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Abstract. It is imperative that an animal have the ability to track its
own motion within its immediate surroundings. It gives the necessary
basis for decision making that leads to appropriate behavioral responses.
It is our goal to implement insect-like body tracking capabilities into a
robotic controller and have this serve as the first step toward adaptive
robotic behavior. In an attempt to tackle the first step of body tracking
without GPS or other external information, we have turned to arthro-
pod neurophysiology as inspiration. The insect brain structure called the
central complex (CX) is thought to be vital for sensory integration and
body position tracking. The mechanisms behind sensory integration are
immensely complex, but it was found to be done with an elegant neu-
ronal architecture. Based on this architecture, we assembled a dynamical
neural model of the functional core of the central complex, two structures
called the protocerebral bridge and the ellipsoid body, in a simulation
environment. Using non-spiking neuronal dynamics, our simulation was
able to recreate in vivo behavior such as correlating body rotation direc-
tion and speed to activity bump dynamics within the ellipsoid body of
the central complex. This model serves as the first step towards using
idiothetic cues to track body position and orientation determination,
which is critical for homing after exploring new environments and other
navigational tasks.
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1 Introduction

Navigating the world is a vital task for survival, and yet we take the ability
to do so for granted. Insects and other arthropods, despite their small size, are
capable of incorporating the endless stream of sensory information from their
eyes, antennae, and other organs into real-time position and orientation updates
in the brain, and use that information to decide where to go next (for reviews,
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see [4,7]). Understanding how the brain is able to seamlessly accomplish such a
feat has been at the forefront of insect neurobiology [3,11,12]. The focus of these
efforts has been to understand a brain structure known as the central complex
(CX), which is thought to be vital for sensory integration and body position
tracking.

As roboticists, we are tasked with giving our robots capabilities that we hope
can one day be on par with our own. One of the basic necessities that our robots
must have is the ability to accurately keep track of their body position relative
to objects of interest in the environment. This is a challenge because the current
approach to robotic control involves a thorough understanding of the task and
environment on the part of the programmer, which must then be implemented
as a well thought-out series of “if-then-else” statements. This becomes rather
difficult when environments are not globally known, or are ever-changing (e.g.
weather devastated locales, extraterrestrial landscapes). Thus, we build robot
controllers using dynamical neural structures [10], which we believe will help us
mimic animal brain structures and endow robots with animal-like navigation-
and decision-making abilities.

1.1 Background: Tracking Body Position in the Arthropod CX

How the brain utilizes sensory information to determine body position at any
given time and coordinate proper responses is not fully understood. Exciting
results from the field of arthropod neurobiology have offered insight into brain
substructures that appear to play a pivotal role in this task [3,11]. The central
complex is a brain structure found in all arthropods and is comprised, in many
species, of four neuropils: the protocerebral bridge (PB), the fan shaped body
(FB), the ellipsoid body (EB), and the noduli.

Wolff et al. contributed an excellent survey of central complex connectivity
that showed a richly complex network between the PB, FB, and EB. Although
this paper does not address functional roles of the cell types, it provides a detailed
framework for the “wiring rules” of these neuropils [13]. More recently, physio-
logical work elaborated on the connectivity between the PB and EB and found
that these two structures have coordinated activity that correlates to rotational
body movement [3,11]. Specifically, a recursive excitatory connectivity between
the eight column cells of the PB and the eight wedge cells of the EB maintain
activity within these structures that correspond to body rotational location and
speed. Three key tenants of CX behavior that our simulation captures in this
paper include:

1. The direction of body rotation dictates direction of activity bump movement
in the EB layer.

2. The body’s rotational speed correlates to bump activity speed in the EB.
3. The activity in the PB leads activity in the EB.



372 S. C. Pickard et al.

1.2 Background: Mathematical Models of the Arthropod CX

Several recent models have sought to reproduce and explain the dynamics of
the CX, and how it may give rise to navigational abilities. The work of Webb
et al. created an “anatomically constrained” model of the CX, in which they
mimicked the connectivity described in the previous subsection, and used the
resulting model to control a robot’s homing abilities after exploring an environ-
ment [8]. They found their model to be robust, with overall functionality not
depending strongly on parameter values, as in our work. They constructed their
model from static sigmoidal neurons, with recurrent connections added where
necessary for memory dynamics. The work of Hirth et al. created a recurrent
neural network simulation of the ellipsoid body, and showed that it was capable
of aiding in decisions about which direction to go to navigate toward a goal
based on its current orientation and simplified visual input [2]. This was accom-
plished by finding mappings between sensory information and the ellipsoid body
that produce the intended goal-seeking behavior in a simulated agent. The result
was that this agent could navigate a simple maze toward a goal. Both of these
works have used their CX model in a closed-loop way to produce behavior in a
simulated or hardware agent, something that we have not yet tested with our
model. However, this paper presents a similarly biologically-constrained model,
which uses dynamical neural components to reproduce key features of the CX,
as listed in the previous subsection. Specifically, our CX model enables the use
of idiothetic sensory input to track the body’s heading.

2 Methods and Results

2.1 In Silico Model

We constructed a neural model in Animatlab, a 3D graphics environment for
neuromechanical simulations [1], using the aforementioned recursive excitatory
connectivity between the PB and EB (Fig. 1). This schematic represents the
assembly of the processing layers of our simulation while remaining represen-
tative of in vivo neuronal connectivity. As seen in Fig. 1A, the P-ENs are the
column cell projections that originate in the PB and synapse with EB wedge
cells (also called E-PGs). Figure 1B shows the returning projections of the EB
wedge cells to the PB, thereby completing the recursive loop. Internal to the EB,
Fig. 1C shows an example of the inhibition circuit; when an EB wedge is active,
the inhibition of connecting wedges is proportional to the activity magnitude.

The neurons themselves were modeled with linear conductance dynamics
[10] to represent time dependent electrical properties. The voltage across each
neuron’s cell membrane, U , has the dynamics

Cmem
dU

dt
= Iion + Isyn + Iapp. (1)

Equation 1 states that the current across the cell membrane (left hand side of
the equation) is equivalent to the incoming, applied current Iapp, plus the current
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Fig. 1. Connectivity of the model. (A) The P-EN excitatory neurons project from
PB to EB. Each P-EN connects in a counterclockwise fashion to the EB. (B) The
E-PGs, project from the EB to the PB. (C) Internal EB inhibition example. Each
wedge internally connects to the other wedges, except for the two immediately adjacent
wedges. (Color figure online)

due to ion flux through membrane gates, Iion, plus the current across the synapse
(transmitter induced), Isyn. Plugging in for the currents, Eq. 1 becomes

Cmem
dU

dt
= gmem · (Urest − U) + gsyn(t) · (Esyn − U) + Iapp, (2)

where Cmem is the membrane capacitance, gmem is the membrane conductance
constant, Urest is the equilibrium potential constant (voltage where inward and
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outward currents are equal), g(t)syn is the time variable conductance of the
synapse, and Esyn is the reversal potential of the synapse.

These equations contain many parameter values that must be tuned. In the
past, we have developed methods for selecting parameter values based on the
function of network components [10]. Therefore, we were able to directly assemble
a network whose overall behavior satisfied our goals in Subsect. 1.1. We believe
this is sufficient for two reasons. First, related studies have found the function of
the CX structure not to depend heavily on parameter values [8]. Second, without
actual sensory input and motor output, it is difficult to tune these values to
perform a specific function. Once this system is integrated with sensors and a
mobile platform, parameters will be tuned more carefully to correspond to the
rest of the system.

2.2 Example Process Flow Between PB and EB

The PB and EB work together to use sensory information from head sensors to
update the animal’s internal representation of its orientation. Incoming motion
cues, assumed to already be side-biased prior to reaching the central complex,
feed into the preferred side of the protocerebral bridge. When the body starts to
rotate, sensory organs sensitive to rotation generate neural activity proportional
to rotational speed. This neural activity evenly disinhibits all eight columns of
one half of the protocerebral bridge, while the other half remains inhibited due
to a lack of sensory input.

Figure 2 illustrates a concrete example to illustrate the process flow of the CX
for signal integration and is used to give an idea of the sequence of events that
must take place for the activity bumps to move in our model. In this example,
the animal is originally at rest, and thus, no input signal is yet being received.
However, a memory trace is maintained from the last known body position of
0◦, which corresponds to wedge one being active (Fig. 2A). This memory trace
continuously sends a signal bilaterally through the E-PG axons to PB column
one cells, but this signal from EB wedge one will not elicit depolarization. This is
because at this point, the PB columns are being suppressed by the interneurons.
The interneurons will continue to suppress the PB until body motion recom-
mences, at which point the resulting sensory input inhibits the interneurons. It
is the combination of receiving a signal from EB wedge one and the sensory input
(Fig. 2B) causing disinhibition of the right protocerebral bridge that permits the
first column of the right PB to activate (Fig. 2C); the activated first column of
the right PB sends a signal via the P-EN axon, which articulates with the coun-
terclockwise wedge eight of the EB, and now the activity bump of the EB has
moved from wedge one to wedge eight (Fig. 2D). If the body continues to rotate,
the wedge activity is again transmitted, bilaterally, to columns eight of the left
and right PB, and the activity bump in the PB now moves from columns one
to columns eight on both sides. This sequence of events will continue as long as
body motion is present.
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Fig. 2. Demonstration of the step-wise process flow of signal transduction within the
CX. (A) The body is at rest at a reference point of 0◦. The corresponding wedge has
sustained voltage activity due to a memory trace of this known position - even while at
rest. (B) CW body motion starts which causes a proportional current to feed into the
preferred side of the PB, indicated by thicker red input lines. (C) The memory trace
activity is passed symmetrically via the E-PG to the first columns of the PB. Because
only the right side is disinhibited by sensory feedback, only the right first column of
the PB depolarizes, as indicated by the dark green of column one. (D) As the body
motion continues, the right PB remains disinhibited, thereby allowing the right PB
column one to pass the activity in a counterclockwise fashion to wedge eight. (Color
figure online)
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2.3 Model Behavior

With the model assembled, we tested if our in silico CX behaves similarly to
the in vivo CX. Several key behaviors were seen empirically that we wanted to
ensure our model can reproduce:

1. The direction of body rotation dictates direction of activity bump movement
in the EB layer.

2. The body’s rotational speed correlates to bump activity speed in the EB.
3. The activity in the PB leads activity in the EB.

Experimental studies show that when a fruit fly experiences clockwise motion
in the yaw plane, the EB activity bump moves counterclockwise (Fig. 3A); the
opposite is true for counterclockwise body motion (Fig. 3B). The connectivity is
such that when the preferred side of the PB is disinhibited (and the non preferred
side remains inhibited) the signal is able to move up the column (EB to PB) and
is passed by the PB back to the EB in a counterclockwise fashion, thus causing
counterclockwise bump movement.

When the body rotates at a faster speed, the incoming current from sensory
organs to the CX is presumably greater in magnitude. This permits disinhibition
of the preferred side PB to a greater degree and as a result, enables the EB to
depolarize the PB more quickly. Figure 4A shows the activity of one EB wedge
over time, for three different values of incoming sensory current. It is clear that
the frequency of bursts increases with increasing sensory current. Figure 4B plots
the summary of these, and additional trials, showing that the disinhibitory input
to the PB monotonically controls the speed of bump motion in the EB.

The profile of activation and deactivation in the PB and EB also depend
on the incoming current from sensory organs to the CX. Figure 4C shows the
activity in the left protocerebral bridge (LPB), right protocerebral bridge (RPB),
and ellipsoid body (EB) given different input currents. Figure 4C shows that the
RPB is disinhibited due to it being the preferred side in this scenario, and
that the voltage profile is highly dependent on input speed. In slow rotation
(1nA input - corresponding to a 5% max body speed), the PB neurons slightly
depolarize above resting potential and take a relatively longer time to do so as
indicated by the less steep voltage trace. Faster speeds (10nA and 20nA inputs
- corresponding to a 50% and 100% max body speed, respectively) allow for a
greater degree of disinhibition, resulting in high depolarization magnitudes and
faster rise times. Ultimately, stronger depolarization of the PB results in faster
bump hand-off in the EB.

The EB bump profiles of Fig. 4C (bottom) show that these cells will depolar-
ize to roughly the same degree, regardless of speed, but at different rates. Again,
a slower rotational speed (i.e. weaker sensory input) results in slower depolar-
ization. Although the synapses in our simulation saturate when the presynaptic
voltage is greater than −40 mV, the voltage of the EB wedges may surpass this
functional range.
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Fig. 3. The direction of body rotation dictates the direction of bump activity move-
ment. (A) CW body rotation results in left bump motion in the PB and CCW bump
movement in the EB. (B) CCW body rotation results in left bump motion in the PB
and CW bump movement in the EB. (Color figure online)

From our signal process flow example (Fig. 2) we hypothesized that an EB
wedge (or combination of wedges) must have sustained activity that serves as a
memory trace of the last known position after the body motion has stopped. This
memory trace serves as a starting point for the activity bump when body motion
recommences. Although the memory trace originates in the EB wedge, it is the
disinhibition of the PB that permits the bump to start moving to neighboring
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Fig. 4. Body rotational speed correlates with the bump speed in the PB and EB,
while also correlating depolarization magnitude of the preferred side PB. (A) Fast
body rotation (input as current with increasing magnitudes) causes faster bump hand-
off in the EB (rad/sec). (B) Bump profiles in the left PB (top), right PB, preferred side
(middle), and EB (bottom). Rotational speed effects the depolarization speed of the
EB and PB cells, while greatly affecting the depolarization magnitude of the preferred
side PB (right, in this case). (C) Example of period between bumps in the EB for slow
(1nA), medium speed (10nA) and fast (20nA) rotational speeds. (Color figure online)
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wedges. In a sense, the PB serves as a gatekeeper in allowing the bump to be
passed and as such, its activity must precede that of the EB. This can be seen
in the last step of Fig. 2D, where it is the activation of the PB that permits the
EB to pass the bump.

3 Discussion

In this paper, we presented a model of the central complex that is able to mimic
key neuronal behaviors seen in the brain of the fruit fly. Specifically,

1. The direction of body rotation dictates direction of activity bump movement
in the EB layer.

2. The body’s rotational speed correlates to bump activity speed in the EB.
3. The activity in the PB leads activity in the EB.

Utilizing the excitatory loop architecture between the PB and EB, we were able
to produce a model that appropriately responded to body position and speed.

Tracking Body Position with Multimodal Sensory Inputs: Further work will incor-
porate how environmental stimulation is received by sensory organs and processed
upstream to the central complex. More specifically, we wish to explore the inter-
play between sensory types and how they are prioritized within the central com-
plex or how they may be modulated upstream to the CX. Varga and Ritzmann
(2016) reported that units in the CX showed orientation-dependent activity both
when a visual landmark was provided, and when it was removed [12]. This suggests
that other organs, such as chordotonal organs (COs) in the antennae, sense the
motion of the body and also stimulate the CX. In the future, we wish to explore the
possible upstream interplay between visual inputs and CO inputs from the anten-
nae. Specifically, how do different environmental conditions (i.e. the presence of
visual cues) modulate the CO inputs? How does the total absence of visual input
affect the gain of CO input, and thus the strength of these inputs during sensory
integration found in the EB? Lastly, how does this inertial pathway (i.e. CO feed-
back) that feeds into the EB get used in position determination, spatial memory,
and coordination of fine movement in downstream networks? Using extracellular
CX recordings from cockroaches, we plan to explore how one sensory modality
affects the strength of input to the CX, and correlate these sensory signals with
CX activity.

Expanding Model to Include Other CX Neuropils and Brain Structures: Addi-
tionally, we wish to expand our CX model to include more processing layers of
the EB, integrate the fan-shaped body (FB), and expand beyond the CX. One
cell type we wish to include in future models are the ring cells of the EB. As
the name implies, these cells are concentrically organized in four distinct rings
at various depths of the EB [9,14,15], and neurophysiology work has shown that
they participate in object tracking [15]. In brief, the innervation of these EB
cells appears to come from a visual stimulation pathway that feeds through the
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lateral triangles and into the appropriate EB ring network depending on object
location within the visual field. It is our goal to construct a model that simulates
the visual activation and the downstream neural dynamics of this pathway. We
will then explore how this object tracking pathway, in conjunction to the inertial
pathway described above, is used in spatial memory and movement coordination.
The FB is thought to be the receiver of these various pathways and serves as
the locus of coordination and decision making that may be the key to defining
appropriate behavioral responses to experienced stimuli [5].

Tying It All Together: In summary, our results show that a simple neuronal archi-
tecture can effectively maintain real-time body position updates. This model,
and the future work discussed here, serve as a first step in capturing the adap-
tive capabilities of the arthropod nervous system. With a better understanding
of these situational neuronal behaviors seen in arthropods [6,7], our models can
be used as a framework for robotic control where we hope to see improved adapt-
ability.
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