form the basis of graph-theoretic framework and most evalua-

tions of the structure of a graph are generally assessed by exam-

ining these two matrices [13].

Application to Atomistic Interactions With respect

to atomistic networks, there are different physical properties that

may be projected onto the network. In this work, we take the in-

dividual atoms as the nodes. The edge weights could be a func-

tion of distance, the pairwise potential energy, or the pairwise

force. Since the force is a vector quantity, the magnitude of the

force is considered for the scalar edge weights. The atomistic

network edge is therefore given by the magnitude of the force

between two atoms separated by ri j

wi j = |Fi j|. (8)

While there are many different metrics for which the net-

work structure can be used [13], we consider the degree and de-

gree distribution. The degree is defined on each node by

ki = ∑
j

Ai j. (9)

The degree distribution can then be represented by a his-

togram to illustrate changes in properties of the graph as a func-

tion of the internal molecular forces. The nodal degree is one

of the most prominent metrics used in network theory [13]. It

is particularly important to the current application because de-

scribes the total force on each particle.

Atomistic Network Sparsification Sparsification in-

volves approximating a network, G, with a sparse network Gs

[21]. Sparsification is based on the idea of network similarity. A

number of different methods have been described based on dif-

ferent graph topology metrics [24,25]. Spectral sparsification has

been identified as being advantageous for studying dynamics on

networks [14].

For spectral sparsification, an approximation order denoted

by ε is chosen to have the sparse graph satisfy

(1− ε)vT Lv ≤ vT Lsv ≤ (1+ ε)vT Lv (10)

for all v ∈ R
N where L is the graph Laplacian, Ls is the spar-

sified graph Laplacian [21]. If ε = 0 there is no sparsification

of the network while ε = 1 gives the maximum amount of spar-

sification allowed by the algorithm. The algorithm for spectral

sparsification is described by the following four steps [14, 21]:

1. Calculate the Moore–Penrose pseudoinverse of the Lapla-

cian matrix, L+, and use it to calculate the effective resis-

tance by the formula

R̂i j = (pi − q j)
T L+(pi − q j), (11)

where p and q are the vector representation of the nodes. For

example, the node labeled one will have p1 = (1,0, . . . ,0) =
q1.

2. Select an edge at random with the probability of keeping

the edge proportional to its effective resistance, R̂i j. This

probability is, pi j = R̂i j/∑i j R̂i j.

3. Add the selected edge to the sparse graph GS with weight

ŵi j = wi j/qpi j, where q is the number of samples q =
8Nlog2(N)/ε2.

4. Sample q times and sum up weights that are selected more

than once. Any edges that are not selected are removed.

Spectral sparsification provides a novel way to potentially

speed up and reduce error in MD simulations especially when

dealing with long-range forces. The preceding algorithm is

implemented and tested in this paper using a two-dimensional

square model with a circular hole. In particular, we demonstrate

that spectral sparsification accurately conserves the total force in

the presence of long-range forces relative to conventional molec-

ular dynamic threshold approximations. Multiple other methods

exist, e.g fast multipole method [26–30]; however, the present

analysis serves as a simple alternative to facilitate computational

speed-up without introducing large errors.

Implementation and Results

The present analysis looks at both the Lennard–Jones poten-

tial and the Coulomb potential by considering a two-dimensional

test problem consisting of a crystalline material with a circular

hole (see Figure 1). We compare example graphs generated with-

out sparsification, with thresholding at the most frequently used

radial cutoff length, and spectral sparsification with varying edge

densities as governed by ε , introduced in (10).

We define near equilibrium position, as the atom positions

located in the minimum energy position for a perfect, infinitely

large, zero temperature crystal. This means near equilibrium

does not account for surface relaxation on the boundary of our

finite crystal or relaxation around the hole. For a test problem,

we use a square with a hole in the middle as shown in Figure 1.

The test configuration has a width and height of 30 unit cells with

a hole in the center with a radius of 5 unit cells. Note that for the

Lennard–Jones potential, the atoms have no charge.
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FIGURE 1. CHARGE AND ATOM ARRANGEMENT FOR TEST-

ING SPARSIFICATION OF THE COULOMB AND LENNARD

JONES POTENTIALS.

Figures 2 and 3 show images of the original graph, thresh-

olding at rcut = 2.5σ and an example graph from spectral spar-

sification with ε = 1. Figures 2 and 3 shows these graphs based

on the Lennard Jones potential and the Coulomb potential, re-

spectively. Note that both spectral sparsification and threshold-

ing remove the interactions across the hole. For Lennard-Jones,

the spectrally sparsified graph has fewer edges than threshold-

ing. For the Coulombic potential, thresholding generates a more

sparse graph, however it does so by removing significant long-

ranged forces.

We examine the net normalized forces versus the fraction of

edges removed in Figures 4 and 5. The normalized net force F̃ is

defined by

F̃ =
∑i j As

i j

∑i j Ai j

, (12)

where As
i j and Ai j are the adjacency matrices of the sparsified

and original graphs, respectively. This is the sum of the magni-

tude of all the force interactions in the network. To quantify the

amount of edge sparsification, the fraction of remaining edges Fe

is evaluated with

Fe = 1−
Ns

e

No
e

, (13)

where Ns
e is the number of nonzero edges in the sparsified
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FIGURE 2. LENNARD–JONES FORCE GRAPHS WITH SPAR-

SIFICATION BY THRESHOLDING AND SPECTRAL SPARSIFI-

CATION. THE COLOR REPRESENTS THE NORMALIZED EDGE

WEIGHT.

graph and No
e is the number of nonzero edges in the original

graph. Spectral sparsification shows superior conservation of to-

tal forces; particularly for the case of the Coulomb potential.

Figures 6 and 7 show the average normalized error of the

degree at each node. In terms of molecular mechanics, this error

describes the change in the magnitude of forces on each atom.
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FIGURE 3. COULOMB FORCE GRAPHS WITH SPARSIFICA-

TION BY THRESHOLDING AND SPECTRAL SPARSIFICATION.

THE COLOR IS THE NORMALIZED EDGE WEIGHT.

The average normalized error is defined as

1

N
∥

∥Ai j

∥

∥

∥

∥

∥

∥

∥

∑
i

As
i j −∑

i

Ai j

∥

∥

∥

∥

∥

, (14)

where || · || represents the Euclidean norm and N is the number

of nodes in the graph.

In Figure 6, we see that both spectral sparsification and

thresholding have a low and comparable error, for the Lennard–

Jones potential.
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FIGURE 4. ∑i ∑ j |Fi j| FOR LENNARD JONES POTENTIAL FOR

BOTH SPECTRAL SPARSIFICATION AS A FUNCTION OF THE

FRACTION OF EDGES REMOVED.
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FIGURE 5. ∑i ∑ j |Fi j| FOR COULOMB POTENTIAL FOR BOTH

SPECTRAL SPARSIFICATION AS A FUNCTION OF THE FRAC-

TION OF EDGES REMOVED.

However, for the Coulomb potential, the error in the spec-

tral sparsification is significantly lower than for thresholding with

similar fractions of edges removed, as shown in Figure 7. This

suggests spectral sparsification has the ability improve simula-

tions with long-range interactions.

It is important to note that sparsification maintains the mean

degree distribution while maintaining a small error. In contrast,

thresholding does not maintain degree distributions. An example

of the changes in degree distribution is presented in Figure 8 for
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FIGURE 6. AVERAGE LOCAL NORMALIZED ERROR ESTI-

MATE FOR THE LENNARD–JONES POTENTIAL.
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FIGURE 7. AVERAGE LOCAL NORMALIZED ERROR ESTI-

MATE FOR THE COULOMB POTENTIAL.

the Lennard–Jones potential. Qualitatively, spectral sparsifica-

tion keeps the average degree constant while varying the degree

distribution. While the distribution contains randomness, the al-

gorithm keeps the Laplacian eigenvalue spectra similar. Keeping

the average degree distribution constant and retaining the Lapla-

cian spectra means spectral sparsification better approximates the

forces in comparison to thresholding.

FIGURE 8. NORMALIZED DEGREE DISTRIBUTION FOR VAR-

IOUS SPARSIFICATION LEVELS. THE DEGREE DISTRIBUTION

REPRESENTS THE SUM OF THE FORCE INTERACTION ON

EACH ATOM. THE PROBABILITY IS THE NUMBER OF ATOMS

WITH DEGREE IN WITHIN RANGE DIVIDED BY THE TOTAL

NUMBER OF ATOMS.

Conclusions

We have shown that spectral sparsification can provide a

sparse representation of a material network while providing good

approximations of the interatomic forces. In particular, we

have shown that spectral sparsification produces lower error than

thresholding for long-range electrostatic forces based on our two

dimensional example problem. Importantly, sparsification main-

tains a conserved net force. This is significant because it suggests

that sparsification is likely to have a lower error for macroscopic

properties relative to thresholding. However, it does not neces-

sarily keep the force on individual particles constant. It remains
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to be seen if this significantly affects MD simulations.

Moving from the graph of the magnitude of forces to the

kinematics and implementation into molecular dynamics simu-

lations remains a task to be addressed in future work. It should

be noted that there are a number of situations which should in-

vestigated. The work presented here dealt with a spherically

symmetric potential on a two–dimensional plane. Sparsifica-

tion might show improved results in anisotropic potentials (e.g.

dipole-dipole interactions). Apart from dealing with anisotropic

effects, the material studied here is crystalline. Spectral sparsifi-

cation will likely be useful for random fields. Additionally, this

work has not dealt with amorphous solids with defects. This is

another area where spectral sparsification might perform well to

approximate heterogeneous media on a network.

While full discussion of the computational costs and speed

is beyond the scope of this paper, we give some preliminary esti-

mates for comparison. For long-range forces, there are a number

of different methods for summing long-range forces which range

in computational costs of O(n) to O(n2) [26–30]. Thresholding

has a cost of O(n) [1]. The presented sparsification algorithm is

limited by calculation of the Moore-Penrose inverse which has

a cost of O(mn2), but otherwise has a cost of O(nlogn) How-

ever, a discussion of parallel implementation as well as how the

algorithm fits within the molecular dynamics simulations, e.g.

number of edges cut and teh frequency of the algorithm, should

be addressed.

In summary, the preliminary results are promising for ap-

proximating long–range atomistic forces in atomistic simulations

with spectral sparsification. Such long–range forces are perva-

sive in multifunctional materials that exhibit strong polarization

and magnetization effects including ferroelectric and ferromag-

netic materials. There is also a host of other graph theoretic met-

rics not considered here which may be extracted from the edge

distributions of our networks [13]. Such measures may provide

further insight into structure-property relations and dynamic evo-

lution in complex, multifunctional media.
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Appendix A: Graph Resistance

Effective graph resistance is proposed as generalization from

networks of resistors (total resistance) of a graph [21]. The ef-

fective resistance between two nodes is similar to the effective

resistance between two nodes in a circuit calculated by Ohm’s

law V = IReff. In the case of networks of resistors, the weight of

each edge is equivalent to the conductance wi j = 1/Ri j. When

calculating the effective resistance, the current is always taken

to be I = 1, so the effective resistance R̂i j is then the potential

difference across the network when unit current is put in at node

i and unit current is removed at node j. The entire network re-

sistance is simply the sum of the individual effective resistances

R = ∑i j R̂i j/2.
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