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Abstract

Rademacher complexity is often used to characterize the learn-
ability of a hypothesis class and is known to be related to the
class size. We leverage this observation and introduce a new
technique for estimating the size of an arbitrary weighted set,
defined as the sum of weights of all elements in the set. Our
technique provides upper and lower bounds on a novel gener-
alization of Rademacher complexity to the weighted setting
in terms of the weighted set size. This generalizes Massart’s
Lemma, a known upper bound on the Rademacher complexity
in terms of the unweighted set size. We show that the weighted
Rademacher complexity can be estimated by solving a ran-
domly perturbed optimization problem, allowing us to derive
high-probability bounds on the size of any weighted set. We
apply our method to the problems of calculating the parti-
tion function of an Ising model and computing propositional
model counts (#SAT). Our experiments demonstrate that we
can produce tighter bounds than competing methods in both
the weighted and unweighted settings.

Introduction

A wide variety of problems can be reduced to computing the
sum of (many) non-negative numbers. These include calculat-
ing the partition function of a graphical model, propositional
model counting (#SAT), and calculating the permanent of
a non-negative matrix. Equivalently, each can be viewed as
computing the discrete integral of a non-negative weight func-
tion. Exact summation, however, is generally intractable due
to the curse of dimensionality (Bellman 1961).

As alternatives to exact computation, variational methods
(Jordan et al. 1998; Wainwright, Jordan, and others 2008)
and sampling (Jerrum and Sinclair 1996; Madras 2002) are
popular approaches for approximate summation. However,
they generally do not guarantee the estimate’s quality.

An emerging line of work estimates and formally bounds
propositional model counts or, more generally, discrete in-
tegrals (Ermon et al. 2013a; Chakraborty, Meel, and Vardi
2013; Ermon et al. 2014; Zhao et al. 2016). These approaches
reduce the problem of integration to solving a small number
of optimization problems involving the same weight function
but subject to additional random constraints introduced by
a random hash function. This results in approximating the
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#P-hard problem of exact summation (Valiant 1979) using
the solutions of NP-hard optimization problems.

Optimization can be performed efficiently for certain
classes of weight functions, such as those involved in the
computation of the permanent of a non-negative matrix.
If instead of summing (permanent computation) we max-
imize the same weight function, we obtain a maximum
weight matching problem, which is in fact solvable in poly-
nomial time (Kuhn 1955). However, adding hash-based con-
straints makes the maximum matching optimization prob-
lem intractable, which limits the application of random-
ized hashing approaches (Ermon et al. 2013c). On the
other hand, there do exist fully polynomial-time random-
ized approximation schemes (FPRAS) for non-negative per-
manent computation (Jerrum, Sinclair, and Vigoda 2004;
Bezdkova et al. 2006). This gives hope that approximation
schemes may exist for other counting problems even when
optimization with hash-based constraints is intractable.

We present a new method for approximating and bound-
ing the size of a general weighted set (i.e., the sum of the
weights of its elements) using geometric arguments based
on the set’s shape. Our approach, rather than relying on
hash-based techniques, establishes a novel connection with
Rademacher complexity (Shalev-Shwartz and Ben-David
2014). This generalizes geometric approaches developed for
the unweighted case to the weighted setting, such as the work
of Barvinok (1997) who uses similar reasoning but with-
out connecting it with Rademacher complexity. In particular,
we first generalize Rademacher complexity to weighted sets.
While Rademacher complexity is defined as the maximum
of the sum of Rademacher variables over a set, weighted
Rademacher complexity also accounts for the weight of each
element in the set. Just like Rademacher complexity is related
to the size of the set, we show that weighted Rademacher
complexity is related to the total weight of the set. Further, it
can be estimated by solving multiple instances of a maximum
weight optimization problem, subject to random Rademacher
perturbations. Notably, the resulting optimization problem
turns out to be computationally much simpler than that re-
quired by the aforementioned randomized hashing schemes.
In particular, if the weight function is log-supermodular,
the corresponding weighted Rademacher complexity can be
estimated efficiently, as our perturbation does not change
the original optimization problem’s complexity (Orlin 2009;



Bach and others 2013).

Our approach most closely resembles a recent line of work
involving the Gumbel distribution (Hazan and Jaakkola 2012;
Hazan, Maji, and Jaakkola 2013; Hazan et al. 2016; Balog et
al. 2017; Mussmann and Ermon 2016; Mussmann, Levy, and
Ermon 2017). There, the Gumbel-max idea is used to bound
the partition function by performing MAP inference on a
model where the unnormalized probability of each state is
perturbed by random noise variables sampled from a Gumbel
distribution. While very powerful, exact application of the
Gumbel method is impractical, as it requires exponentially
many independent random perturbations. One instead uses
local approximations of the technique.

Empirically, on spin glass models we show that our tech-
nique yields tighter upper bounds and similar lower bounds
compared with the Gumbel method, given similar computa-
tional resources. On a suite of #SAT model counting instances
our approach generally results in substantially tighter upper
bounds given limited computation and, on certain classes of
instances, significantly tighter lower bounds as well.

Background

Rademacher complexity is an important tool used in learn-
ing theory to bound the generalization error of a hypothesis
class (Shalev-Shwartz and Ben-David 2014).

Definition 1. The Rademacher complexity of a set A C R™
is defined as:

1 n
A) = —E cag | 1
R(A) n lzgg ; zaz] (D
where E. denotes expectation over c, and c is sampled uni-
Sormly from {—1,1}™

As the name suggests, it is a measure of the complexity of
set A (which, in learning theory, is usually a hypothesis class).
It measures how “expressive” A is by evaluating how well we
can “fit” to a random noise vector ¢ by choosing the closest
vector (or hypothesis) from A. Intuitively, Rademacher com-
plexity is related to | A|, the number of vectors in A, another
crude notion of complexity of A. However, it also depends
on how vectors in A are arranged in the ambient space R".
A central focus of this paper will be establishing quantitative
relationships between R(A) and |A].

A key property of Rademacher complexity that makes it
extremely useful in learning theory is that it can be estimated
using a small number of random noise samples ¢ under mild
conditions (Shalev-Shwartz and Ben-David 2014). The result
follows from McDiarmid’s inequality:

Proposition 1 (McDiarmid, 1989). Let X;,...,X,, € X
be independent random variables. Let f : X™ — R be a
function that satisfies the bounded differences condition that
Vie{l,...,m}andVzy,...,xm,x; € X:

‘f(xlv---vxiv---vmm) - f(xlv---vx/iv'--vwmﬂ < dl

Then for all € > 0

Pr [|f(X1,...,Xm)—JE[f (X1,00s Xo) ]| > e] < exp <22

McDiarmid’s inequality says we can bound, with high
probability, how far a function f of random variables may
deviate from its expected value, given that the function does
not change much when the value of a single random variable
is changed. Because the function in Eq. (1) satisfies this
property (Shalev-Shwartz and Ben-David 2014), we can use
Eq. (1) to bound R(A) with high probability by computing
the supremum for only a small number of noise samples c.

Problem Setup

In this section we formally define our problem and intro-
duce the optimization oracle central to our solution. Let
w : {—1,1}" — [0, c0) be a non-negative weight function.
We consider the problem of computing the sum

Zw)= Y w(x).

xe{—l,l}"

Many problems, including computing the partition func-
tion of an undirected graphical model, where w(x) is the
unnormalized probability of state x (see Koller and Fried-
man (2009)), propositional model counting (#SAT), and com-
puting the permanent of a non-negative matrix can be reduced
to calculating this sum. The problem is challenging because
explicit calculation requires summing over 2" states, which
is computationally intractable in cases of interest.

Due to the general intractability of exactly calculating
Z (w), we focus on an efficient approach for estimating Z (w)
which additionally provides upper and lower bounds that hold
with high probability. Our method depends on the following
assumption:

Assumption 1. We assume existence of an optimization ora-
cle that can output the value
d(c,w) = max_ {{c,x)+logw(x)} (2)
x€{-1,1}n
for any vector ¢ € {—1,1}" and weight function w :
{=1,1}" = [0, 00).

Note that throughout the paper we simply denote log,
as log and log, as In, and assume log0 = —oo. Assump-
tion 1 is reasonable, as there are many classes of models
where such an oracle exists. For instance, polynomial time
algorithms exist for finding the maximum weight match-
ing in a weighted bipartite graph (Hopcroft and Karp 1971;
Jonker and Volgenant 1987). Graph cut algorithms can be ap-
plied to efficiently maximize a class of energy functions (Kol-
mogorov and Zabin 2004). More generally, MAP inference
can be performed efficiently for any log-supermodular weight
function (Orlin 2009; Chakrabarty, Jain, and Kothari 2014;
Fujishige 1980). Our perturbation preserves the submodular-
ity of — log w(x), as (c, x) can be viewed as n independent
single variable perturbations, so we have an efficient opti-
mization oracle whenever the original weight function is
log-supermodular. Further, notice that this is a much weaker
assumption compared with the optimization oracle required
by randomized hashing methods (Chakraborty, Meel, and
Vardi 2013; Ermon et al. 2014; Zhao et al. 2016).

If an approximate optimization oracle exists that can find
a value within some known bound of the maximum, we can



modify our bounds to use the approximate oracle. This may
improve the efficiency of our algorithm or extend its use to
additional problem classes. For the class of log-supermodular
distributions, approximate MAP inference is equivalent to
performing approximate submodular minimization (Jegelka,
Lin, and Bilmes 2011).

We note that even when an efficient optimization oracle
exists, the problem of exactly calculating Z(w) is gener-
ally still hard. For example, polynomial time algorithms ex-
ist for finding the maximum weight perfect matching in a
weighted bipartite graph. However, computing the permanent
of a bipartite graph’s adjacency matrix, which equals the
sum of weights for all perfect matchings or Z(w), is still #P-
complete(Jerrum, Sinclair, and Vigoda 2004). A fully poly-
nomial randomized approximation scheme (FPRAS) exists
(Jerrum, Sinclair, and Vigoda 2004; Bezakova et al. 2006),
based on Markov chain Monte Carlo to sample over all per-
fect matchings. However, the polynomial time complexity
of this algorithm suffers from a large degree, limiting its
practical use.

Weighted Rademacher Bounds on 7 (w)

Our approach for estimating the sum Z(w) = ), w(x)
is based on the idea that the Rademacher complexity of a
set is related to the set’s size. In particular, Rademacher
complexity is monotonic in the sense that R(A) < R(B)
whenever A C B. Note that monotonicity does not hold for
|A] < |B|, that is, R(A) is monotonic in the contents of A
but not necessarily in its size. We estimate the sum of arbi-
trary non-negative elements by generalizing the Rademacher
complexity in definition 2.

Definition 2. We define the weighted Rademacher complexity
of a weight function w : {—1,1}" — [0, 00) as

R(w) =E.| max {{c,x)+logw(x)}|, (3

xe{—-1,1}"
for ¢ sampled uniformly from {—1,1}™.

In the notation of Eq. (2), the weighted Rademacher com-
plexity is simply R(w) = Ec[d(c,w)]. For a set A C
{—=1,1}", let I4 : {—1,1}" — {0, 1} denote the indicator
weight function for A, defined as I4(x) =1 < x € A.
Then R(I4) = R(A), thatis, the weighted Rademacher com-
plexity is identical to the standard Rademacher complexity
for indicator weight functions. For a general weight function,
the weighted Rademacher complexity extends the standard
Rademacher complexity by giving each element (hypothesis)
its own weight.

Algorithmic Strategy

The main idea of this paper is to use the weighted
Rademacher complexity R (w) to provide probabilistic esti-
mates of Z(w), the total weight of w.

This is a reasonable strategy because as we have seen
before, for an indicator weight function I4 : {-1,1}" —
{0, 1}, R(I4) reduces to the standard Rademacher complex-
ity R(A), and Z(I4) = |A| is simply the cardinality of
the set. Therefore we can use known quantitative relation-
ships between R(A) and |A| from learning theory to estimate

|A] = Z(14) in terms of R(A) = R(I4). Although not for-
mulated in the framework of Rademacher complexity, this is
the strategy used by Barvinok (1997).

Here, we generalize these results to general weight func-
tions w and show that it is, in fact, possible to use R(w) to
obtain estimates of Z (w). This observation can be turned into
an algorithm by observing that R(w) is the expectation of a
random variable concentrated around its mean. Therefore, as
we will show in Proposition 2, a small number of samples suf-
fices to reliably estimate R (w) (and hence, Z(w)) with high
probability. Whenever w is ‘sufficiently nice’ and we have
access to an optimization oracle, the estimation algorithm is
efficient.

Algorithm 1 Rademacher Estimate of log Z (w)
Inputs: A positive integer k and weight function w

{-1,1}" — [0,00)._
Output: A number 6 (w) which approximates log Z(w) =

log (ZXE{—M}" w(x))

1. Sample k vectors cq,cs, ...,
formly from {—1,1}".

¢ independently and uni-

2. Apply the optimization oracle of assumption 1 to each

vector ¢ and compute the mean

Z max L{ ¢, x) + logw(x)}.

3. Output 63 (w) as an estimator of R (w) and thus log Z (w).

Bounding Weighted Rademacher Complexity

The weighted Rademacher complexity is an expectation over
optimization problems. The optimization problem is defined
by sampling a vector, or direction since all have length /n,
uniformly from {—1,1}" and finding the vector x that is
most aligned (largest dot product) after adding log w(x).
Our first objective is to derive bounds on the weighted
Rademacher complexity in terms of the sum Z(w).

We begin with the observation that it is impossible to de-
rive bounds on the Rademacher complexity in terms of set
size that are tight for sets of all shapes. To gain intuition, note
that in high dimensional spaces the dot product of any par-
ticular vector and another chosen uniformly at random from
{—1,1}" is close to 0 with high probability. The distribution
of weight vectors throughout the space may take any geomet-
ric form. One extreme configuration is that all vectors with
large weights are packed tightly together, forming a Ham-
ming ball. At the other extreme, all vectors with large weights
could be distributed uniformly through the space. As Figure 1
illustrates, a large set of tightly packed vectors and a small set
of well-distributed vectors will both have similar Rademacher
complexity. Thus, bounds on Rademacher complexity that
are based on the underlying set’s size fundamentally cannot
always be tight for all distributions. Nevertheless, the lower
and upper bounds we derive next are tight enough to be useful
in practice.



Figure 1: Illustration mapping a set of vectors in high di-
mensional space {—1,1}" to the unit circle. Red regions
correspond to regions of space that have a large dot prod-
uct with some vector in the set. Left: when the size of a
set is small, very few regions have a large dot product with
any vector in the set, so the Rademacher complexity will be
small. Right: when a large set of vectors is tightly packed
in a small region of space, the Rademacher complexity will
remain relatively small. In both left and right figures we have
similar (small) Rademacher complexities, yet different set
sizes. This illustrates why tight bounds on the set size based
on Rademacher complexity are difficult to achieve.

Lower bound. To lower bound the weighted Rademacher
complexity we adapt the technique of (Barvinok 1997) for
lower bounding the standard Rademacher complexity. The
high level idea is that the space {—1,1}" can be mapped
to the leaves of a binary search tree. By following a path
from the root to a leaf, we are dividing the space in half n
times, until we arrive at a leaf which corresponds to a single
element (with some fixed weight). By judiciously choosing
which half of the space (branch of the tree) to recurse into at
each step we derive the bound in Lemma 1, whose proof is
given in the appendix.

Lemma 1. For any 8 € (0,1/2), the weighted Rademacher
complexity of a weight function w : {—1,1}" — [0,00) is
lower bounded by

nlog (1 — ) +log Z(w) — logw*(B)

R >1 *(B)+
(w) > logw*(B) on (%)

with

w*(m:{ if6>1/3

Winar = MaxXx W(X),
Winin = Minyg{w(x) : w(x) > 0},

Upper bound. In the unweighted setting, a standard up-
per bound on the Rademacher complexity is used in learn-
ing theory to show that the Rademacher complexity of a
small hypothesis class is also small, often to prove PAC-
learnability. Massart’s Lemma (see (Shalev-Shwartz and
Ben-David 2014), lemma 26.8) formally upper bounds the
Rademacher complexity in terms of the size of the set. This
result is intuitive since, as we have noted, the dot product
between any one vector x € {—1,1}" is small with most
other vectors ¢ € {—1,1}". Therefore, if the set is small the
Rademacher complexity must also be small.

fB<1/3

?

Adapting the proof technique of Massart’s Lemma to the
weighted setting we arrive at the following bound, whose
proof may be found in the appendix:

Lemma 2. For any A > 0, v > 0, and weight functions
w,w? : {=1,1}" — [0,00) with w?(x) = w(x)", the
weighted Rademacher complexity of w” is upper bounded by

1 Ay —1
R(w") < 5 log Z(w) + T logw* (M) + )\g, )
with
* ) Wmazr = MaXx ’LU(X)7 lf)\"y >1
w A7) = {wmin = mine{w(x) : w(x) >0}, ifdy <1’

Note that for an indicator weight function we recover the
bound from Massart’s Lemma by setting A = 4/ 2logZ

n

Corollary 2.1. In the limit as v — oo by setting

n
we recover the bound Wyay < Z(w) in Lemma 2.

Lemma 2 holds for any A > 0. In general we sety = 1
and optimize over A to make the bound as tight as possible,
comparing the result with the trivial bound given by Corollary
2.1. More sophisticated optimization strategies over A and vy
could result in a tighter bound.

Bounding the Weighted Sum Z(w)

With our bounds on the weighted Rademacher complexity
from the previous section, we now present our method for
efficiently bounding the sum Z(w). Proposition 2 states that
we can estimate the weighted Rademacher complexity using
the optimization oracle of assumption 1.

Proposition 2. For c € {—1,1}" sampled uniformly at ran-
dom, the bound

R(w) — vV6on < d(c,w) < R(w) + Vbn )
holds with probability greater than .95.

Proof. By applying Proposition 1 to the function f,,(c) =
d(c,w), and noting the constant d; = 2, we have

P[|6(c, w) — R(w)| > V6n] < e < .05.
This finishes the proof. O

To bound Z(w) we use our optimization oracle to solve
a perturbed optimization problem, giving an estimate of the
weighted Rademacher complexity, R (w). Next we invert the
bounds on R(w) (Lemmas 1 and 2) to obtain bounds on
Z(w). We optimize the parameters A and 3 (from equations
1 and 2) to make the bounds as tight as possible. By applying
our optimization oracle repeatedly, we can reduce the slack
introduced in our final bound when estimating R(w) (by
Lemma 2) and arrive at our bounds on the sum Z(w), stated
in the following theorem.

Theorem 1. With probability at least 0.95, the sum Z(w) =
er{—l,l}" w(x) of any weight function w : {—1,1}" —
[0, 00) is bounded by the outputs of algorithms 2 and 3 as

Y <log Z(w) < Yus.



Algorithm 2 Rademacher Lower Bound for log Z (w)

Algorithm 3 Rademacher Upper Bound for log Z(w)

Inputs: The estimator & (w) output by algorithm 1, k used
to compute 0y (w), and optionally Wy, and wWy,qz-
Output: A number ¢, 5 which lower bounds log Z (w).

1. If log wy,n was provided as input, calculate

\ Sp(w) — ,/677.’ — log wmin

n

2. If log w4y Was provided as input and A < 1,

 Buw) /5~ logwin)?

2n

+ log Win -

3. Otherwise,

- 6n n
Ve = 0p(w) — = 5

4. Output the lower bound max{¢ 15, 10g Wpaz }-

Experiments
The closest line of work to this paper showed that the partition
function can be bounded by solving an optimization problem
perturbed by Gumbel random variables (Hazan and Jaakkola
2012; Hazan, Maji, and Jaakkola 2013; Hazan et al. 2016;
Kim, Sabharwal, and Ermon 2016; Balog et al. 2017). This
approach is based on the fact that

InZ(w)=E,| max {lnw(x)+~vy(x)}

xe{-1,1}"

where all 2" random variables y(x) are sampled from the
Gumbel distribution with scale 1 and shifted by the Euler-
Mascheroni constant to have mean 0. Perturbing all 2" states
with I[ID Gumbel random variables is intractable, leading the
authors to bound In Z(w) by perturbing states with a combi-
nation of low dimensional Gumbel perturbations. Specifically
the upper bound

< =
InZ(w) < Oup =E4 [xefn%}i B {lnw —I—Z'yZ T; }:|

(Hazan et al. 2016) and lower bound

"1
xe{n}aﬁ}n {lnw(x) + Z n’Yz(mz)}:|

=1

an(w) 2 @LB :E,y

(Balog et al. 2017, p. 6) hold in expectation, where ; () for
i =1,...,n are sampled from the Gumbel distribution with
scale 1 and shifted by the Euler-Mascheroni constant to have
mean 0.

To obtain bounds that hold with high probability using
Gumbel perturbations we calculate the slack term (Hazan et
al. 2016, p. 32)

Inputs: The estimator 05, (w), k used to compute dy,(w), and
optionally W,y and wyqy.
Output: A number 1)y g which upper bounds log Z (w).

1. If wy,,, was provided as input, calculate

Ok (w) +

log wTVLLfL

ﬁmin =

n

2. If wy,q, was provided as input, calculate

b (w) +

log Wmazx

6max =

3. Set the value

Bmin, 10 < Bin < 3

IBOpt — ?mawa lf% < ﬁmaw < %
’ if 2 < ﬂm(m

, otherwise

4. Output the upper bound ¥y p:

@) If Bopt = 3, Yup = 6 (w) +

(b) If ﬁopt = %a wUB =n-+ IOg Wmazx-
(c) Otherwise,

6“ + nlog (%)

1- Bopt
Bopt

where w* = {wmin7 if Bopt <
Wmazx if Bopt >

wUB = nﬁopt IOg ( ) -n log (1 - Bopt)+10g ’LU*,

W=

giving upper and lower bounds g = Oy +€5and O =
OLp — %g that hold with probability 1 — o where k samples
are used to estimate the expectation bounds.

We note the Gumbel expectation upper bound takes nearly
the same form as the weighted Rademacher complexity, with
two differences. The perturbation is sampled from a Gum-
bel distribution instead of a dot product with a vector of
Rademacher random variables and, without scaling, the two
bounds are naturally written in different log bases.

We experimentally compare our bounds with those ob-
tained by Gumbel perturbations on two models. First we
bound the partition function of the spin glass model from
(Hazan et al. 2016). For this problem the weight function
is given by the unnormalized probability distribution of the
spin glass model. Second we bound the propositional model
counts (#SAT) for a variety of SAT problems. This problem
falls into the unweighted category where every weight is
either O or 1, specifically every satisfying assignment has
weight 1 and we bound the total number of satisfying assign-
ments.



High Probability Bounds on Z(w)‘
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Figure 2: Bounds for a 7x7 spin glass model with & = 5 (for
both methods), that hold with probability .95. Our bounds
and estimator are scaled to match Gumbel log base e bounds.

Spin Glass Model

Following (Hazan et al. 2016), we bound the partition func-
tion of a spin glass model with variables x; € {—1,1} for
1=1,2,...,n, where each variable represents a spin. Each
spin has a local field parameter §; which corresponds to its
local potential function 6;(x;) = 6;x;. We performed experi-
ments on grid shaped models where each spin variable has 4
neighbors, unless it occupies a grid edge. Neighboring spins
interact with coupling parameters 6; ;(z;,x;) = 0; jx;x;.
The potential function of the spin glass model is

$Tp) = ZQZ‘%' + Z 0;jiT;,

% (i,j)EE

O(x1,xa,. ..

with corresponding weight function

w(xX) = exp Z@xi + Z 0; jxix;
1% (i,4)EE

We compare our bounds on a 7x7 spin glass model. We sam-
pled the local field parameters #; uniformly at random from
[-1, 1] and the coupling parameters uniformly at random
from [0, ¢) with ¢ varying. Non-negative coupling parameters
make it possible to perform MAP inference efficiently us-
ing the graph-cuts algorithm (Kolmogorov and Zabin 2004;
Greig, Porteous, and Seheult 1989). We used the python
maxflow module wrapping the implementation from Boykov
and Kolmogorov (2004).

Figure 2 shows bounds that hold with probability .95,
where all bounds are computed with k£ = 5. For this value
of k, our approach produces tighter upper bounds than using
Gumbel perturbations. The crossover to a tighter Gumbel per-
turbation upper bound occurs around £ = 15. Lower bounds
are equivalent, although we note it is trivial to recover this
bound by simply calculating the largest weight over all states.

Propositional Model Counting

Next we evaluate our method on the problem of proposi-
tional model counting. Given a boolean formula F', this poses

the question of how many assignments x to the underlying
boolean variables result in F' evaluating to true. Our weight
function is given by w(x) = 1 if F(x) evaluates to true, and
0 otherwise.

We performed MAP inference on the perturbed problem
using the weighted partial MaxSAT solver MaxHS (Davies
2013). Ground truth was obtained for a variety of models' us-
ing three exact propositional model counters (Thurley 2006;
Sang et al. 2004; Oztok and Darwiche 2015)>. Table 1 shows
bounds that hold with probability .95 and £ = 1. While the
Gumbel lower bounds are always trivial, we produce non-
trivial lower bounds for several model instances. Our upper
bounds are generally tighter than Gumbel upper bounds.

Analysis

Our bounds are much looser than those computed by random-
ized hashing schemes (Chakraborty, Meel, and Vardi 2013;
Ermon et al. 2013d; 2013b; Zhao et al. 2016), but also re-
quire much less computation (Ermon et al. 2013c; Achim,
Sabharwal, and Ermon 2016). While our approach provides
polynomial runtime guarantees for MAP inference in the spin
glass model after random perturbations have been applied,
randomized hashing approaches do not. For propositional
model counting, we found that our method is computation-
ally cheaper by over 2 orders of magnitude than results re-
ported in Zhao et al. (2016). Additionally, we tried reducing
the runtime and accuracy of randomized hashing schemes
by running code from Zhao et al. (2016) with f values of 0,
.01, .02, .03, .04, and .05. We set the maximum time limit
to 1 hour (while our method required .01 to 6 seconds of
computation for reported results). Throughout experiments
on models reported in Table 1 our approach still generally re-
quired orders of magnitude less computation and also found
tighter bounds in some instances.

Empirically, our lower bounds were comparable to or
tighter than those obtained by Gumbel perturbations on both
models. The weighted Rademacher complexity is generally
at least as good an estimator of log Z as the Gumbel up-
per bound, however it is only an estimator and not an upper
bound. Our upper bound using the weighted Rademacher
complexity, which holds in expectation, is empirically weaker
than the corresponding Gumbel expectation upper bound.
However, the slack term needed to transform our expecta-
tion bound into a high probability bound is tighter than the
corresponding Gumbel slack term. Since both slack terms
approach 0 in the limit of infinite computation (k = oo, the
number of samples used to estimate the expectation bound),
this can result in a trade-off where we produce a tighter upper
bound up to some value of k, after which the Gumbel bound
becomes tighter.

"The models can be

downloaded from
http://reasoning.cs.ucla.edu/c2d/results.html
*Precomputed counts were downloaded from

https://sites.google.com/site/marcthurley/sharpsat/benchmarks/collected-

model-counts



Model Name #Variables  #Clauses ‘ In(Z) r(w) ‘ Rademacher ¥y Gumbel Oy ‘ Rademacher )1, Gumbel 1.5
log-1.cnf 939 3785 47.8 46.4 361.7 400.9 1.0 -0.3
log-2.cnf 1337 24777 24.2 58.9 466.2 508.0 0.9 -0.2
log-3.cnf 1413 29487 26.4 31.2 418.4 524.0 1.8 -0.2
log-4.cnf 2303 20963 65.3 110.2 743.1 615.6 0.4 -0.2
tire-1.cnf 352 1038 204 36.0 191.1 262.9 0.6 -04
tire-2.cnf 550 2001 27.3 61.0 286.5 261.5 0.2 -0.5
tire-3.cnf 577 2004 26.1 534 284.3 299.1 0.4 -04
tire-4.cnf 812 3222 323 47.1 334.7 411.6 0.8 -0.3
ra.cnf 1236 11416 659.2 6252 856.7 1074.5 48.8 0.2
rb.cnf 1854 11324 8559 852.6 1285.1 1403.9 63.6 0.2
sat-grid-pbl-0010.cnf 110 191 54.7 51.3 76.2 176.6 0.4 -0.5
sat-grid-pbl-0015.cnf 240 436 1254 1137 166.4 308.6 3.5 -0.1
sat-grid-pbl-0020.cnf 420 781 2204  210.7 291.1 497.4 10.9 0.1
sat-grid-pbl-0025.cnf 650 1226 348.3  346.6 450.5 668.2 24.3 0.2
sat-grid-pbl-0030.cnf 930 1771 502.4 483.8 644.6 896.7 36.5 0.2
c432.isc 196 514 25.0 45.7 132.5 212.4 0.0 -0.5
c499.isc 243 714 284 60.3 164.0 221.9 0.0 -0.5
c880.isc 417 1060 41.6 92.2 267.6 337.5 0.2 -0.3
c1355.isc 555 1546 284 65.8 294.3 345.2 0.1 -0.3
¢1908.isc 751 2053 22.9 93.6 389.9 407.0 0.0 -0.3
¢2670.isc 1230 2876 161.5 248.1 719.3 705.4 3.0 -0.1

Table 1: Empirical comparison of our estimate of and bounds on propositional model counts against bounds based on Gumbel
perturbations. Meta column descriptions, left to right: model name and information, natural logarithm of ground truth model
counts and our estimator, upper bounds, and lower bounds. Bounds hold with probability .95 and k£ = 1 for both methods. Tighter

bounds are in bold.

Conclusion

We introduced the weighted Rademacher complexity, a novel
generalization of Rademacher complexity. We showed that
this quantity can be used as an estimator of the size of a
weighted set, and gave bounds on the weighted Rademacher
complexity in terms of the weighted set size. This allowed
us to bound the sum of any non-negative weight function,
such as the partition function, in terms of the weighted
Rademacher complexity. We showed how the weighted
Rademacher complexity can be efficiently approximated
whenever an efficient optimization oracle exists, as is the
case for a variety of practical problems including calculating
the partition function of certain graphical models and the per-
manent of non-negative matrices. Experimental evaluation
demonstrated that our approach provides tighter bounds than
competing methods under certain conditions.

In future work our estimator R(w) and bounds on Z(w)
may be generalized to other forms of randomness. Rather
than sampling ¢ uniformly from {—1, 1}", we could conceiv-
ably sample each element c¢; from some other distribution,
such as the uniform distribution over [—1, 1], a Gaussian,
or Gumbel. Our bounds should readily adapt to continuous
uniform or gaussian distributions, although derivations may
be more complex in general. As another line of future work,
the weighted Rademacher complexity may be useful beyond
approximate inference to learning theory.
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