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1 Introduction

For robots using legged locomotion, mathematical models of Central Pattern
Generators (CPGs) are being used for controlling the complicated gaits and tim-
ing required for stable walking. Traditionally, these models are precisely designed
for oscillation at a set of specific frequencies and phase relationships, which while
easier to design is not conducive to robust and stable walking.

In recent years, work has been done on designing adaptive models of CPGs.
These CPGs are able to exhibit complex behaviors such as learning the resonant
dynamics of a system [1] to improve walking stability, as well as using mathe-
matical learning rules to learn arbitrary signals and embed their relationships
within the system [2,3].

This work explores the possibility of implementing an adaptive frequency
CPG with a similar behavior to these systems, using conductance-based mod-
els of dynamic non-spiking neurons connected as a synthetic nervous system
(SNS) [4].

2 Methods and Results

When designing an adaptive system, it is important to first characterize the exist-
ing model. We used conductance-based non-spiking neurons where the membrane
voltage varies with a differential equation

Cm
dV

dt
= Ileak + Isyn + INaP + Iapp (1)

where
Ileak = Gm · (Er − V ) (2)

Isyn =
n∑

i=1

Gs,i · (Es,i − V ) (3)

INaP = GNa ·m∞(V ) · h · (ENa − V ) (4)
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Fig. 1. (A) The CPG network consists of two neurons with nonlinear persistent sodium
channels (HC 1 and HC 2), which mutually inhibit one another via two nonspiking
interneurons (IN 1 and IN 2). A pair of additional neurons can exploit neural dynamics
to control the oscillation frequency of the CPG by effectively weakening the strength
of mutual inhibition. (B) The membrane voltage of the controlling neuron (Ctrl) has
a linear relationship with the oscillation frequency of the associated CPG.

and there is an externally applied current Iapp. As shown in Fig. 1, if a pair of
inhibiting neurons is added to an SNS model of a CPG, the natural frequency can
be linearly controlled by an applied voltage and behaves as a voltage-controlled
oscillator. Through the use of previously designed functional subnetworks for
arithmetic, integration, and differentiation [4], a larger network can be realized
which acts as an arbitrary frequency-to-voltage converter and maps an input sig-
nal to the appropriate controlling voltage for the CPG (see Fig. 2). Since these
subnetworks have already been successfully tuned for their respective operations,
a complicated network can be constructed by combining desired mathematical
operations as needed, with minor tuning of the individual neurons and synapses
bridging between subnetworks. While the exact topology of this overall net-
work has no direct biological source, the internal subnetworks are all based on
results seen from biology [4]. This subnetwork approach may not lead to the
most minimal network design for a desired functionality, however it allows the
development of very large scale networks where time-intensive optimization need
only be performed on a small subset of the network.

In this work, phase information is fed forward from the initial processing
of an input signal. Future work could use information from separate sources
to control phase, allowing such behavior as inter-leg communication providing
frequency control and intra-leg sensory feedback controlling the phase in legged
locomotion.
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Fig. 2. A network which uses functional neural subnetworks [4] to alter a CPG’s fre-
quency and phase to match that of an incoming signal, as well as a corresponding block
diagram. First, a differentiator network subtracts a delayed copy of an input signal to
approximate a derivative. An integrator (Const. Integ.) is then supplied with constant
current, inducing a ramp which is periodically reset. An addition and subtraction net-
work then equalizes a storage integrator (Period) to the first every input cycle, and
resets the original integrator when equalization has occurred. The stored voltage is
then mapped to the voltage range demonstrated in Fig. 1 for controlling the frequency
of a CPG. Differential spikes from the input are sent to a CPG interneuron, to correct
the phase.

Preliminary testing (see Fig. 3) shows that for square wave inputs the system
has some slight difficulty adapting to very low frequency signals, but as the
frequency increases towards typical walking speeds and up, the system behaves
as intended and locks in both frequency and phase with the input. Further work
is required to fully characterize the frequency and phase response of this network,
including the use of more biologically realistic input signals as well as those with
asymmetric phase. Additionally the effects of using more complicated neural
models, or the presence of any long-term plasticity could also be analyzed.
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Fig. 3. The network shown in Fig. 2 is able to match frequency and phase with a
periodic input signal. At lower frequencies (0.6 Hz shown in (A)) the CPG can exhibit
some unintended phase shifting. At frequencies above 0.8 Hz, the network effectively
locks to the input signal’s frequency and phase (see 1.5 Hz in (B)). As can be seen in
(C), the frequency of the input square wave and output of the network match once
CPG oscillation is stable.

References

1. Buchli, J., Iida, F., Ijspeert, A.J.: Finding resonance: adaptive frequency oscillators
for dynamic legged locomotion. In: IEEE International Conference on Intelligent
Robots and Systems, pp. 3903–3909 (2006). https://doi.org/10.1109/IROS.2006.
281802

2. Righetti, L., Buchli, J., Ijspeert, A.J.: From dynamic Hebbian learning for oscil-
lators to adaptive central pattern generators. In: Proceedings of 3rd International
Symposium on Adaptive Motion in Animals and Machines, AMAM 2005, pp. 1–7
(2005). https://doi.org/record/58529, http://infoscience.epfl.ch/record/58528/files/
righetti05b.pdf?version=1

3. Righetti, L., Buchli, J., Ijspeert, A.J.: Dynamic Hebbian learning in adaptive fre-
quency oscillators. Phys. D Nonlinear Phenom. 216(2), 269–281 (2006). https://
doi.org/10.1016/j.physd.2006.02.009

4. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to
designing synthetic nervous systems that control legged robot locomotion. Front.
Neurorobot. 11, 1–19 (2017). https://doi.org/10.3389/fnbot.2017.00037. http://
journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full

https://doi.org/10.1109/IROS.2006.281802
https://doi.org/10.1109/IROS.2006.281802
https://doi.org/record/58529
http://infoscience.epfl.ch/record/58528/files/righetti05b.pdf?version=1
http://infoscience.epfl.ch/record/58528/files/righetti05b.pdf?version=1
https://doi.org/10.1016/j.physd.2006.02.009
https://doi.org/10.1016/j.physd.2006.02.009
https://doi.org/10.3389/fnbot.2017.00037
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00037/full

	An Adaptive Frequency Central Pattern Generator for Synthetic Nervous Systems
	1 Introduction
	2 Methods and Results
	References




