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ABSTRACT

The simulation of circuit level timing errors has become a critical component in the evaluation of many
emerging architectures. However, existing methods for injecting these errors tend to be either excruciatingly
slow or rather inaccurate. We show that by dynamically building an error model through the use of super-
vised learning, excellent speedups can be achieved while maintaining little divergence from cumbersome
gate-level simulation. We demonstrate performance improvements as great as 40x while limiting the Root
Mean Square (RMS) divergence of estimated and true error rates to 0.5% on a range of the SPEC CINT2006
benchmarks. This is a significant result because it offers great hope for accelerating simulation and easing
the evaluation of new architectures.
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1 INTRODUCTION

Many recently proposed architectures seek to circumvent traditional design margins and conservative design
practices in an effort to reclaim performance or energy. These novel architectures push run-time operation
past the conventional safety margins for voltage and clock frequency into an operating regime where circuit-
level timing constraints cannot always be met. In the first category of these architectures detect and recover
from the errors, allowing the system to produce architecturally correct results at discounted energy costs.
(Ernst, Kim, Das, Pant, Rao, Pham, Ziesler, Blaauw, Austin, Flautner, and Mudge 2003) (Das, Tokunaga,
Pant, Ma, Kalaiselvan, Lai, Bull, and Blaauw 2009) In the second category of systems, these errors may
be allowed to propagate to the output leading to approximate results. (Sartori, Sloan, and Kumar 2011)
(Sampson, Dietl, Fortuna, Gnanapragasam, Ceze, and Grossman 2011) (Esmaeilzadeh, Sampson, Ceze, and
Burger 2013) Both approaches promise intriguing energy or performance gains.

High quality timing error models are critical to the evaluation of these systems but are challenging to deploy
because they typically imply high complexity and cumbersome simulation overhead. In timing sensitive
systems, the distribution of the timing errors has a significant impact on the performance of the system and
failure to account for this leads to flawed evaluation and possibly an inadequate design. However, traditional
means of injecting high-quality timing errors into simulators require gate-level simulation and therfore make
evaluation intractable for all but the smallest designs. With the emergence of timing error sensitive design
paradigms, we need tractable mechanisms for accurately modeling errors within complete systems.
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In this paper, we propose an automatic flow which offers high fidelity error models without compromising
simulation time. Our approach applies machine learning, detailed hardware representation, and real program
input to dynamically construct an error model which can be integrated into an existing microarchitectural
simulator. This allows the simulation of timing errors to approach the fidelity of the slow detailed gate-level
simulation while achieving simulation speed comparable to the fast but inaccurate analytic models. The
contributions of this work include:

e We demonstrate the strong relationship between program-level features and circuit-level phe-
nomenon in statically scheduled microprocessors.

e We build a framework that combines microarchitectural and gate-level simulations to efficiently
estimate accurate timing error rates with guidance of preset accuracy target.

e We propose a methodology to automatically build adaptive error models with in-situ data collected
from gate-level simulation using supervised learning on statically scheduled pipelines.

o We demonstrate the flexibility of framework with various supervised learning algorithms and quality
thresholds, and the robustness over various Process, Voltage and Temperature (PVT) variations and
error rate levels.

o  We show that the proposed technique achieves on average less than 0.5% Root Mean Square (RMS)
divergence from the true error rate (6.49% on average) over a range of the SPEC CINT2006 bench-
marks.

This paper is organized as follows: Section 2 introduces some background and related work and Section 3
describes the proposed timing error simulation framework. Section 4 describes our methodology setup, and
Section 5 evaluates our proposed technique compared to other alternatives. Finally, Section 6 concludes.

2  BACKGROUND AND RELATED WORK

The present state of error models for circuit-level timing speculation leaves system evaluators with a difficult
choice: (a) sacrifice the fidelity of the error model in exchange for tractable simulation time or (b) apply
a more sophisticated error model and abandon either the coverage or reasonable simulation run-time. We
divide previous efforts for modeling timing errors into two main categories:
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(a) Timing error rates of consecutive program (b) Similarity matrix of interval error rates for ten
intervals (every 10000 executed instructions) in benchmarks. The diagonal of matrix represents the
401.bzip2 show large variation. execution of benchmarks concatenated. Each point

is the error rate difference between two intervals
(projected horizontally and vertically to the diago-
nal). The darker, the more different.

Figure 1: Error rates of continuous intervals show large variations both within and across benchmarks.
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Input Agnostic Models which use analytic or empirically constructed models to estimate the probability of
an error for a given instruction or execution unit as a function of voltage, temperature, and frequency. These
an be evaluated quickly within the micro-architectural simulation, but do not consider the effect of data
values on error rate and hence may not give the most accurate results. VARIUS is a well-known example of
this approach. (Sarangi, Greskamp, Teodorescu, Nakano, Tiwari, and Torrellas 2008)

Gate-level Models which evaluate detailed gate-
level descriptions of the hardware, essentially sim-
ulating the switching of gates to construct a compre-
hensive picture of the error rate, albeit with signifi-
cant performance slowdown due to the complexity of
the model. These models offer faithful distribution
of timing errors including data-dependent effects,
but are several orders of magnitude slower than cur-
rent microarchitectural simulators, which may not be
practical for evaluating full-size benchmarks on real,
complex designs. To mitigate prohibitively slow sim-
ulation speed, researchers often use abbreviated in-
struction execution streams of benchmarks as repre-
sentative workloads, or smaller input sets (i.e. the test
or train sets rather than all of the reference sets in the
SPEC CINT2006). However, due to large variation in
error rate distribution and input-dependent behavior,
partial simulation on narrow input sets of benchmark
may give inaccurate or misleading results. (Wunder-
lich, Wenisch, Falsafi, and Hoe 2003) (Lafage and
Seznec 2001) (Sherwood, Perelman, Hamerly, and
Calder 2002)

Figure 1 shows that in real programs, it is com-
mon to have a significant temporal variation in er-
ror rates even if the voltage, frequency and temper-
ature remain constant. Our experiments on a gate-
level model of an ARM pipeline show that wide vari-
ations in timing error rates exist both within and
across benchmarks. These variations become pro-
nounced under extreme voltage/clock scaling. As
Figure 1a shows, for one execution window (1M in-
struction) in 401.bzip2, error rates of intervals may
vary about 20% (while the average of whole bench-
mark is only 5%). Moreover, the variation across
benchmarks could be as high as 35%, as shown in
Figure 1b. Such large variation makes it extremely
difficult for any single simulation window to capture
the true error rate.

While recent work has identified some of these prob-

BZ2_blockSort:
... /* skipped instructions */

9640: Idr 10, [r5, I, Isl #2]
9644 sub r2,r2, #1
9648: str 1O, [r3]
964c: str 4, [15, Ir, Isl #2]
9650: sub Ir, Ir, #1
[9654: cmp 6, r2|
9658: bgt 9688 <BZ2_blockSort+0x97¢c>

965c: add 3,15, r2, Isl #2

9660: Idr  r4, [r3]

9664: add r0,r4, r1

9668: Idrb  rO, [r8, r0]

966¢: cmp r0,r7

9670: beq 9640 <BZ2_blockSort+0x934>
9674: bcc  95c0 <BZ2_blockSort+0x8b4>

9678: sub r2,r2, #1

9684: ble ~ 9660 <BZ2_blockSort+0x954>

... /" skipped instructions */

(a) Slice constructed for example instructions from two
basic blocks in Function "blocksort" of 401.bzip2.
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(b) Cumulative Delay Distribution of same static instruc-
tion, "cmp 16, 12" at 0x9680/0x9654 (marked in Table 2a)
from two basic blocks in 401.bzip2.

Figure 2: Example of instruction timing delay.

lems and has offered an interesting alternative, scalability problems persist when studying whole processor
designs. Jiao et al. proposed logistic regression based models to predict timing errors at bit-level. (Jiao,
Rahimi, Narayanaswamy, Fatemi, de Gyvez, and Gupta 2015) (Jiao, Jiang, Rahimi, and Gupta 2017) It pre-
dicts timing errors with an average accuracy of 95% for small FPUs, such as adder, multiplier and square
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root circuits. Tziantzioulis demonstrates the effect of history and correlation among output at bit-level
(Tziantzioulis, Gok, Faisal, Hardavellas, Ogrenci-Memik, and Parthasarathy 2015). However, both method-
ologies are hard to scale to either larger designs (e.g. a full processor pipeline) or all possible application
inputs.

Instruction timing delay is a strong function of instruction sequence and data usage, not only the static
single instruction. As shown in Figure 2a, two basic blocks from 401.bzip2 have exactly the same static
instruction marked by black dot (Line 3 on the left and Line 6 on the right). They have very different delay
distribution within the execution window, as shown in Figure 2b. The connection between certain high-
level instruction patterns and low-level circuit timing characteristics provides an opportunity to effectively
accelerate timing error models on larger design using supervised learning algorithm. This high-level timing
error model is trained to identify critical transitions on paths that may lead to timing errors, which can be
used to drastically improve simulation.

3 TIMING ERROR SIMULATION FRAMEWORK WITH D2M

This section presents the proposed framework for ByERlesmIGHaTSTeH
.. . . . . (from simulation driver)
timing error simulation using the Data-Driven Model i

(D2M), as shown in Figure 3. We use the term

Gate-Level

Data-Driven because the models in our approach ¥ &
mulation

are dynamically built on top of in-situ data labeled
by circuit-level timing simulation which capture real
program data and computation. Supervised learning
is used to extract the correlation between high-level
program pattern and low-level circuit timing charac-
teristics.

Extract
— — — »| Instruction Timing

Supervised Learning
(i.e. DT/SVM/MLP)

uArch

Simulation |

N

A RS 3
“Access *traln

N N
N

N \

N
N

Data-Driven
Model

This adaptive model is able to enhance microarchi-
tectural simulation by inserting timing errors in a glah-ll-:lwl —

manner which retains high fidelity with full-blown (may";::sh';"red __>
gate-level simulation. Moreover, the proposed frame- with next
work dynamically monitors the quality of timing er-
ror models to guide the decision of when to rebuild Adiust
a new model if divergence is significant. The contin- Detailed
uous fidelity tracking helps the simulation to main- Siration

7
7

Interval
tain quality throughout the run. In addition, quality Size

thresholds can be adjusted to allow tradeoffs in accu-
racy versus total simulation time. CPI & Error Rate

Figure 3: Proposed framework for timing error
3.1 Achieving accuracy and speed with both gate- simulation with D2M.
level and microarchitectural models

Our framework consists of two simulation modes which respectively use gate-level and microarchitecture-
level models of the processor design. Gate-level models are used for detailed timing simulation which re-
mains a gold-standard for the error models. Despite the accuracy, gate-level simulation is a time consuming
proposition. Event-driven simulation suffers from very low performance because of its inherently sequential
nature and the sheer volume of activity in the entirety of the processor pipeline. Microarchitectural models,
on the other hand, are widely used for cycle-level performance measurement and offer good scalability even



Fan and Joseph

for large and complex designs. However, they on their own are incapable of timing simulation. They can be
augmented by error models that mimic the delay faults that would appear in gate-level simulation.

In our approach we use brief periods of gate-level simulation to build accurate error models that can be
used during the fast microarchitectural simulation. The gate-level simulation intervals provide accurate in-
struction timing information which is used as training data for supervised learning. Adaptive timing error
models are trained based on this data and applied to microarchitecture-level simulation. Thus, the microar-
chitectural model is able to estimate timing errors while simulating at much faster speeds than traditional
gate-level approaches.

3.2 Supervised Learning Based Approach: Data-Driven Model

Timing errors are strong functions of both instruction sequence and data usage in pipeline logic. This is
because various input transitions for combinational logic will exercise different critical paths. In statically
scheduled pipelines, this correlation is even stronger due to the fact that instruction sequence directly deter-
mines the execution order in the pipelines. By taking advantage of this property, supervised learning may be
used to extract important "features” from labeled data and build adaptive timing error models accordingly.
However, for moderate or large designs like a microprocessor, it quickly becomes an overwhelming task to
build a single error model for the whole system and every possible input due to complexity of the circuit
and input space. Therefore, even if there is a strong connection between input program and timing errors,
it is hard to build a single comprehensive model for every benchmark under every possible dataset. We
instead apply supervised learning algorithms to extract features in the timing simulation periodically which
can identify dynamic critical transitions during given execution windows and rebuild a new model whenever
the current model has low quality.

3.2.1 Model Training

We specifically select features: (1) that are visible at the instruction level during microarchitecture-level
simulation and (2) that may trigger timing errors. Feature selection plays an important role in building
a timing error model. One of our goals is to be able to identify relatively high-level program/instruction
characteristics that can be easily tracked within a microarchitectural simulation and yet correlate well to
timing errors which are rooted in circuit-level structure. One reasonable way to do this is to use a recent
segment from the instruction stream which represents instructions which are currently present in the pipeline.

Due to the connection between high-level instruction patterns and low-level circuit timing characteristics,
comprehensive input features should consist of all instructions that are present in the pipeline at the same
time. However, only the instructions that have internal influence on each other may affect the circuit timing.
To reduce the size of input features, we can pick the instructions that are internally relevant due to data
and control dependence as input features of the model. For our hardware model, the timing delay of the
most recent instruction may be influenced by maximally three preceding instructions due to control and
data dependency logic. Thus, four consecutive instructions are used as a single input instance to make a
prediction for timing error property in a cycle.

During detailed gate-level simulation, timing error information for each instruction is collected and used
to label the input instance as either "Error" or "No Error". These labeled input instances are then used as
training dataset to build a timing error model with a supervised learning algorithm. Data collected from gate-
level simulation reflects timing characteristics of both hardware design and dynamic simulation environment
such as Process, Temperature and Voltage (PVT) variations, thereby timing error models that are trained by
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this data do not only make predictions for timing errors introduced by program, but also dynamic simulation
conditions that the program is currently running under.

Our approach is general enough that various learning algorithms may be utilized with different correspond-
ing tradeoffs in terms of accuracy and training/testing cost. Because the proposed framework is orthogonal
to supervised learning algorithms, optimizations in algorithms would also help the framework to reduce cost
from model training/testing or improve the accuracy of timing error simulation. We will demonstrate the
tradeoffs of various algorithms in Section 5.4.

3.2.2 Model Evaluation

Good in field assessment of model quality is critical because it helps to direct the retraining and construction
of better models. There are a few common pitfalls for evaluation of the model. Straightforward classification
rate is not a good metric, because it is affected by the true error rate. The difference between the model
estimate and true error rate is not a good metric to evaluate the model either due to the False Positive (FP)
and False Negative (FN) in classification result. The Receiver Operating Characteristic (ROC) Curve cannot
be used in this case either, because it is affected by imbalanced data set. According to our studies and
analysis, we choose Fj score (Sokolova, Japkowicz, and Szpakowicz 2006) as the metric to evaluate the
performance of timing error model and will show the evaluation of Fj score as metric in Section 5.3.

3.3 Guiding mode transitions with a quality monitor

In order to maintain the accuracy of the proposed framework, We dynamically monitor the quality of models
to guide the decision of when to switch between two simulation modes, and F; score is used as the metric
to evaluate the model quality. The evaluation of models is done periodically on separate testing set col-
lected/labeled by gate-level simulation. Then, the next relevant question is: How should the threshold £}
score be set? Our experiments show that the optimal threshold for different benchmarks may vary. This also
provides an opportunity for us to trade off accuracy with simulation speed. We will show detailed analysis
in Section 5.3.

3.4 Putting It All Together

The simulation repeatedly alternates between detailed gate-level and fast microarchitecture-level modes
with guidance of the Quality Monitor. For a stream of instructions, a subset is simulated in detail while
instruction timing is extracted. This timing information is then used to train an adaptive timing error model
with supervised learning which is applied during fast microarchitecture-level simulation to estimate error
rates. We then use the detailed simulation on a separate stream of instructions to produce testing data. The
Quality Monitor then uses this to validate the current model. Since this procedure is repeated, we can always
re-use the instruction timing extracted to validate the quality of previous trained models.

4 EXPERIMENTAL METHODOLOGY

This section describes our methodology in detail, including the hardware model, D2M training and some
other important components in the proposed framework.

4.1 Hardware Model
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Table 1: Full Gate-level Simulation (Ground Truth) Error Rates (%)

Cond. ‘ perlbench ‘ bzip2 ‘ gcc ‘ mcf ‘ hmmer ‘ sjeng ‘ libquantum ‘ h264ref ‘ omnetpp ‘ astar ‘ Avg. ‘
PVTO; Overclock: 10% 6.01 9.12 | 448 | 7.90 5.07 8.71 3.11 2.79 10.17 7.55 | 6.49
PVT1; Overclock: 20% 15.16 1895 | 11.44 | 21.94 | 12.66 | 15.12 9.48 9.65 23.85 16.66 | 15.49

To evaluate the proposed framework, we model
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by constructing a detailed gate-level model of e
. GLOBALFOUNDRIES

ARM microprocessor. It supports the vast ma- S : PP 55 nm

jority of user-mode integer ARM ISA instruc- (DeSIg:tC(e)ffp"er S

tions (Seal 2000). More specifically, we imple-
mented a Register-Transfer-Level (RTL) model

for 6-stage pipelined ARM microprocessor with T'm'”g Error
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timing speculation support using the Verilog

Hardware Description Language (HDL), and it nethst & sdf build access
. . . . . automatically v
is synthesized using Synopsys Design Compiler

(Kurup and Abbasi 2011) and target GLOB-

netllst

Gate-Level Simulation uArch Simulation

ALFOUNDRIES 55nm ARM standard cell li- e ,

brary (Online ). The design is optimized for a L ,Lmked

frequency of 1 GHz, which we believe is rea- (Bent]r?;ta rks)—> (P! ggtrf;tRate)
sonably aggressive target for a low-power de-

sign. The whole design is back annotated using Figure 4: Experiment setup. Gate-level simulation is
Standard Delay Format (SDF). After construct- set up following the RTL design flow and the gem5
ing this detailed gate-level model, we link it to simulator is responsible for microarchitectural simu-
the gem5 simulator (Binkert, Beckmann, Black, lation.

Reinhardt, Saidi, Basu, Hestness, Hower, Kr-

ishna, Sardashti, Sen, Sewell, Shoaib, Vaish,

Hill, and Wood 2011), so that two simulation modes (detailed gate-level and fast micro-architectural simu-
lation) can be interleaved.

In order to evaluate the proposed approach under different Process, Voltage and Temperature (PVT) condi-
tions and error rates, the simulation is operated under two different environment conditions: PVTO: {Pro-
cess: Typical; Voltage: 1.2V; Temperature: 25C} and PVT1: {Process: Slow; Voltage: 1.08V; Temperature:
125C}, we over-scaled the clock frequency by 10% and 20% respectively, as described in Table 1. The
experiment setup is described in Figure 4.

4.2 Benchmarks

Due to the lack of Floating-point unit in our hardware model, we selected ten integer benchmarks from SPEC
CINT2006 (Henning 2006) that are compatible with our infrastructure to evaluate our proposed technique.
All benchmarks are cross-compiled for the ARM architecture using the LLVM (Lattner and Adve 2004)
with the highest optimization level. We used SimPoint (Hamerly, Perelman, Lau, and Calder 2005) with the
interval size of 100M instructions to identify phases in each benchmark and measured the overall benefits
with weights of different phases.
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Table 2: Comparison of different simulation mechanisms

Mechanism Timing Error Model | Model Simulation Benchmark | Simulation | Overall
Fidelity Type Coverage Cost Accuracy
Full Gate-Level (Ground Truth) RTL/Netlist High Gate-Level Whole High High
Independent Failure Rate (IFR) | Input Agnostic Model | Low uArch Whole Low Low
Sampled Gate-Level (SGL) RTL/Netlist High Gate-level Partial Medium Medium
Data-Driven Model (D2M) RTL/Netlist + uArch High | Gate-level + uArch Whole Medium High

4.3 D2M Training

For D2M training, we applied the Decision Tree (DT) algorithm to build timing error models due to its low
training/testing cost. We also other several commonly used supervised learning algorithms: Support Vector
Machine (SVM) and Multi-Layer Perceptron (MLP) in Section 5.4. We adapted the implementations from
WEKA (Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009).

For feature selection, the information that is relevant to timing error includes the static machine code, and
operand values used in the instruction. The static instruction may provide information such as condition
codes, opcode, register indices and intermediate values. In our hardware model, the timing delay of the
most recent instruction may be influenced by maximally three preceding instruction due to control and data
dependency logic. Thus, we used four consecutive instructions as well as timing error label ("Error" or "No
Error") collected from gate-level simulation, as a single input instance to make a prediction for timing error
property of the last instruction. Since there is no weight for bit-wise transitions in circuit-level, each input
data was converted into binary format and each bit was used as single input feature for both model training
and accessing. For example, static instruction: 0xe3500001 (cmp 10, #1) would be converted to 32 input
features: "1110001101010000000000000000000 1". And the label for timing error is
either "1" (Error) or "0" (No Error).

5 RESULTS

In this section, we provide detailed comparison of the different simulation mechanisms in Section 5.1,
followed by the evaluation of our approach with the impact of Process, Voltage and Temperature (PVT)
variations in Section 5.2. We evaluate F; score as metric for the Quality Monitor and the tradeoff between
accuracy and simulation time for various quality thresholds. We also examine the characteristics of various
supervised learning algorithms (DT, SVM and MLP) in Section 5.4.

5.1 Accuracy and Speed Comparison

In order to evaluate our proposed technique, as well as some other alternatives, we use error rates measured
using full Gate-Level Simulation (GLS) for benchmarks as a gold standard and our basis for normalization
as shown in Table 1. Next we compare our proposed framework with Independent Failure Rate (IFR)
and Sampled Gate-Level (SGL) simulations, as illustrated in Figure 5 and Table 2. IFR simulation uses
offline timing error data to determine failure probability of instructions and hardware components, and then
injects failures with given penalties during execution. SGL simulates an appropriate subset of benchmark
in detailed mode and uses sample error rate to estimate the error rate of the whole benchmark, similar to the
approach introduced by SMARTS (Wunderlich, Wenisch, Falsafi, and Hoe 2003).
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Figure 6: The Root Mean Square (RMS) difference of estimated and true error rates for different mecha-
nisms across benchmarks.

Our proposed technique shows 4x ~ 5x improvement in estimation accuracy, compared to IFR and SGL.
Figure 6 illustrates that, compared to IFR, our proposed technique improves RMS divergence between es-
timated and true error rates by 5x (from 2.5% to 0.5%), while compared to SGL simulation our approach
also outperforms by reducing Root Mean Square (RMS) divergence 4x (from 2% to 0.5%) with the exact
same samples. Moreover, our technique shows much better consistence and stability in estimation. While
IFR and SGL result in RMS divergence as high as 5% and 7.5% respectively, our approach achieves less
than 1% RMS difference in 9 out of 10 benchmarks and only 2% RMS difference maximally.

Our proposed technique and conventional

sample-based approaches both require detailed 7777 uArch [111 Input Agnostic Model
gate-level simulation on a subset of the bench- oo Gate-Level D2M

mark.  For sample-based approaches (e.g.
SMARTYS) confidence level and simulation in- 7 R
tervalscanbeusedtotuneaccuracyversussim— [HNNEEENEENEEEEEEEERRRNEEEEEEEREERRRENE I
ulation time trade offs. In our approach, we use H\]c:n-far{p!ed.H ‘‘‘‘‘‘‘ >
the Quality Threshold to guide this tradeoff. In —_— b’l —
addition, we capture error rate in the entirety - 3 -
of the benchmark by coupling the microarchi-
tectural simulation with the timing error model. D2M == . " e
Compared to sample-based techniques apply- ) ; “

ing proportion estimation in statistics, our pro- »

posed technique requires only 1/2000 sample Dynamic Instruction Stream

size for detailed gate-level simulation to achieve

the comparable estimation accuracy, as shown Figure 5: Example of three simulated mechanisms.
in Figure 7a.

IFR

SGL
sampled

Our proposed framework introduces extra cost for model training/testing and micro-architectural simula-
tion. However, in our experiments, this cost is very small since detailed gate-level simulation still dom-
inates the overall simulation time. Also, as the design complexity grows, the model training/testing and
micro-architectural simulation have much better scalability compared to gate-level simulation, we believe
the relative cost would be small even for more complex designs.

Compared to gate-level simulation on whole benchmark, our approach speeds up simulation by 40x while
resulting in RMS divergence within 0.5%. As the simulation time breakdown shows in Figure 7b, it consists
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(a) Our proposed technique requires much fewer samples for (b) Our simulation method adds tiny extra overhead due to
detailed simulation to achieve the same confidence level and model training/testing and micro-architectural simulation.

interval.

Figure 7: Simulation Speedup and Breakdown Compared to Sample-based Techniques.

of three major components including time consumed by detailed, fast simulations and the model building
time. In practice, since the model is applied during fast simulation, it may add a tiny overhead to fast simu-
lation as well. However, it is totally negligible. Our technique is also orthogonal to algorithm optimization
and micro-architectural simulation improvement which could possibly further reduce this overhead.

5.2 D2M under PVT variations

To validate our proposed technique under extreme conditions, we simulated the design under PVT1 and
20% overclocking as described in Section 4.1 which results in much higher error rate than normal cases.
Our proposed technique achieves high accuracy. The RMS difference between estimated and true error rates
is less than 1.0%, compared to the RMS difference of 2% and 5% for IFR and SGL respectively.
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(a) Correlation between model quality and estimation error. (b) Tradeoffs between accuracy of simulation time for
different quality threshold (F] score) across benchmarks.

Figure 8: Quality Metric (F] score).
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5.3 Measure of Quality

F1 score shows consistency and stability as the metric to evaluate performance of models using various
supervised learning algorithms. We experimentally verified the correlation between F] score and estimation
error across various supervised learning algorithms. Models with a range of performance levels are built
using different supervised learning algorithms (DT, SVM and MLP). The estimation error is defined as the
difference between estimated and true error rate. As shown in Figure 8a, as the performance (metric value)
improves, estimation error of models changes. When F; score is larger than 0.99, the estimation error is
always within 1%, while the other metrics may have some noise even for high metric value. This criteria
(F1 score) also offers an opportunity to trade off model accuracy with simulation time. As shown in Figure
8b, when threshold of Fj score is increased, it may require more detailed simulation to build more accurate
timing error model which result in less speedup.

5.4 Comparison of Various Supervised Learning Algorithms

The name Data-Driven Model (D2M) implies that the

quality of model depends on the training data set. 00 10°
Theoretically, most of supervised learning algorithms " |—— RMS(SVM) -=- Build Time (SVM)
can be used to train a timing error model. However, 0.04f| [ RMS(MLP) ==~ Build Time (MLP) [{;03
different algorithms may have different characteris- T ’ : _
tics. For example, as the complexity of algorithm 5 0.03 LR AN R N S S 102 Y
grows, it may require a larger training data set to E JUUPIEEL i e E
build a more accurate model, or the model it builds 2 0.02l\ , ‘,',;/',f i I 110t 2
may be more complex which may require more build 7 : @
time. To compare the accuracy and cost of differ- 0_01_____: O\ 1100
ent algorithms, We select three widely-known super-
vised learning algorithms, DT, SVM and MLP. The RPN S N A O O : Lo

0 1 2 3 4 5 6 7 8 9 10 11 12 13

accuracy of algorithms is measured by the RMS dif-
ference of estimated and true error rates on a separate
testing set (different instruction streams). As shown Figure 9: Accuracy and build time comparison
in Figure 9, all three algorithms show better accuracy for DT, SVM and MLP.

when training sample size increases. However, SVM

and MLP require nearly 100x and 10000x longer training time compared to DT for the same sample size of
10000. However, SVM and MLP show better accuracy when the sample size is small. Therefore, for small
sample size, probably more complex algorithms/models are preferred. When a large number of samples can
be obtained, a more scalable algorithm, like DT may offer better accuracy.

Sample Size (x10000)

6 CONCLUSION

In recent years, architects have shown interest in systems that have some tolerance for circuit-level timing
errors. Unfortunately, current methods for evaluating these architectures either engender very long simula-
tion times or introduce considerable inaccuracy. In this work, we propose a novel flow for modeling timing
errors in a complete processor pipeline. We show that by periodically training and applying machine learn-
ing models it is possible to achieve fast simulation times without compromising accuracy. This allows us to
achieve very small RMS error rate divergence around 0.5% while producing a 40x simulation speedup over
full gate level simulation. This offers great hope for evaluating an exciting class of architectures.
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