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Incentive Design in a Distributed Problem with Strategic Agents

Donya Ghavidel, Pratyush Chakraborty, Enrique Baeyens, Vijay Gupta, and Pramod P. Khargonekar

Abstract— In this paper, we consider a general distributed
system with multiple agents who select and then implement
actions in the system. The system has an operator with a
centralized objective. The agents, on the other hand, are self-
interested and strategic in the sense that each agent optimizes
its own individual objective. The operator aims to mitigate this
misalignment by designing an incentive scheme for the agents.
The problem is difficult due to the cost functions of the agents
being coupled, the objective of the operator not being social
welfare, and the operator having no direct control over actions
being implemented by the agents. This problem has been stud-
ied in many fields, particularly in mechanism design and cost
allocation. However, mechanism design typically assumes that
the operator has knowledge of the cost functions of the agents
and the actions being implemented by the operator. On the
other hand, cost allocation classically assumes that agents do not
anticipate the effect of their actions on the incentive that they
obtain. We remove these assumptions and present an incentive
rule for this setup by bridging the gap between mechanism
design and classical cost allocation. We analyze whether the
proposed design satisfies various desirable properties such as
social optimality, budget balance, participation constraint, and
so on. We also analyze which of these properties can be satisfied
if the assumptions of cost functions of the agents being private

and the agents being anticipatory are relaxed.

I. INTRODUCTION

Using game theoretic tools to design distributed controllers

in multi-agent systems where each agent has an individual

utility function is a well-established research field [1], [2].

Many impressive results are available for questions such as

analyzing the behavior of agents, for instance in a Nash

equilibrium sense [3], using learning algorithms to identify

these strategies when utility functions for the other agents

may not be known [4], and assigning utility functions to

cooperative agents so that a desired behavior emerges in an

optimization problem [5], [6]. Applying results from game

theory to control raises several new challenges including

presence of dynamics, constraints, and utility functions that

are non-standard in game theory.

In this paper, we are interested in a set-up where multiple

agents that have their own utility functions act on a single

system. Further, there is a central operator that has its own
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utility function and can incentivize (or tax) the agents to

behave in a manner it desires [7]. Examples of problems in

this framework may include design of resource allocation

algorithms in shared infrastructure systems, for instance,

routing and toll design in transportation networks [8], trans-

mission network design and operation in power grids [9], and

so on. The central operator does not have knowledge of the

utility functions of the agents. Since the agents are strategic,

they may misreport these functions upon being asked. In such

a setup, questions about incentive design for various aims

such as optimizing the system efficiency, fairness, budget

balance, and so on naturally arise.

The fields that are primarily relevant to this question are

mechanism design [10] and cost allocation [11]. Mechanism

design considers the question of incentive (or tax) design

when utility functions of the agents are known to the central

operator; the classical application is in auction theory [12].

Three characteristics complicate the application of classical

mechanism design to the distributed control setup considered

in this paper:

1) Agents have interdependent utility functions and thus

the utility function of each agent (and thus its desired

strategy) is a function of the strategy of the other agents.

2) The utility function of the operator may not be the sum

of the utility functions of the agents, which is usually

termed social welfare.

3) The actions are implemented by the agents and the

operator does not have direct control over them.

There have been some recent works that have considered

some of these issues. In [13], the authors present a mech-

anism for a group of self-interested power generators to

implement socially optimal model predictive control algo-

rithms for load frequency control (LFC). This work presents

a mechanism to mitigate the information asymmetry between

the agents and the operator with the application of MPC-

based LFC, but ignores issues (2) and (3) mentioned above.

A mechanism to execute a distributed algorithm by strategic

agents, who have individual utility functions and the operator

does not have knowledge of the utility functions, is designed

in [14]. However, this work ignores issues (2) and (3).

A mechanism to achieve social welfare maximization and

budget balance by agents in a LQG problem, formulated for

power networks, is presented in [15]; however, once again,

these works ignore issues (1) and (2). Finally, we would

like to mention the work [16] that develops a mechanism to

incentivize agents to implement decisions deemed optimal by

the central operator. However, that work assumes the utility

functions of the agents to be known by the central operator.
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Cost allocation classically considers the problem of allo-

cating to various agents the loss of the utility function of

the central operator due to the self-interested behavior of

the agents. Many allocation rules, such as the proportional

rule, the Shapley value, and the nucleolus, that each display

different sets of properties have been proposed in the litera-

ture. Works that develop these roles for control applications

include, e.g., [17], [18]. In particular, [17] proposes a cost

allocation proportional to the marginal contributions of the

agents while satisfying some fairness properties. In [18],

[19] the authors use cost allocation based on standalone

cost principle and cost causation principle respectively. A

different, but related, line of work is that in [20], [21] that

develops a distributed algorithm based on the Nash Bargain-

ing Solution to fairly allocate the costs of the communication

infrastructure in [20] and power management in [21] among

the agents. However, to the best of our knowledge, the

literature on cost allocation assumes the agents to be not

cost anticipatory, in the sense that they do not optimize the

decision that they take with respect to both their a priori

utility function and the cost that will be allocated to them.

Thus, there is a gap in the literature. While mechanism

design considers strategic agents with private utility functions

that are unknown to the central operator, existing work does

not consider issues such as the utility functions of the agents

being coupled, the operator being interested in a specific

objective that is not the social welfare, and actions being

implemented by the agents and not the operator all together.

On the other hand, while cost allocation can consider cou-

pled utility functions and actions being implemented by the

agents, it does not consider agents that anticipate the cost

allocation rule and an operator that has a specific utility

function. The main contribution of this paper is to fill this gap

in the context of a distributed multi-agent control problem.

Specifically, we consider a multi-agent problem in which

the central operator and the agents have private individual

utility functions. The agents are selfish in that they seek to

optimize their own utility, strategic in that they can misreport

any information, and anticipatory in the sense that they con-

sider the impact of any incentive design from the operator.

All the issues (1)–(3) are present. We propose an incentive

design to align the actions of the individual agents with those

desired by the central operator. We compare this design (that

assumes utility functions to be private information) with an

mechanism design (that assumes knowledge of the utility

functions of the agents) inspired by traditional mechanism

design and a cost allocation for the case when agents are

not anticipatory, with respect to various properties such as

budget balance, participation constraint and so on.

The rest of the paper is organized as follows. In Section II,

the problem statement and definition of desired properties are

presented. In Section III, we propose an incentive mechanism

satisfying the properties, compare it with the classic cost

allocation rule, and interpret it as a mechanism design. In

Section IV, we conclude the paper and present some avenues

for future work.

II. PROBLEM FORMULATION

We begin with the system model and next define the

desired properties.

A. System Model

We consider a general distributed system with multiple

agents who decide their actions according to individual utility

functions and a central operator that also has an associated

objective function. Let N = {1, · · · , N} denote the set of

the N agents present. Let ui be the action decided by the

i-th agent. Denote the set of actions of all the agents by U ,

{u1, · · · , uN} and that of actions of all the agents except the

i-th agent by u−i , {u1, · · · , ui−1, ui+1, · · · , uN}. In keep-

ing with the interpretation as a control problem, the utility

for each agent and the central operator is provided through a

cost function that needs to be minimized. Specifically, denote

by Ci(U) the cost function of the i-th agent and by J(U)
that of the central operator. Notice that all the cost functions

depend on the actions of every agent; to emphasize this, we

sometimes use the alternative notation Ci(ui, u−i). Denote

the control actions desired by the central operator from the

i-th agent by u⋆
i . In other words,

U⋆ = argmin J(U), (1)

where U⋆ , {u⋆
1, · · · , u

⋆
N}.

Since the cost function of each agent depends on the

actions of all the agents, there is a non-cooperative game

among them. The best response strategy of the i-th agent

can be defined as

ūi(u−i) = argminCi(U). (2)

Further, a Nash Equilibrium (NE) of the game can be defined

as the set Ū , {ū1, · · · , ūN} such that the following

inequalities hold:

Ci(ūi, ū−i) ≤ Ci(ui, ū−i) for all i. (3)

We make the following assumption:

Assumption 1: At least one pure strategy Nash equilib-

rium as defined by the set Ū exists.

Remark 1: Note that the Nash equilibrium may not be

unique.

Since the set of actions desired by the central operator

U⋆ may not be a Nash equilibrium, the agents will not,

in general, choose actions that are desired by the central

operator. To incentivize the agents to choose actions that

are desired by himself, the operator assigns an incentive

calculated according to the function ti(U) to the i-th agent.

Considering the cost minimization set-up, this incentive can

correspond to a reward (if negative) or a tax (if positive) on

the i-th agent. If the coupled decision problem outlined above

corresponds to a resource allocation problem in a shared

infrastructure system with the central operator interested

in minimizing the cost to society, the incentive can be

interpreted as a fee that each agent pays to use the system

with the magnitude being different for each agent according

to how much inefficiency they cause with respect to the social

cost.



TABLE I

NOTATION SUMMARY IN VARIOUS SCENARIOS

Scenarios NE cost of the operator

With no incentive design (ūi, ū−i) J(Ū)
With incentive design
when agent i participates

(u′
i, u

′
−i) J(U ′)−

∑
j∈N\O tj(U

′)

With incentive design
when agent i opts out

(ũi, û−i) J(ũi, û−i) −∑
j∈N\O tj(ũi, û−i)

Remark 2: We allow an agent to withdraw from the incen-

tive scheme if it so desires. In other words, the participation

of the agents is voluntary and the so-called outside option

of the agent i is simply to opt out unilaterally out of the

incentive design.

With a given incentive design, the cost functions of the

agents and the central operator change. Denote by O the

set of agents which opt out. Then, the cost function of

the central operator is given by J(U) −
∑

i∈N\O ti(U),
that of any agent i ∈ O by Ci(U), and that of any agent

i ∈ N\O by Ci(U)+ti(U). We also introduce some notation

to distinguish between the Nash equilibria that occur when

agent i participates versus when it opts out. Denote the Nash

equilibrium strategies of the agents when agent i participates

by U ′ or (u′
i, u

′
−i), and for the case when agent i unilaterally

opts out of the mechanism by (ũi, û−i). The notation for

the various cases is summarized in Table I. We make the

following assumption.

Assumption 2: We assume that at least one pure strategy

Nash equilibrium of the form (u′
i, u

′
−i) and (ũi, û−i) exist

for the case when any agent i that decides to opt out.

The problem considered in the paper is to analyze incentive

scheme that satisfies certain desirable properties with or

without access to the cost functions of the agents. Next, we

define the set of desirable properties.

B. Properties

We are interested in incentive schemes that satisfy certain

properties. To define the properties, it will be useful to define

two costs generated by strategic behavior of the agents.

Definition 1 (Excess cost): For a given set Ur ,

{ur1, · · · , urN} of actions realized by the agents, the excess

cost imposed on the system operator is defined by

Θ = J(Ur)− J(U⋆).
Note that depending on the agents participation, Ur can be

equal to U ′, Ū and (ũi, û−i).
Definition 2 (Marginal cost): For an action uri

by the i-th agent, consider the set of actions

U i
m , {u⋆

1, · · · , u
⋆
i−1, uri , u

⋆
i+1, · · · , u

⋆
N}, where as

u⋆
j denotes the action of the j-th agent that is optimal

according to the cost function J of the operator. Then, the

marginal cost θi is defined as θi = J(U i
m)− J(U⋆).

Note that both θi ≥ 0 and Θ ≥ 0. Further, the excess cost is

generated because of the marginal costs for all the agents.

We now list the properties we are interested in [10], [22].

1) Social optimality: An incentive scheme is said to be

socially optimal if the actions taken by the agents at

Nash equilibrium with the incentive scheme in place are

the same as the actions that optimize the cost function

of the operator, i.e., if U ′ = U⋆.

2) Budget balance: An incentive scheme is said to be

(resp. weak) budget balanced, if at the resulting Nash

equilbrium, the total incentive ti is equal to (resp. not

less than) the excess cost. Thus, an incentive scheme

is budget balanced if
∑N

i=1
ti = Θ and weak budget

balanced if
∑N

i=1
ti > Θ.

3) Participation constraint: Participation constraint implies

that the agents benefit from participation in the incentive

scheme in the sense that for every agent i, the cost

when it opts out of the incentive design is larger than

its cost function when it participates in the incentive

design. Thus, an incentive scheme satisfies participation

constraint for agent i if Ci(ũi, û−i) ≥ Ci(U
′) + ti.

4) Equity: An incentive design is said to satisfy equity if

for any two agents i and j that have the same marginal

costs, the incentive is equal as well. Thus, an incentive

design satisfies equity if ∀i, j such that θi = θj , it holds

that ti = tj .

5) Monotonicity: An incentive design is said to be mono-

tonic if every agent i that has a higher marginal cost

than agent j is assigned a higher incentive (or tax) than

agent j. Thus, an incentive design is monotonic if for

any i, j such that θi ≥ θj , it holds that ti ≥ tj .

C. Problem Considered

Given the above setup, we are interested in designing

the incentive scheme that satisfy the properties mentioned

in Section II-B. In some sense, such an incentive design

presents a bridge between mechanism design and cost al-

location. While similar to mechanism design we consider

anticipatory strategic agents, we assume that their cost

functions are coupled and unknown to the central operator

who is interested in a specific cost function that is not

the social welfare, and actions being implemented by the

agents and not the operator. On the other hand, while similar

to cost allocation we consider coupled cost functions and

actions being implemented by the agents, we assume that the

agents anticipate the cost allocation rule. In Section III-B,

we assume that the agents are non-anticipatory and study

the properties achieved by the scheme in this scenario that is

inspired by classic cost allocation. Similarly, in Section III-C,

we relax the assumption of cost functions being unknown

to the central operator and study the properties that can be

achieved by a mechanism inspired by the classic Vickrey-

Clarke-Groves (VCG) mechanism [10, Chapter 23]. Finally,

we compare the proposed incentive structures in terms of

properties that can be achieved by each.

III. MAIN RESULTS

We begin by presenting the incentive design for the

problem considered above. We will then study the incentive

with assumptions similar to classic mechanism design and

cost allocation.



A. Proposed Incentive Design

We consider a set-up in which the operator does not access

the knowledge of the cost function of each agent Ci; rather,

the knowledge of the resulting actions of each agent suffices.

We would like to note that the agents are anticipatory.

Thus, they know about the incentive ti and optimize their

decisions after including ti into their cost function when

selecting their decisions. That the incentive design problem

is not trivial as can be seen from the following, perhaps

counter intuitive, result. One may imagine that since one

source of the complexity in the problem is the coupling of

cost functions of the various agents, removing that coupling

may imply that one or more properties are always satisfied.

However, the following result shows that if the cost functions

are decoupled so that Ci = Ci(ui) for all i, the participation

constraint and budget balance can not hold simultaneously.

Proposition 1: For Ci = Ci(ui) for all i, if we design

an incentive such that the agents rationally participate, the

(weak) budget balance constraint can never be satisfied.

Proof: See Appendix.

Note that Ci = Ci(ui) implies that the decisions made by

the agents are independent of each other. Unlike decoupled

case, for the case of coupled cost function it is possible to

come up with an incentive which guarantees participation

constraint as well as budget balance properties.

Example 1: Let the cost functions of agent 1 and 2 be

C1(U) = u2
1 − 2u1u2, C2(U) = u1u2 − u2.

With no incentive, the Nash equilibrium solution is given by

Ū = (1, 1). The cost function of the central operator on the

other hand is

J(U) = (u1 −
3

4
)2 + (u2 − 2)2.

Thus, U⋆ = (3
4
, 2) and J(U⋆) = 0. The operator gives

incentive ti to agent i such that t1(u1) = u2
1, t2(u2) =

− 1

2
. The cost functions of the agents after having incentive

are C1(U) + t1(u1) and C1(U) + t2(u2). Therefore, Nash

equilibrium if the agents participate in the incentivization is

given by U ′ = (1, 2) and, consequently the value of the cost

functions and the incentives are given by C1(U
′) = −3,

C2(U
′) = 0, t1(u

′
1) = 1 and t2(u

′
2) = − 1

2
.

On the other hand, if agents wish to opt out unilaterally,

their Nash equilibrium solution and the cost functions are as

follows. (ũ1, û2) = (1, 1) is calculated as the NE of C1 and

C2 + t2. (û1, ũ2) = (1, 2) is calculated as the NE of C2 and

C1 + t1. As a result, C1(ũ1, û2) = −1 and C2(û1, ũ2) = 0.

Next, we check the participation constraint for i = 1, 2 as

Ci(ũi, û−i) ≥ Ci(U
′) + ti,

which holds for both of the agents using the designed incen-

tive. Since participation constraint is satisfied for both of the

agents, they realize U ′ = (1, 2) and J(U ′) − J(U⋆) = 1

16
.

Since t1(U
′)+ t2(U

′) = 1

2
in this case then one can see that

weak budget balance holds J(U ′)− J(U⋆) <
∑2

i=1
ti(U

′).
Thus, participation constraint and weak budget balance are

satisfied. One can check that monotonicity is also satisfied.

Note that using this incentive by the operator, the agents shift

from Ū to U ′. If one calculates the cost function of operator

in these two cases J(Ū) = 1 + 1

16
and J(U ′)− (t1 + t2) =

1

16
− 1

2
. Hence, the cost function of the operator decreased

by offering the incentive and the incentive is in the benefit

of the operator.

Social optimality may not always be satisfied by incentive

design. In general due to lack of information on cost function

of the agents, one can not come up with an incentive design

which always (for all cost function) satisfies the properties.

B. Interpretation as Cost Allocation

The role of any cost allocation is to suitably allocate the

excess cost Θ of the operator that is generated due to the self-

interested behavior of the agents to the agents in a manner

that satisfies certain properties. We propose the following

proportional cost allocation rule, under which the incentive

ti for agent i by the operator is given by

ti =
θi

∑N
j=1

θj
Θ. (4)

We sometimes use the alternative notation ti(Ur, U
⋆). We

now analyze the properties of the cos allocation scheme (4)

when the underlying framework is that of classical cost

allocation. Recall that in classical cost allocation, the agents

are assumed to be non-anticipatory in that they do not

anticipate the effect of the incentive scheme while choosing

their actions. An alternate interpretation is that each agent

minimizes its own cost function and incurs a cost for that

action in an ex-post manner.

The presence of non-anticipatory agents implies that the

participation constraint needs to be modified. Recall that

the participation constraint was of the form Ci(ũi, û−i) ≥
Ci(U

′) + ti(U
′). However, when the agents are non-

anticipatory, they optimize their own cost functions irrespec-

tive of the incentive design and the participation constraint

in this case implies Ci(Ū) ≥ Ci(Ū)+ ti, which is never sat-

isfied. Thus the central operator needs to have the authority

to penalize the agents so that they participate. To proceed in

this case, we define weak participation constraint as being

satisfied when the agents have to pay θi, if they do not

participate in the incentive scheme. Thus, the participation

constraint in the weak sense is given as

ti + Ci(Ū) ≤ θi + Ci(Ū),

or as ti ≤ θi. Non-anticipatory agents ignore the cost allo-

cation rule while selecting their actions and do not modify

their decision due to the incentive design. Thus, the same

actions are chosen irrespective of the design of the incentive

scheme ti. Thus, social optimality is not guaranteed unless

the objectives of the agents and the operator are aligned due

to some special structure on the cost functions J and Ci.

Since the operator does not require the knowledge of the

cost function of each agent Ci in implementing (4), the same

incentive design can be used if agents are anticipatory.

Remark 3: For the anticipatory agent, the following is

a sufficient condition for the proposed cost function to be



socially optimal

for any Ur and i ∈ N , Ci(Ur) + ti(Ur, U
⋆) ≥ Ci(U

⋆).
We make the following assumption that would be crucial

to satisfying budget balance and participation constraint

simultaneously.

Assumption 3: The excess cost that needs to be allocated

is less than the sum of the individual marginal costs that

cause it, i.e., Θ ≤
∑N

j=1
θj .

Theorem 1: Consider the proportional allocation incentive

design in (4) when the agents are non-anticipatory. The

design:

(i) satisfies participation constraint if Assumption 3 holds.

(ii) always satisfies budget balance, equity, and monotonic-

ity.

Further, there is no incentive design ti that satisfies participa-

tion constraint and budget balance simultaneously if agents

are non-anticipatory and Assumption 3 does not hold.

Proof: See Appendix.

In the following, we provide sufficient conditions on the

cost functions {J,Ci} for Assumption 3 to hold.

Definition 3 (Separability): A function J is defined to be

separable if it can be written as J(U) =
∑N

i=1
fi(ui), where

fi(·) is a function of ui but not of uj , j 6= i.

Proposition 2: Assumption 3 holds, if one of the follow-

ing statements is true.

(i) J is separable.

(ii) J is of the form

J(U,U⋆) = |J̄(u1, · · · , uN )− J̄(u⋆
1, · · · , u

⋆
N)|,

where J̄ is separable.

(iii) J(U i
m) ≥ J(Ū) for any agent i.

Proof: See Appendix.

Example 2: Consider a system with two non-anticipatory

agents and the cost function of the central operator being

given by J(u1, u2) = u2
1 + u2

2 + u1 + u2 − u1u2, that is

minimized by the choice (u⋆
1, u

⋆
2) = (−1,−1). Further, using

the definition of the marginal costs and the excess cost, we

have

θ1 = ū2
1−u⋆2

1−u⋆
2(ū1−u⋆

1), θ2 = ū2
2−u⋆2

2−u⋆
1(ū2−u⋆

2)

and Θ = ū2
1 − u⋆2

1 + ū2
2 − u⋆2

2 − ū1ū2 + u⋆
1u

⋆
2. Assumption

3 implies that θ1 + θ2 ≥ Θ, which yields

−u⋆
2(ū1 − u⋆

1)− u⋆
1(ū2 − u⋆

2) ≥ −ū2ū1 + u⋆
1ū2

Given that (u⋆
1, u

⋆
2) = (−1,−1), Assumption 3 leads to (ū1+

1)(ū2 +1) ≥ 0. The feasible region for ū1 and ū2 is {ū1 >

−1, ū2 > −1} and {ū1 ≤ −1, ū2 ≤ −1}. Any C1 and C2

which have a Nash equilibrium solution in the feasible region

satisfy Assumption 3.

C. Interpretation as Mechanism Design

As discussed earlier, a crucial assumption in our frame-

work is that the cost functions are private knowledge to the

agents. If that assumption does not hold, the classical theory

of mechanism design becomes relevant. In particular, we

can consider the following incentive mechanism ti that is

inspired by the VCG mechanism:

ti = Cri − Ĉri , Cri = J − Ci, Ĉri = Cri(û−i, ũi) (5)

Under this incentive scheme, the agents fully internalize the

effect of their actions on the cost function of the central

operator, in that the cost function of each agent becomes

equal to J .

Remark 4: Note that the operator utilizes the knowledge

of the cost functions Ci. Further, the incentive design is

similar to VCG in that the incentive for the i-th agent

can be interpreted as the marginal cost incurred by the

central operator due to the self-interested actions of the i-

th agent. However, two factors make its form different from

the traditional VCG design. First, the objective of the central

operator is not social welfare given by the sum of the costs

Ci, but rather, to minimize his cost J . Further, when the

agent opts out, it still chooses an action that affects the

cost incurred by the central operator. Second, the actions are

implemented by the agents and the operator does not have

direct control over them.

Theorem 2: The incentive design in (5):

(i) is socially optimal if Hessian of J is positive definite

for any U ,

(ii) satisfies the participation constraint.

(iii) is weak budget balanced if

Cri(U
⋆)− Cri(û−i, ũi) ≥ 0, ∀i. (6)

Proof: See Appendix.

Remark 5: The incentive scheme (5) does not, in general,

satisfy monotonicity and equity.

Remark 6: It is worth mentioning that Theorem 2(i) pro-

vides a sufficient condition on J for achieving an optimal

centralized solution in the distributed system. Further, the

Hessian of J being positive definite implies that there is a

unique optimal solution for the cost function of the operator.

Thus, Theorem 2(i) states that if there is a unique solution

that optimizes the cost function of the central operator, it

can ensure that the agents will adopt those optimal actions

by offering the incentive design specified in (5).

The price to pay for achieving social optimality and par-

ticipation constraint in such an incentive design is that the

incentives may be large and vary in a non-intuitive way

among the agents. Thus, budget balance, monotonicity, and

equity may be lost.

Example 3: Consider a system with the cost function of

the central operator being J =
u2

1

2
+ u2

2 − u1 + u2 − u1u2

and two agents. It is easy to see that U⋆ = (1, 0).

• If the cost functions of the agents are C1 =
u2

1

2
−u1 and

C2 =
u2

2

2
+u1u2−u2, it is easy to calculate (û2, ũ1) =

(0, 1), and (û1, ũ2) = (1, 0). It is easy to verify that (6)

holds and budget balance is satisfied.

• If the cost functions of the agents are C1 =
u2

1

2
+u1 and

C2 =
u2

2

2
+ u1u2 − u2, budget balance is not satisfied.

• Note that the incentive design in (5) is socially optimal;

hence, θi = 0 for i ∈ N . However, for C1 =
u2

1

2
+ u1



TABLE II

COMPARISON BETWEEN INCENTIVE SCHEMES IN TERMS OF PROPERTIES

Property Known cost func-

tions

Private cost func-

tions

Social optimality Y C

Budget balance C Y

Participation constraint Y C

Equity & Monotonicity C Y

and C2 =
u2

2

2
+ u1u2 − u2, although θ1 = θ2 = 0,

t1 6= t2. Thus, monotonicity is not satisfied in this case.

D. Discussion

Table II summarizes the fulfillment of different properties

by incentive designs under various assumptions on the sys-

tem as analyzed in this paper. In this table, ‘Y’ means the

allocation satisfies the corresponding property, whereas ‘C’

states that satisfaction of the property is conditional.

We see that the information available to the operator about

the cost functions of the agents is crucial in selecting the

properties that he can satisfy through an incentive scheme.

If the cost functions are public information, then the operator

can enact a VCG-like mechanism to ensure that the agents

fully internalize the cost of their actions on his cost function.

In other words, he can ensure that the actions chosen by the

agents minimize his cost function. However, these incentives

may not satisfy properties such as equity and monotonicity.

On the other hand, if these cost functions are private in-

formation, satisfaction of social optimality and participation

constraints may not be guaranteed.

IV. CONCLUSION

In this paper, we considered a general distributed system

with multiple agents who select and then implement actions

on a system. The system has an operator with a given ob-

jective. However, the agents are self-interested and strategic

in the sense that each agent optimizes its own individual

objective. The operator aims to mitigate this misalignment by

designing an incentive scheme for the agents. The problem is

difficult due to the cost functions of the agents being coupled,

the objective of the operator not being social welfare, and

the operator having no direct control over actions being

implemented by the agents.

This problem has been studied in many fields, particu-

larly in mechanism design and cost allocation. However,

mechanism design typically assumes that the operator has

knowledge of the cost functions of the agents and the

actions being implemented by the operator. On the other

hand, cost allocation classically assumes that agents do

not anticipate the effect of their actions on the incentive

that they obtain. We have removed these assumptions and

presented an incentive rule for this setup by bridging the gap

between mechanism design and classical cost allocation. We

have analyzed whether the proposed design satisfies various

desirable properties such as social optimality, budget balance,

participation constraint, and so on. We have also analyzed

which of these properties can be satisfied if the assumptions

of cost functions of the agents being private and the agents

being anticipatory are relaxed.

The work can be extended in various directions. The

framework was inspired by smart infrastructure systems and

various applications of the framework with formulations

inspired by such systems can be considered. We are also

interested in spanning the spectrum between full knowledge

and no knowledge of the cost functions of the agents by the

operator.

V. APPENDIX

Proof of Proposition 1:

Proof: Participation constraint implies that the agent is

better off if it participates in the incentive design, i.e.,

Ci(û−i, ũi) ≥ Ci(U
′) + ti.

If Ci = Ci(ui), participation constraint is translated to

Ci(ũi) ≥ Ci(u
′
i) + ti → ti ≤ Ci(ũi)− Ci(u

′
i). (7)

Given that ũi denotes the optimal solution when agent i

opts out of mechanism, i.e., ũi = argminCi(ui), Ci(ũi) ≤
Ci(ui) for any ui. Therefore, Ci(ũi) ≤ Ci(u

′
i) and it means

that for participation constraint to hold ti ≤ 0.

On the other hand, recall that for (weak) budget balance

constraint to hold we must have

N
∑

i=1

ti ≥ Θ.

Note that since Θ ≥ 0, we have
∑N

i=1
ti ≥ 0.

In summary, the participation constraint for every agent

leads to
∑N

i=1
ti ≤ 0, on the other hand, budget balance

dictates never
∑N

i=1
ti ≥ 0. Thus, one can see it is impossible

to have both participation constraint as well as (weak) budget

balance.

Proof of Theorem 1:

Proof: The proportional allocation rule of the form

ti =
θi∑

N
j=1

θj
Θ

(i) satisfies the participation constraint if ti ≤ θi, which is

true if Assumption 3 holds.

(ii) satisfies budget balance since

N
∑

i=1

ti =

N
∑

i=1

θi
∑N

j=1
θj

Θ =
Θ

∑N

j=1
θj

N
∑

i=1

θi = Θ.

Equity is satisfied since if θi = θj then ti =
θi∑

N
j=1

θj
Θ

is equal to tj =
θj∑
N
i=1

θi
Θ. Similarly, monotonicity is

satisfied since if θi ≥ θj then ti ≥ tj .

Now, to prove necessity of Assumption 3, assume that

ti satisfies participation constraint. Participation constraint

implies that

ti ≤ θi. (8)

Writing inequality (8) for all the agents i ∈ {1, · · · , N} and

summing them up, we can write



N
∑

i=1

ti ≤
N
∑

i=1

θi. (9)

If Assumption 3 does not hold, it means that
∑N

i=1
θi < Θ.

Therefore, using equation (2), we have

N
∑

i=1

ti < Θ. (10)

Thus, it is clear that ti can not be budget-balanced. In

other words, if Assumption 3 does not hold, there exists no

incentive design that can satisfy participation constraint and

budget balance constraints simultaneously.

Proof of Proposition 2:

Proof:

(i) If J is separable, we can write J as

J(u1, · · · , uN) =

N
∑

i=1

fi(ui).

As a result, total realized cost imposed on the sys-

tem operator due to self-interested behavior of all the

agents, Θ and the marginal cost developed by strategic

behavior of agent i, θi can be derived as

Θ =

N
∑

i=1

fi(uri)− fi(u
⋆
i )

θi = fi(uri)− fi(u
⋆
i ).

Thus, Θ =
∑N

i=1
θi and Assumption 3 holds with

equality regardless of value of Ur and U⋆.

(ii) Note that J(U⋆) = 0

Θ = J(Ur)− J(U⋆) = J(Ur) =

|J̄(ur1, · · · , urN)− J̄(u⋆
1, · · · , u

⋆
N )|.

Given J̄ is separable, we can write J̄ =
∑N

i=1
fi(ui).

Using the triangle inequality, we can write

Θ = |
N
∑

i=1

fi(uri)−
N
∑

i=1

fi(u
⋆
i )| ≤

N
∑

i=1

|fi(uri)−fi(u
⋆
i )|.

Noting that θi = fi(uri) − fi(u
⋆
i ), we can claim that

Θ =
∑N

i=1
θi and Assumption (3) holds.

(iii) Assumption 3 implies

N
∑

i=1

J(U i
m)−NJ(U⋆) ≥ J(Ū)− J(U⋆) (11)

or

N
∑

i=1

J(U i
m) ≥ J(Ū) + (N − 1)J(U⋆) (12)

Now it is easy to see that since J(U⋆) is the minimum

value of J , (N − 1)J(U⋆) is less than or equal to sum

of (N − 1) non optimal J s. Thus if J(U i
m) ≥ J(Ū),

then Assumption 3 is true.

Proof of Theorem 2:

Proof:

(i) Given an incentive scheme of the form

ti = Cri − Ĉri , Cri = J − Ci, Ĉri = Cri(û−i, ũi),

the optimization problem of each agent i is to choose

ui such that J − Ĉri is minimized. Note that Ĉri

is a constant and not a function of ui and thus the

optimization problem for agent i can be written as

u′
i(u

′
−i) = argmin J.

This is a coupled problem that is solved to obtain

a Nash equilibrium. It is straight-forward to see that

U ′ = U⋆ is one such Nash equilibrium. Next, we have

to prove that the Nash equilibrium is unique. In the

following, we find a sufficient condition for the Nash

equilibrium to be unique.

We use the fact that a sufficient condition for the Nash

Equilibrium to be unique is that the cost functions of

the agents are diagonally strictly convex [23]. The cost

functions of the agents are diagonally strictly convex if

C + CT is positive definite, where C is defined as

C =











∂2C1

∂u2

1

∂2C1

∂u1∂u2

. . .

∂2C2

∂u2∂u1

. . .

...











,

where Ci represents the cost function of agent i. Since

cost function of each agent is J−Ĉri , C can be written

as

C =











∂2J
∂u2

1

∂2J
∂u1∂u2

. . .

∂2J
∂u2∂u1

. . .

...











Note that according to the definition of the Hessian, C

is the Hessian of J . Thus, under this incentive mech-

anism, the cost functions of the agents is diagonally

strictly convex if Hessian of J is positive definite.

(ii) Participation constraint holds if

Ci(û−i, ũi) ≥ Ci(U
′) + ti(U

′).

Given the following incentive design

ti = Cri − Ĉri , Cri = J − Ci, Ĉri = Cri(û−i, ũi),

the agent chooses the solution U ′ = U⋆ that optimizes

the cost function of the central operator. Thus, the

participation constraint is modified to

Ci(û−i, ũi) ≥ Ci(U
⋆) + ti(U

⋆)

=⇒ Ci(û−i, ũi) ≥ J(U⋆)− Cri(û−i, ũi).

Thus,

J(û−i, ũi) ≥ J(U⋆). (13)

On the other hand, given the optimality of U⋆, we can

write J(û−i, ũi) ≥ J(U⋆). Thus, (13) always holds and



the proposed incentive design satisfies the participation

constraint.

(iii) First note that since the incentive design is socially

optimal, the value of excess cost is zero, i.e., Θ = 0.

Thus, the incentive design is weakly budget balance

if
∑N

i=1
ti ≥ 0. On the other hand, note that ti =

Cri − Ĉri = Cri(U
⋆)− Cri(û−i, ũi). Thus, if

Cri(U
⋆)− Cri(û−i, ũi) ≥ 0, ∀i,

the incentive design is weakly budget balanced.
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