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Abstract— The increasing popularity of multimedia messages
shared through public or private social media spills into diverse
information dissemination contexts. To date, public social
media has been explored as a potential alert system during
natural disasters, but high levels of noise (i.e. non-relevant
content) present challenges in both understanding social
experiences of a disaster and in facilitating disaster recovery.
This study builds on current research by uniquely using
social media data, collected in the field through qualitative
interviews, to create a supervised machine learning model.
Collected data represents rescuers and rescuees during
the 2017 Hurricane Harvey. Preliminary findings indicate
a 99% accuracy in classifying data between signal and
noise for signal-to-noise ratios (SNR) of 1:1, 1:2, 1:4, and
1:8. We also find 99% accuracy in classification between
respondent types (volunteer rescuer, official rescuer, and
rescuee). We furthermore compare human and machine
coded attributes, finding that Google Vision API is a more
reliable source of detecting attributes for the training set.
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I. INTRODUCTION

During Hurricane Harvey, the US emergency telephone
hotline, 9-1-1, was overwhelmed, causing residents to turn to
social media [1]-[2]. Current research has attempted to create
machine learning models based on data from public social
media, in order to assess need for emergency response during
natural disasters [3]-[4]. The high level of noise and difficulty
in discerning the users location prompts this study to explore
a different solution. We hypothesized that, by collecting
private social media messages from recruited participants,
we could construct a supervised machine learning model
from a training set with high signal. Additionally, this project
leverages computer vision in order to bolster the training of
our models. The modular design of this project enables many
potential applications.

Crisis informatics literature has focused its methodology
on collecting vast amounts of data from public social media
APIs (particularly Twitter) with inclusion criteria based on a
combination of keywords, date ranges, and other attributes.

Much of this work became popular due to the highly
API- accessible 1% Spritzer stream on Twitter, which allows
anyone to collect up to 1% of global tweets. This has been
referred to some by some as a socio-scope [5], providing

insights into any event, however large or small. There is, of
course, value in such blanket approaches and the literature
has gained much in terms of understanding disasters both
from the point of view of victims as well as first responders.
However, there is a dearth of work that has involved actually
deploying teams in the field during a disaster to assess how
social media was used, in addition to collecting data more
indicative of a disaster experience that are circulated on
private social media networks, particularly Facebook and
Nextdoor. Though current state-of-the-art methods are able
to classify the relevancy of content to a disaster, these rates
have much room for improvement.

Current work in crisis informatics and machine learning
focuses on the challenges of high-volume, high-velocity
data scraped from social media outlets. Scholars agree that
one of the biggest challenges lies in differentiating noise
from signal in an accurate and timely manner [6]-[7]. As
inexpensive image classification APIs such as Google Vision
continue to improve, machine image analysis is becoming
an increasingly viable option for research [7]. Reference [8]
had a high overall level of success (AUC: 0.98, Precision:
0.99 Recall: 0.97, and F1: 0.98) in creating a pipeline to
filter irrelevant and redundant imagery through a combination
of image classification and human curation. However, this
model does not train on field-elicited data and is not scalable
due to use of human annotators. Few crisis informatics
studies have trained on highly curated non- public social
media data.

II. METHODS

A. Overview

Using attributes detected in images via the Google Vision
API, we constructed a supervised machine learning model.
Fig. 1. illustrates our methodological process from gathering
images to extracting attributes and performing a frequency
analysis on most common attributes, to training our model.
We repeated the same process twice in pretests, comparing
Google Vision API to human coders at the image attribute
detection phase. Training data consisted of private images
gathered through fieldwork over several months directly
following Hurricane Harvey (August 17, 2017 September 3,
2017). The machine learning prediction model was trained
on this signal-based dataset and success for phase 1 of the



project was measured by the models ability to classify images
between signal and noise data; phase 2 of the project is to test
categorization of media into one of three categories: official
rescuer, volunteer rescuer, and rescuee. The model was tested
at scale with 37,500 noisy images, randomly extracted from
the Twitter 1% spritzer stream from May 1, 2017 -January
20, 2018. The training of the model was modified as signal-
to-noise ratio (SNR) was increased and as new classifiers
were tested. Methods such as cross validation and stacking
were used to limit bias and maximize classification accuracy.

Fig. 1. Process Diagram

B. Data Collection

The data collection approach for the study was developed
following classic methods of identifying the relevant stages
of a disaster: pre-impact, impact, and recovery [9]-[10]. Pre-
vious work studying social media and disasters has generally
collected content at all of these stages from platforms such
as Twitter [11], Facebook public groups [12], and Instagram
[13]. Reference [13] work indicates high volumes in the
first two stages, particularly affected by news reports and
celebrity mentions of disasters on social media. It is also for
this reason that searching for a disaster by keywords (in the
case of Hurricane Harvey, by #Harvey) tend to have high
levels of noisy data versus data that is more representative
of individuals experiencing the disaster (i.e. high signal
data). For this reason, data collection involved multiple trips
to affected areas of Houston to identify official rescuers,
volunteer rescuers, and those affected by the disaster (whom
we refer to as rescuees).

During each of these field site visits, a member of the
research team interviewed individuals following an approved
Institutional Review Board (IRB) protocol, which involved
the method of photo elicitation interview (PEI) [14], in which
respondents were asked to contribute their social media
activity to the research team. These included photos and
videos taken during Hurricane Harvey as well as posted and
received textual content as part of their rescue experience or
by those actually conducting rescues.

When consented by the respondent, comments were also
captured in screenshots and shared with the research team.
As interviews took place between 15 minutes to more than
an hour, multiple opportunities were available to collect these
types of ”private” data which would be inaccessible to those
acquiring data from public APIs. Data collected in the form
of screenshots were deposited in a central secure repository.
Fieldworkers consisted of a team of trained graduate students
and faculty at a public university, from multiple disciplines.
Overall, images, text, and media screenshots were gathered

from fieldwork, though our classifier utilizes only images
(see Table 1). The majority of the content the research team
collected were from Facebook.

TABLE I
SIGNAL DATA

Signal Data Source
Data Type Volunteer Rescuer Official Rescuer Rescuee Total

Image 158 36 248 442

III. ATTRIBUTE DETECTION: GOOGLE VISION API

For the purposes of this project, both signal and noise
images were processed by Google Vision through a built
streamlined process for attribute detection. Google Vision
identified attributes in each of the images and returned a
structured JSON list (e.g. water, flood, and boat). For all
media passed through Google Vision, personal information
such as names and profile pictures were redacted.

A. Frequency Analysis

For images processed by Google Vision, detected at-
tributes were also assessed through a frequency analysis.
We aggregated all the attributes identified from computer
vision into a single attribute set. We then calculated the
frequency at which each attribute occurred in the image set.
The threshold value determined the minimum frequency of
included computer vision attributes. For example, a threshold
of 0.00 included any attribute identified by computer vision
whereas a threshold of 0.10 included only attributes which
were identified in at least 10% of the images and excluded
any other infrequent attributes.

When training the machine learning model, we varied
the minimum frequency threshold required, which limited
the attributes utilized in training. This was done to assess
whether more frequent and related data increased success,
speaking to our larger research goal of exploring a signal-
centric methodology. Attributes above a set threshold were
aggregated, and this set of attributes became the features to
be trained upon.

B. Human Attribute Detection Versus Google Vision API

In addition to using Google Visions machine coding to
gather attributes, traditional human coding techniques were
explored in pre-testing. To do so, we followed the same
process described in Fig 1. Studies have reported success
in using human coding, though success was not directly
compared to computer vision attribute detection [8]. The
goal of comparing the two in pre-tests was to ask the
methodological question, ”Can a machine identify features
in an image as well as a human?”

Similar to the functions of Google Vision API, the human
codebook allowed coders to record manifest attributes found
in the media (i.e. car, house, and water), in addition to
latent attributes (i.e. phenomenon, disaster), without any
restrictions such as a predefined dictionary. We found that the



human coders provided fewer attributes, misinterpreted some
attributes, and were potentially biased because they were
aware they were coding images related to Hurricane Harvey.
Based on results of a pre-test comparing the models accuracy
when trained on machine versus human attributes, we chose
to rely on Google Vision attributes. Fig. 2 reveals that
the classifier trained on human-coded yielded low accuracy
results in comparison to attributes from Google Vision.

Fig. 2. Minimum frequency vs. stacked accuracy for classifiers trained on
attributes detected by human coders and by computer vision.

IV. TRAINING AND TESTING

The next phase of the project involved the development of
a classifier, whose aim was to classify content at scale from
noisy data that was relevant to Hurricane Harvey. In other
words, our methodology goes from signal-to-noise, rather
than from noise-to-signal. By starting out with a high quality,
fieldwork-elicited training data set, our hope was to develop
a classifier with very high accuracy.

After collecting the data and creating records for each
image using the attributes detected through Google Vision,
the data were shuffled so that the inherent class imbalance
of the data did not affect the outcome. By randomizing the
ordering, we reduced the possibility that an unrealistic sam-
pling of the data was used during training and testing phases.
We created base classification models for support vector
machine (SVM), Gaussian naive Bayes (GNB), multinomial
naive Bayes (MNB), Bernoulli naive Bayes (BNB), k nearest
neighbor (KNN), decision tree (DT), stochastic gradient
descent (SGD), and multilayer perceptron (MLP). For each
classifier, we fit the model using a 5-fold cross validation. For
SVM, KNN, and SGD, we used scikit-learns gridsearchcv
functionality to tune our hyperparameters which uses nested
cross validation over each combination of hyperparameters
[16].

The results from these 8 base classifiers were then used
to create a stacked classifier. The predictions from the base
classifiers replaced the original features used in the previous
iteration and the stacked classifier was trained using only the
base predictions. No other features from the original feature
set were included in the stacked classifier. Ensemble methods
and a voting classifier were also tested, but proved less accu-
rate than the stacked classifier, though higher than any base

classifier. The ensemble classifier was created by randomly
sampling the dataset with replacement. This process was
repeated until we had 5 unique samples. Each sample was
trained using the same machine learning algorithm and the
predictions from each base model were then used to vote
for the final prediction. The voting classifier was created
using the same base classifiers as the stacking classifier, but
followed the same majority rule as the ensemble methods for
determining the ultimate prediction.

We experimented with naive Bayes, KNN, SVM, and MLP
for the stacked classifier, and found that in most cases, the
algorithms performed similarly. As demonstrated in Fig. 3.,
SVM and MLP were marginally better than KNN and naive
Bayes was slightly worse. The models F1 scores reinforce
these results as seen in Fig. 3. For further testing, the 8
base classifiers were stacked into an optimally tuned SVM
classifier.

We tested accuracy and F1 score of models by manip-
ulating the level of signal data in addition to threshold of
attribute frequency. To gather samples, tweets were randomly
selected from the Twitter repository. Samples of sizes 500,
1000, 2000, and 4000, each with 5 SNR permutations, were
tested for a total of 20 different models. Attribute frequency
threshold values were tested from 0.0-0.045 with 0.005
steps. Additionally, each permutation set was tested on every
threshold. For each combination, accuracy and F1 scores
were recorded.

Fig. 3. Threshold vs accuracy for stacked classifier algorithm comparison.
Attributes identified by Google Vision that occur with a frequency below
the threshold value were not considered during machine learning steps.



V. RESULTS

This model differentiates between relevant signal data and
spurious noise data. The performance of the SNR classifier
is assessed based on stacked accuracy and 8 base classifiers
(see Fig. 4.), and on an F1 score (see Fig. 5.). An F1 score
measures the performance of a classifier, taking into account
the model’s accuracy in classifying both positive cases and
negative cases [15].

The classification accuracy achieved is high for all signal-
to-noise data sets, though notably stacked accuracy falls as
SNR approaches a 1:1 ratio. To back the high accuracy
achieved in initial testing, we performed a second experiment
to visually represent our data. The eight features gathered
from the base classifiers were projected onto a 2-dimensional
scatter plot using singular value decomposition. The resulting
graph showed a clear linear separation between signal and
noise data points, reinforcing the high accuracy of an SVM
classification model.

Preliminary results of an additional model trained to clas-
sify signal data between image types indicate a 99% stacked
accuracy for a threshold between 0.00 and 0.005. This model
differentiates between images representing rescuees people
who were in need of rescue at the time of Hurricane Harvey
and rescuers people who took part in rescue efforts at the
time of Hurricane Harvey.

A. Misclassification Evaluation

We see an accuracy improvement as we train a model with
more noise compared to signal data. This may be due to the
fact that we are misclassifying signal results at a similar rate
per SNR permutation, but because there are more results, the
cost of misclassification is smaller for larger noise ratios. To
evaluate this theory, we built a precision recall confusion
matrix [16] as summarized in Table 2 and 3. Ideally, the
count for true positives (TP) and true negatives (TN) should
be high and false positives (FP) and false negatives (FN)

Fig. 4. Threshold vs. accuracy plots for each SNR data set considered. Threshold indicates the minimum frequency of included computer vision attributes.
Labels identified by Google Vision that do not exist in at least the threshold value were not considered during machine learning steps.



should be low relative to TP and TN. Misclassification of
signal as noise would be a false negative. As SNR increases,
we see proportionally fewer FN, as the number of TN
increases. Increasing the noise sample size doesnt dispose
the model to classify all data points as noise, as it is still able
to differentiate signal from noise and at a higher confidence.

Precision =
|TP |

|TP + FP |
Recall =

|TP |
|TP + FN |

Precision and recall measure the accuracy of classifiers
from a different point of view. (Unweighted) precision is
defined as the fraction of records that actually are of class
C, out of records predicted to be of class C. That is, given
a positive prediction from the classifier, we ask how likely
is it to be correct. In this case, as noise increases, we also
see an increase in records that are correctly predicted to be
noise. Recall is defined as the fraction of correct predictions
of class C over all points in class C and answers the question:
given a positive example, will the classifier detect it?

An ideal classifier sees that as precision increases, recall
increases as well. Average precision measures this concept
by calculating the weighted mean of precisions achieved at
each SNR, with the increase in recall from the previous SNR
used as the weight. The high trend of average precision
indicates there is a direct rather than inverse relationship
between recall and precision as SNR approaches 1:8. From
the confusion matrices in Table 3, we see that the total
number of misclassifications, the sum of FN and FP, remains
constant while the number of correct predictions, the sum of
TP and TN, increases. Thus, there are proportionally fewer
misclassifications and a higher total accuracy as SNR ap-
proaches 1:8. However, the accuracy of signal classification
remained steady, supported by the constant precision across
all SNR permutations.

TABLE II
CONFUSION MATRIX KEY

Predicted Class
Signal Noise

Actual Class Signal F++ (TP) F+- (FN)
Noise F-+ (FP) F– (TN)

TABLE III
PRECISION AND RECALL EVALUATION

Sample Unweighted Average Average Confusion
Size Precision (+) Precision Matrix (n=5)
500 0.9982 0.9998 [[115.6 0.6]

[0.2 119.6]]
1000 0.9947 0.9985 [[113.2 0.6]

[0.6 246.6]]
2000 0.9964 0.9996 [[112.8 0.4]

[0.4 497.2]]
4000 0.9941 0.9988 [[102.6 1.2]

[0.6 1007]]

B. Threshold

Threshold indicates the minimum frequency of included
computer vision attributes. The threshold value was explored
in order determine whether excluding attributes specific to a
small fraction of signal images would affect overall accuracy.

We hypothesized that a frequency threshold greater than
0.00 would yield a higher accuracy in image classification.
However, the results showed a different trend. Between
a threshold of 0.00 and 0.005, there was no significant
difference; the best model considered all attributes, regardless
of frequency of occurrence or human-coded relatedness. Fig.
5 compares the results from each frequency threshold across
each SNR

As the threshold increases, accuracy of the model steadily
declines. We concluded that having the largest number of
attributes as possible for signal data collected from fieldwork
yields the best results.

Fig. 5. Threshold vs. F1 Score for each SNR data set considered.

VI. CONCLUSION

In this paper we have implemented a pattern recognition
machine for automatic classification of human roles in a
natural disaster. A major contribution of the paper lies in
pursuing hard-to-reach signal data, rather than noisy social
media data, in addition to utilizing a stacked classifier
modeling approach in the machine training. The results of
extensive testing performed on multiple datasets of varying
levels of noise data illustrates the robustness and potential
advantages of this proposed approach.

There is still room for improvement in this classifier. By
introducing different types of data and by testing it on noise
data from other contexts, accuracy can be improved.

This is phase one of a crisis communication machine
learning project. In ongoing research, we are integrating text
data into the training model, with the goal of increasing
context of the natural disaster data (Fig. 6). This will improve
the models classification ability when faced with confound-
ing social media imagery (i.e. lakes, rivers, and weather
reports). We plan to conduct further noisy data tests using
confounding social media imagery pulled from Hurricane
Harvey-related tweets. Future work will also concern the



integration of this classifier with automated data collection
directly from private and public social media streams.

The model developed in our lab has potential application
as an alternative emergency response system, highlighting
groups or individuals who are potential rescuers or who are
in need of rescuing. There are many useful applications for
integrating this project into existing social media platforms.
For example, in times of disaster, bots could continuously
surf these social media sites and scrape data to be passed to
the model. Once passed to the model, content from social
media sites can be flagged as either signal or noise, and if
signal, rescuer or rescuee.

Fig. 6. Integrating imagery and text in the project work flow (See Fig. 1.).
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