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ABSTRACT: NIST, in collaboration with Vanderbilt University, has assembled an open-source tool set for designing and
implementing federated, collaborative and interactive experiments with cyber-physical systems (CPS). These capabilities
are used in our research on CPS at scale for Smart Grid, Smart Transportation, IoT and Smart Cities. This tool set,
“Universal CPS Environment for Federation (UCEF),” includes a virtual machine (VM) to house the development
environment, a graphical experiment designer, a model repository, and an initial set of integrated tools including the ability
to compose Java, C++, MATLAB™ OMNeT++, GridLAB-D, and LabVIEW™ based federates into consolidated
experiments. The experiments themselves are orchestrated using a ‘federation manager federate,” and progressed using
courses of action (COA) experiment descriptions. UCEF utilizes a method of uniformly wrapping federates into a
federation. The UCEF VM is an integrated toolset for creating and running these experiments and uses High Level
Architecture (HLA) Evolved to facilitate the underlying messaging and experiment orchestration. Our paper introduces the
requiren}ents and implementation of the UCEF technology and indicates how we intend to use it in CPS Measurement
Science.

L NIST does not recommend or advocate any particular technology for the purposes of federation.
Specific technologies mentioned are for illustrative purposes only.




1 Introduction

Cyber-Physical Systems (CPS) comprise interacting digital, analog, physical, and human components engineered for
function through integrated logic and physics[1]. CPS integrate computation, communication, sensing and actuation with
physical systems to fulfill time-sensitive functions with varying degrees of interaction with the environment, including
human interaction. These highly interconnected systems provide new functionalities to improve quality of life and enable
technological advances in critical areas, such as personalized health care, emergency response, traffic flow management,
smart manufacturing, defense and homeland security, and energy supply and use. CPS and related systems (including the
Internet of Things (IoT) and the Industrial Internet) are widely recognized as having potential to enable innovative
applications and impact multiple economic sectors in the worldwide economy [2].

The impacts of CPS will be revolutionary and pervasive — this is evident today in emerging smart cars, intelligent buildings,
robots, unmanned vehicles and medical devices [3]. The development of these systems cuts across all industrial sectors and
demands high-risk, collaborative research between research and development teams from multiple institutions. Realizing
the future promise of CPS will require interoperability between heterogeneous systems and development processes
supported by robust platforms for experimentation and testing across domains. Meanwhile, current design and management
approaches for these systems are domain-specific and would benefit from a more universally applicable approach.

The U.S. National Institute of Standards and Technology (NIST) has partnered with the Institute for Software Integrated
Systems at Vanderbilt University to produce an open-source tool suite for the design and implementation of federated CPS
experiments [4]. This tool suite integrates the leading simulation engines and hardware-in-the-loop with a distributed
modeling and simulation architecture defined by the IEEE 1516 High Level Architecture (HLA) standard [5]. The following
sections enumerate the benefits of a federated testbed architecture, describe the challenges of federated design for CPS, and
introduce the high-level details of the NIST tool suite.

2 Federated Testbed Architecture

A federated testbed architecture is integrative, reconfigurable and reproducible, scalable and useable and, as such, is agnostic
to the implementation details and geographic location of the individual entities that participate in an experiment. During
one experimental run, the experiment entities might be simulations running on a private cloud hosted in one data center.
The next run of the same experiment might replace these simulations with a collection of hardware entities distributed across
testbed facilities locally, regionally, or around the world. This federated testbed architecture, when applied to CPS research,
must be realized across components and their facilities in order to be able to share resources, reduce costs, and enable
experimentation at both heterogeneous and larger scales.

In addition to the sharing of data and models, federation also includes the capability of a laboratory from one facility being
able to provide both control and response signals to a laboratory located at another facility. The interactions in this type of
remote federation are not simple data exchanges, and must contain an abstraction of the policies and disciplines employed
at each location. This abstraction requires a governance model that communicates research and development priorities, and
a consensus agreement that describes how the interaction between facilities will be developed and maintained. Furthermore,
the laboratories involved must share a common architecture to facilitate data exchange, which can be thought of as an open-
source platform that provides for the interaction of data, simulation models, and, in some cases, control signals.

Note that much work on the design and development of federated testbeds has been performed over the years in the forum

where this paper is presented. Included in this work is a key reference on the recommended practice for the design of
federated experiments, “Recommended Practice for Distributed Simulation Engineering and Execution Process (DSEEP)”

[6].

This section discusses the benefits of a federated testbed architecture for CPS to motivate the need for an open-source
platform for remote federation between laboratories.

Integrative
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A CPS contains co-engineered, interacting networks of physical and computational components from multiple domains of
technology. These domains — such as smart cities, smart manufacturing, and transportation — each have technologies and
simulation engines tailored to their individual needs and experiences. CPS experimentation requires the integration of these
heterogeneous, domain-specific tools into a common co-simulation platform. Figure 1 illustrates a subset of the different
entities that must be integrated together to perform a CPS experiment.
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Figure 1 Ability to federate across sectors and technologies, as well as virtual or real instances of CPS.

One benefit of a federated testbed architecture is that interactions among heterogeneous federates are abstracted into a
common, high level language interface where the abstract representation can be used without regard to domain-specific
implementation details. This allows domain-specific simulation languages, experimental prototypes, and proprictary
hardware to be integrated into composite experiments without the need to constantly create custom adapters. This adaptation
should be achieved in a way that is uniform in the native language of a component to ensure the repeatability of an
experiment. Note that it is not necessary to always expose every detail of a component interface for a federated testbed —
only so much as is required for collaboration between components.

Reconfigurable and Reproducible

Once a domain-specific hardware or simulation entity has been wrapped as a federate, it can be easily composed into any
number of different federations. This capability to compose experiments from individual federates is inherent to a federated
testbed architecture, and facilitates the rapid reconfiguration and reproduction of CPS experiments. Repeatability of
experiments is crucial to scientific research, hence there is a need for a uniform approach to federation.

Scalable

Experimentation with CPS at scale potentially requires evaluating the behaviors of, and interactions among, large numbers
of individual components. Such components can be modeled using multiple modeling tools. Where required, the behavior
of the model can be optimized to match the behavior of its physical equivalent. Once built this way, the models of physical

systems can be scaled up to enable experimentation with system behaviors that otherwise would be difficult to achieve using
physical components due to cost and complexity challenges.

Usable
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A federate produced from domain-specific simulation technologies can be stored in a library with other federates abstracted
from vastly different domains. A benefit of federated testbed architectures is a library of reconfigurable federates that
combine:

1. unique or prototype hardware that cannot be relocated,
2. simulations created using domain-specific tools, and
3. proprietary components.

A federated testbed architecture provides the community of CPS researchers with a means of creating a rich array of different
federates that can be incorporated into experiments without the need for significant development or domain-specific
knowledge. Although an HLA-like integration architecture may constrain the capabilities of a federate, the libraries and
common interfaces in a federated architecture add reusability to the development process.

3 Challenges for Federated Testbeds

The previous section discussed the benefits of a federated testbed architecture for the design and implementation of CPS
experiments. However, a federated architecture — especially one that includes the potential to connect remote federations —
leads to new challenges that would be less critical when using domain-specific and simple self-contained benchtop
approaches. This section describes several of the unique challenges of federated testbeds.

3.1 Testing and Curation

It is not sufficient to address only the technical challenges required to enable federated experiments across testbeds. As
experiments become more complex through integration of new federates, and as CPS applications become more reliant on
experimental results to provide assurance in design and implementation, it becomes critical to characterize, validate and
curate the individual federate models albeit within the scope of its intended use. It is likely that models developed for one
project will be repurposed in another. The utilization of models created by others requires a means of model characterization
that goes beyond the documentation produced solely for single test use. Methods of testing individual federates are necessary
to gain confidence in their expected operation like unit testing [7][8] in software systems engineering.

The topics of testing and curation require that a given federate be supported by life cycle management, specification of its
features and capabilities, and control of version and function.

The life cycle for federate development consists of several major steps:

1) design of the federate and its interfaces;

2) implementation of the federate in hardware or software;

3) documentation of the federate to describe its scope and usage;

4) development of an experimental test hardness to validate the federate behavior;

5) archiving of the federate, its documentation, and its testing results; and

6) the evolution of the federate with respects to defect management, enhancement and extension and versioning.

We introduce here the concept of a test harness for a re-useable federate. A test harness places the federate under test (FUT)
in a test environment where its behavior can be monitored and stimulated. The development of a federate must be kept
synchronized with the development of its corresponding test harness. The test harness should be able to generate a pass-fail
result to support the validation of federations on a continuous basis. This continuous integration is desirable so that
regression tests over federates can be periodically invoked to ensure the integrity of the designs. The archived federate must
utilize versioning so that as the federate is evolved, applications can rely on stable versions for their integration. Semantic
versioning should be used [9].

A federate requires description so that a potential integrator of a federate can understand its capabilities and limitations. For
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example, a federate that acts as a source of weather that provides hourly data, cannot be used in a federation that demands
minute by minute variations. The “federate descriptor” should provide this level of detail along with the interfaces that
describe information received and emitted from the federate. The NIST CPS Framework [1] describes a collection of
“concerns” that a given CPS can satisfy. A federate descriptor based on the specification of these concerns addressed can
also define the test boundaries of federate testing. The HLA standard supports a version of a federate descriptor and this
descriptor should be extended to cover more behavioral aspects of the federate.

Together, these dimensions can provide for a robust organization of federate designs and testing that, in turn, can encourage
re-use.

3.2 Communication Protocols

A CPS can employ one or more communication protocols that its component devices and systems use to interact. There is
a myriad of communications protocols used in practice for this exchange. An accurate model of the communications
environment within a CPS is essential for measuring both individual and aggregate behavior. One approach to model this
communication dimension would be to implement one or more native protocols within the federated experimental
environment. This has the advantage of using the genuine communications stacks and hardware that the actual devices being
tested or emulated utilize. An alternative approach would be to integrate one or more network simulators to emulate the set
of required communication protocols.

The first approach to implement native protocols is straightforward. However, it has the following severe shortcomings:

1) difficult to create large network configurations,

2) difficult to reproduce network traffic between experiment runs,

3) difficult to inject protocol fault conditions into the network traffic,

4) lack of isolation from out of band traffic present in real world deployments.

These challenges inspired the creation of network simulation platforms such as OMNeT++ [10], NS2 [11], and NS3 [12].
These network simulators enable precise manipulation and measurement of the communication environment and increase
the ease with which a given experiment can be reproduced. /n sifu communications tests are vulnerable to interference from
coincident communications from uncontrolled sources, and varying latencies due to network design and routing. Such
variances are important to consider in studying communications. However, they are best studied as control variables rather
than asynchronous and non-reproducible environments.

With a network simulator as a co-simulator in a federated testbed environment, more accurate and reproducible test scenarios
can be designed. For example, precise message injection is possible with a network simulator but not necessarily with an
actual implementation of a communications network. Also, the injection of specific faults and scenarios becomes possible,
and reproducible, using a network simulator.

3.3 Security and Privacy

The federates involved in remote federations can be at different geographical locations, and are typically resident on
different network segments under different network security administrative domains. This is a characteristic of many
Operational Technology (OT) architectures. Often, federates behind a firewall will be prohibited from accepting message
traffic from federates located outside of the enterprise. To enable federation in this scenario typically requires the existence
of an outgoing connection to establish a channel for communications with external federates.

Measurements in federated experiments require the same security and privacy protections as other applications in the areas
of confidentiality, integrity, availability, and identity protection. Therefore, the federations that span multiple network
segments must communicate through secured channels, especially when communications among federates cross enterprise
boundaries.
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In exposing interfaces to federates, there can be different federates with different levels of trust. For example, the developer
of an experimental apparatus may utilize the federate interfaces for its own proprietary purposes. Yet, there may be some
public uses of the same federate component. It should be possible to design such a federate once, where differing rights to
access its interfaces can be determined at runtime. Therefore, it is efficient to build a federate interface that suits a variety
of needs so that many special-purpose or experiment-unique versions do not need to be created.

For example, a manufacturer may create a federate that represents a proprietary device. In experiments on the internal
network of that manufacturer, this federate may expose a great deal of information via its interfaces and these are useful in
testing within the enterprise. Yet, there may be features of this interface that are beneficial to access during a collaboration
with others outside the enterprise. Rather than creating a second interface for this federate that exposes a limited set of the
capabilities to external users, Role-Based Access Control (RBAC) [13] can be used to expose a limited subset of capability
based on the role of each collaborator. The owner role, with access to all the features of the federate, could continue to be
used within the enterprise. This mixed-rights uses may be desirable with different roles being asserted within the same
experiment.

Since interfaces between federates must exchange information within and outside a single enterprise environment, methods
of connection must facilitate the traversing of such boundaries. RBAC permits a design it once and use with varying
authorities on a per-role basis. This way, a federate can provide extensive access to authorized parties and less access for
lower authorization classes even within a single federation.

Modern enterprises are protected by firewalls and other tools to defend against cyber-intrusion. Communications methods
that allow outbound secure connections are more permissive than those allowing inbound communications. Therefore,
communications models that permit federation exclusively through outbound secured communications, and without virtual
private network tunnels, are desirable. Such communication channels should be constrained to only carry experiment-
specific network traffic and not be open pipes through which unintended messaging can be injected.

3.4 Community of Collaborators

A requirement to facilitate widespread collaboration and evolution of a federated testbed architecture is that a community
of developers and users forms around a common approach to identify problems, advance the technology, and increase the
availability (and number) of integrated federate models.

In the absence of such a community, independent developments continually reproduce the same innovations to integrate
another capability into an existing base. This produces the classic N x (N-1) permutation problem of interoperability
translations. For example, if there are 5 solvers, each community has to create adaptors to integrate the other four into their
scheme — thus 20 adaptations instead of 5. A robust community, should it be successfully formed, allows each new capability
to be integrated once extending the scope and power of experimental capabilities that preceded it.

4  Universal CPS Environment for Federation (UCEF)

A major challenge to the federated testbed architecture discussed in this paper is the requirement for a common language
and a set of development tools that facilitate development in that common language. The concept of a testbed-in-a-box is
one option that could mitigate this challenge and provide a critically needed resource to the CPS research. Ideally, this
would involve a software platform that handles most of the essential functionality of CPS testbeds such as monitoring
sensors, controlling actuators, logging data, device interoperability, and co-simulation, as well as an extensible framework
that allows different CPS applications to be developed on the platform. A facility could make this software available for
download along with guidance on modeling/simulation tools, sensors, and actuators that have been tested to work with the
platform. This could help research laboratories create testbeds much faster than the current approach of building testbeds
from scratch with very little shared knowledge and experience. In addition, this could spur an open source community
that builds applications with this platform, further increasing the adoption of CPS technology nationwide by domain
experts and citizen scientists. This section describes the testbed-in-a-box developed at NIST called the Universal CPS
Environment for Federation (UCEF).

“Universal CPS Environment for Federation (UCEF)”




4.1 Lightweight Wrappers — A Uniform Approach

One benefit of federated architectures is the ability to integrate simulators, emulators, hardware-in-the-loop and other
domain-specific tools to take advantage of leading technical capabilities. To avoid the onerous requirement to re-implement
each of these different entities in a common language, a means of lightweight integration is desirable that integrates a
federate using a ‘template’ that depends only on the native language of the federate. The optimal concept is to provide only
as much adaptation of an existing component as required for the exchange of information needed for a collaborative
experiment. That includes being able to recognize its joining and departure, its ability to be synchronized with other
federates, and to react to pauses and resume as the experiment progresses. Figure 2 illustrates how models built in different
tool chains can be integrated using this concept of light adaptation.

Best of Breed heterogeneous Light-Integration Wrappers + Common
Simulators/Emulators/HIL Testbeds Experiment Orchestration Bus

Develop
Light Weight
HLA Wrappers

*https://standards.ieee.org/findstds/standard/1516-2010.html

Figure 2 Lightweight Adaptation for Federation’

This figure illustrates four different types of domain-specific hardware and simulation entities, and how light wrappers can
be used to integrate these entities to a common communication bus. By adding a thin layer of adaptation and a common
communication means, models constructed on these otherwise separate platforms can be integrated for federated
experimentation.

The initial release version of UCEF applies this concept of lightweight wrapping to incorporate several simulation engines
with an implementation of HLA called Portico [14]. Support has been added for the simulators LabVIEW™ and Simulink™,
as well as a grid simulator used in the energy industry called GridLAB-D. Network simulation is also possible in this initial
release using the network simulator OMNeT++. In addition to these simulation engines, both the Java and C++ programming
languages are incorporated into UCEF to support the development of software interfaces for hardware-in-the-loop and other
software with socket and web application user interfaces.

4.2  Graphical Development Environment

Figure 3 shows the Web-based Graphical Modeling Environment (WebGME) developed by Vanderbilt University, which
has been extended to support the development of HLA federations. Federates (green boxes) and messaging interactions
(publications and subscriptions) between federates (white boxes) can be dragged in from a component palette and linked

2 NIST does not recommend or advocate any particular technology for the purposes of federation.
Specific technologies mentioned are for illustrative purposes only.
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together to quickly create federations. All of the simulation engines wrapped into UCEF as discussed in the previous
subsection are available for use in the component palette. A code generator integrated with the graphical environment can
turn these models into executable code.
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Figure 3 Web-based Modeling Environment in UCEF

4.3 Experimental Dashboards

Situational awareness of the progress of an experiment and its individual components is crucial when running federated
experiments. Figure 4 illustrates how this situational awareness can have dimensions of geographic dispersion and federate
status (center), dashboards of experiment status (bottom right), and graphical status of experimental measurements in
progress (top left and right). This capacity for situational awareness resembles control center consoles deployed across all
CPS sectors, and its addition to a federated testbed architecture allows research into the human factors of large scale CPS

deployments.

Figure 4 Immersive Situational Awareness

The FIWARE platform [15] developed by an open-source community provides the capability to build experimental
dashboards for CPS. This capability has been integrated into UCEF through development of a wrapper that allows
interactions exchanged in an HL A federation to be pushed into the FIWARE environment.

5 Conclusion

UCEF presents a valuable assembly of technologies that enables the design, implementation, and execution of experiments
through a federated architecture that is reconfigurable, reproducible, scalable, and usable.
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By assembling this tool set in an easy to acquire and maintain form, better experiment design and more complex scenarios
can be achieved.

NIST and Vanderbilt seek to inspire an Open Source Community around UCEF so that, as more adaptors are created and
libraries of modeling components are shared, researchers and other stakeholders of CPS can benefit from these cumulative
capabilities.
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