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Incentive Design in a Distributed Problem with Strategic Agents

Donya Ghavidel, Pratyush Chakraborty, Enrique Baeyens, Vijay Gupta, and Pramod P. Khargonekar

Abstract— In this paper, we consider a general distributed
system with multiple agents who select and then implement
actions in the system. The system has an operator with a
centralized objective. The agents, on the other hand, are self-
interested and strategic in the sense that each agent optimizes
its own individual objective. The operator aims to mitigate this
misalignment by designing an incentive scheme for the agents.
The problem is difficult due to the cost functions of the agents
being coupled, the objective of the operator not being social
welfare, and the operator having no direct control over actions
being implemented by the agents. This problem has been stud-
ied in many fields, particularly in mechanism design and cost
allocation. However, mechanism design typically assumes that
the operator has knowledge of the cost functions of the agents
and the actions being implemented by the operator. On the
other hand, cost allocation classically assumes that agents do not
anticipate the effect of their actions on the incentive that they
obtain. We remove these assumptions and present an incentive
rule for this setup by bridging the gap between mechanism
design and classical cost allocation. We analyze whether the
proposed design satisfies various desirable properties such as
social optimality, budget balance, participation constraint, and
so on. We also analyze which of these properties can be satisfied
if the assumptions of cost functions of the agents being private
and the agents being anticipatory are relaxed.

I. INTRODUCTION

Using game theoretic tools to design distributed controllers
in multi-agent systems where each agent has an individual
utility function is a well-established research field [1], [2].
Many impressive results are available for questions such as
analyzing the behavior of agents, for instance in a Nash
equilibrium sense [3], using learning algorithms to identify
these strategies when utility functions for the other agents
may not be known [4], and assigning utility functions to
cooperative agents so that a desired behavior emerges in an
optimization problem [5], [6]. Applying results from game
theory to control raises several new challenges including
presence of dynamics, constraints, and utility functions that
are non-standard in game theory.

In this paper, we are interested in a set-up where multiple
agents that have their own utility functions act on a single
system. Further, there is a central operator that has its own

Donya Ghavidel and Vijay Gupta are with the Department of Electrical
Engineering, University of Notre Dam, IN, USA dghavide@nd.edu ,
vguptaz2@nd.edu

Pratyush Chakraborty is with the Department
Engineering,  University = of  California,  Berkeley,
pchakraborty@berkeley.edu

Enrique Baeyens is with Instituto de las Tecnologias Avanzadas
de la Produccién, Universidad de Valladolid, Valladolid, Spain
enrbaeleis.uva.es

Pramod P. Khargonekar is with the Department of Electrical Engineer-
ing and Computer Science, University of California, Irvine, CA, USA
pramod.khargonekar@uci.edu

of Mechanical
CA, USA

utility function and can incentivize (or tax) the agents to
behave in a manner it desires [7]. Examples of problems in
this framework may include design of resource allocation
algorithms in shared infrastructure systems, for instance,
routing and toll design in transportation networks [8], trans-
mission network design and operation in power grids [9], and
so on. The central operator does not have knowledge of the
utility functions of the agents. Since the agents are strategic,
they may misreport these functions upon being asked. In such
a setup, questions about incentive design for various aims
such as optimizing the system efficiency, fairness, budget
balance, and so on naturally arise.

The fields that are primarily relevant to this question are
mechanism design [10] and cost allocation [11]. Mechanism
design considers the question of incentive (or tax) design
when utility functions of the agents are known to the central
operator; the classical application is in auction theory [12].
Three characteristics complicate the application of classical
mechanism design to the distributed control setup considered
in this paper:

1) Agents have interdependent utility functions and thus
the utility function of each agent (and thus its desired
strategy) is a function of the strategy of the other agents.

2) The utility function of the operator may not be the sum
of the utility functions of the agents, which is usually
termed social welfare.

3) The actions are implemented by the agents and the
operator does not have direct control over them.

There have been some recent works that have considered
some of these issues. In [13], the authors present a mech-
anism for a group of self-interested power generators to
implement socially optimal model predictive control algo-
rithms for load frequency control (LFC). This work presents
a mechanism to mitigate the information asymmetry between
the agents and the operator with the application of MPC-
based LFC, but ignores issues (2) and (3) mentioned above.
A mechanism to execute a distributed algorithm by strategic
agents, who have individual utility functions and the operator
does not have knowledge of the utility functions, is designed
in [14]. However, this work ignores issues (2) and (3).
A mechanism to achieve social welfare maximization and
budget balance by agents in a LQG problem, formulated for
power networks, is presented in [15]; however, once again,
these works ignore issues (1) and (2). Finally, we would
like to mention the work [16] that develops a mechanism to
incentivize agents to implement decisions deemed optimal by
the central operator. However, that work assumes the utility
functions of the agents to be known by the central operator.
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Cost allocation classically considers the problem of allo-
cating to various agents the loss of the utility function of
the central operator due to the self-interested behavior of
the agents. Many allocation rules, such as the proportional
rule, the Shapley value, and the nucleolus, that each display
different sets of properties have been proposed in the litera-
ture. Works that develop these roles for control applications
include, e.g., [17], [18]. In particular, [17] proposes a cost
allocation proportional to the marginal contributions of the
agents while satisfying some fairness properties. In [18],
[19] the authors use cost allocation based on standalone
cost principle and cost causation principle respectively. A
different, but related, line of work is that in [20], [21] that
develops a distributed algorithm based on the Nash Bargain-
ing Solution to fairly allocate the costs of the communication
infrastructure in [20] and power management in [21] among
the agents. However, to the best of our knowledge, the
literature on cost allocation assumes the agents to be not
cost anticipatory, in the sense that they do not optimize the
decision that they take with respect to both their a priori
utility function and the cost that will be allocated to them.

Thus, there is a gap in the literature. While mechanism
design considers strategic agents with private utility functions
that are unknown to the central operator, existing work does
not consider issues such as the utility functions of the agents
being coupled, the operator being interested in a specific
objective that is not the social welfare, and actions being
implemented by the agents and not the operator all together.
On the other hand, while cost allocation can consider cou-
pled utility functions and actions being implemented by the
agents, it does not consider agents that anticipate the cost
allocation rule and an operator that has a specific utility
function. The main contribution of this paper is to fill this gap
in the context of a distributed multi-agent control problem.

Specifically, we consider a multi-agent problem in which
the central operator and the agents have private individual
utility functions. The agents are selfish in that they seek to
optimize their own utility, strategic in that they can misreport
any information, and anticipatory in the sense that they con-
sider the impact of any incentive design from the operator.
All the issues (1)—(3) are present. We propose an incentive
design to align the actions of the individual agents with those
desired by the central operator. We compare this design (that
assumes utility functions to be private information) with an
mechanism design (that assumes knowledge of the utility
functions of the agents) inspired by traditional mechanism
design and a cost allocation for the case when agents are
not anticipatory, with respect to various properties such as
budget balance, participation constraint and so on.

The rest of the paper is organized as follows. In Section II,
the problem statement and definition of desired properties are
presented. In Section III, we propose an incentive mechanism
satisfying the properties, compare it with the classic cost
allocation rule, and interpret it as a mechanism design. In
Section IV, we conclude the paper and present some avenues
for future work.

II. PROBLEM FORMULATION

We begin with the system model and next define the
desired properties.

A. System Model

We consider a general distributed system with multiple
agents who decide their actions according to individual utility
functions and a central operator that also has an associated
objective function. Let N' = {1,---, N} denote the set of
the N agents present. Let u; be the action decided by the
i-th agent. Denote the set of actions of all the agents by U £
{u1,--- ,un} and that of actions of all the agents except the
i-th agentby u_; £ {uy, - ,u;_1,%is1,- - ,un}. In keep-
ing with the interpretation as a control problem, the utility
for each agent and the central operator is provided through a
cost function that needs to be minimized. Specifically, denote
by C;(U) the cost function of the i-th agent and by J(U)
that of the central operator. Notice that all the cost functions
depend on the actions of every agent; to emphasize this, we
sometimes use the alternative notation C;(u;,u_;). Denote
the control actions desired by the central operator from the
i-th agent by «}. In other words,

U* =argmin J(U), (1)

where U* £ {uf, -, uy}.

Since the cost function of each agent depends on the
actions of all the agents, there is a non-cooperative game
among them. The best response strategy of the ¢-th agent
can be defined as

t;(u_;) = argmin C;(U). (2)
Further, a Nash Equilibrium (NE) of the game can be defined
as the set U 2 {uy,---,un} such that the following

inequalities hold:

Ci(ﬁi,ﬁ_i) < Cz(uz, ’ﬁ_i) for all . 3)

We make the following assumption:

Assumption 1: At least one pure strategy Nash equilib-
rium as defined by the set U exists.

Remark 1: Note that the Nash equilibrium may not be
unique.

Since the set of actions desired by the central operator
U* may not be a Nash equilibrium, the agents will not,
in general, choose actions that are desired by the central
operator. To incentivize the agents to choose actions that
are desired by himself, the operator assigns an incentive
calculated according to the function ¢;(U) to the i-th agent.
Considering the cost minimization set-up, this incentive can
correspond to a reward (if negative) or a tax (if positive) on
the ¢-th agent. If the coupled decision problem outlined above
corresponds to a resource allocation problem in a shared
infrastructure system with the central operator interested
in minimizing the cost to society, the incentive can be
interpreted as a fee that each agent pays to use the system
with the magnitude being different for each agent according
to how much inefficiency they cause with respect to the social
cost.



TABLE I
NOTATION SUMMARY IN VARIOUS SCENARIOS

Scenarios NE cost of the operator

With no incentive design (ag,u—q)| J(U)

With incentive design | (u],u’ ;)| J(U) =3 eanoti (U)
when agent ¢ participates

With incentive design | (G;,G4—;)| J(@,0—;) —
when agent ¢ opts out > ieno ti(ti, i)

Remark 2: We allow an agent to withdraw from the incen-

tive scheme if it so desires. In other words, the participation
of the agents is voluntary and the so-called outside option
of the agent ¢ is simply to opt out unilaterally out of the
incentive design.
With a given incentive design, the cost functions of the
agents and the central operator change. Denote by O the
set of agents which opt out. Then, the cost function of
the central operator is given by J(U) — > ;can o ti(U),
that of any agent ¢ € O by C;(U), and that of any agent
i € N\O by C;(U)+t;(U). We also introduce some notation
to distinguish between the Nash equilibria that occur when
agent ¢ participates versus when it opts out. Denote the Nash
equilibrium strategies of the agents when agent ¢ participates
by U’ or (u},u’ ), and for the case when agent ¢ unilaterally
opts out of the mechanism by (u;,%—;). The notation for
the various cases is summarized in Table I. We make the
following assumption.

Assumption 2: We assume that at least one pure strategy

Nash equilibrium of the form (u},v’ ;) and (u;,4_;) exist
for the case when any agent ¢ that decides to opt out.
The problem considered in the paper is to analyze incentive
scheme that satisfies certain desirable properties with or
without access to the cost functions of the agents. Next, we
define the set of desirable properties.

B. Properties

We are interested in incentive schemes that satisfy certain
properties. To define the properties, it will be useful to define
two costs generated by strategic behavior of the agents.

Definition 1 (Excess cost): For a given set U,
{t,, -+ ,upy} of actions realized by the agents, the excess
cost imposed on the system operator is defined by

L

©=JU,) - JU").
Note that depending on the agents participation, U, can be
equal to U’, U and (@;, 0_;).

Definition 2 (Marginal cost): For ~ an  action  u,,
by the i¢-th agent, consider the set of actions
ui, = A{ur,-- ,uy}, where as
uj denotes the action of the j-th agent that is optimal
according to the cost function J of the operator. Then, the
marginal cost 6; is defined as 0; = J(U.,) — J(U*).

Note that both #; > 0 and © > 0. Further, the excess cost is
generated because of the marginal costs for all the agents.

We now list the properties we are interested in [10], [22].

* *
yUj 15 Upyy Ujy gy

1) Social optimality: An incentive scheme is said to be
socially optimal if the actions taken by the agents at

Nash equilibrium with the incentive scheme in place are
the same as the actions that optimize the cost function
of the operator, i.e., if U = U*.

2) Budget balance: An incentive scheme is said to be
(resp. weak) budget balanced, if at the resulting Nash
equilbrium, the total incentive ¢; is equal to (resp. not
less than) the excess cost. Thus, an incentive scheme
is budget balanced if Zf:l t; = © and weak budget
balanced if 1V | #; > ©.

3) Participation constraint: Participation constraint implies
that the agents benefit from participation in the incentive
scheme in the sense that for every agent ¢, the cost
when it opts out of the incentive design is larger than
its cost function when it participates in the incentive
design. Thus, an incentive scheme satisfies participation
constraint for agent ¢ if C;(@;,u—_;) > C;(U’) + t;.

4) Equity: An incentive design is said to satisfy equity if
for any two agents ¢ and j that have the same marginal
costs, the incentive is equal as well. Thus, an incentive
design satisfies equity if Vi, j such that 6; = 6}, it holds
that t; = tj.

5) Monotonicity: An incentive design is said to be mono-
tonic if every agent ¢ that has a higher marginal cost
than agent j is assigned a higher incentive (or tax) than
agent j. Thus, an incentive design is monotonic if for
any ¢, j such that 6; > 0;, it holds that ¢; > t;.

C. Problem Considered

Given the above setup, we are interested in designing
the incentive scheme that satisfy the properties mentioned
in Section II-B. In some sense, such an incentive design
presents a bridge between mechanism design and cost al-
location. While similar to mechanism design we consider
anticipatory strategic agents, we assume that their cost
functions are coupled and unknown to the central operator
who 1is interested in a specific cost function that is not
the social welfare, and actions being implemented by the
agents and not the operator. On the other hand, while similar
to cost allocation we consider coupled cost functions and
actions being implemented by the agents, we assume that the
agents anticipate the cost allocation rule. In Section III-B,
we assume that the agents are non-anticipatory and study
the properties achieved by the scheme in this scenario that is
inspired by classic cost allocation. Similarly, in Section III-C,
we relax the assumption of cost functions being unknown
to the central operator and study the properties that can be
achieved by a mechanism inspired by the classic Vickrey-
Clarke-Groves (VCG) mechanism [10, Chapter 23]. Finally,
we compare the proposed incentive structures in terms of
properties that can be achieved by each.

III. MAIN RESULTS

We begin by presenting the incentive design for the
problem considered above. We will then study the incentive
with assumptions similar to classic mechanism design and
cost allocation.



A. Proposed Incentive Design

We consider a set-up in which the operator does not access
the knowledge of the cost function of each agent C;; rather,
the knowledge of the resulting actions of each agent suffices.

We would like to note that the agents are anticipatory.
Thus, they know about the incentive ¢; and optimize their
decisions after including ¢; into their cost function when
selecting their decisions. That the incentive design problem
is not trivial as can be seen from the following, perhaps
counter intuitive, result. One may imagine that since one
source of the complexity in the problem is the coupling of
cost functions of the various agents, removing that coupling
may imply that one or more properties are always satisfied.
However, the following result shows that if the cost functions
are decoupled so that C; = C;(u;) for all 4, the participation
constraint and budget balance can not hold simultaneously.

Proposition 1: For C; = C;(u;) for all 4, if we design
an incentive such that the agents rationally participate, the
(weak) budget balance constraint can never be satisfied.

Proof: See Appendix. [ |
Note that C; = C;(u;) implies that the decisions made by
the agents are independent of each other. Unlike decoupled
case, for the case of coupled cost function it is possible to
come up with an incentive which guarantees participation
constraint as well as budget balance properties.

Example 1: Let the cost functions of agent 1 and 2 be

Cl (U) = ’UJ% — 2U1UQ, OQ(U) = U1U2 — U2.

With no incentive, the Nash equilibrium solution is given by

U = (1,1). The cost function of the central operator on the
other hand is
T(U) = (= 3+ (ur — 2.

Thus, U* = (3,2) and J(U*) = 0. The operator gives
incentive ¢; to agent i such that t1(u;y) = u3, ta(uz) =
—%. The cost functions of the agents after having incentive
are C1(U) + t1(u1) and C1(U) + t2(u2). Therefore, Nash
equilibrium if the agents participate in the incentivization is
given by U’ = (1, 2) and, consequently the value of the cost
functions and the incentives are given by C;(U’) = —3,
Cy(U") =0, ti1(u}) =1 and to(uh) = —%.

On the other hand, if agents wish to opt out unilaterally,
their Nash equilibrium solution and the cost functions are as
follows. (1, G2) = (1,1) is calculated as the NE of C; and
Cy + ta. (i1, 02) = (1,2) is calculated as the NE of C5 and
C1 + t1. As a result, Cl(ﬂl,ﬁg) = —1 and 02(111,’&2) =0.
Next, we check the participation constraint for 7 = 1,2 as

Ci(t;, 1) > Ci(U') + t,

which holds for both of the agents using the designed incen-
tive. Since participation constraint is satisfied for both of the
agents, they realize U’ = (1,2) and J(U’) — J(U*) = 1.
Since t1(U’)+1t2(U’) = 1 in this case then one can see that
weak budget balance holds J(U’) — J(U*) < Zle t:(U").

Thus, participation constraint and weak budget balance are
satisfied. One can check that monotonicity is also satisfied.

Note that using this incentive by the operator, the agents shift
from U to U’. If one calculates the cost function of operator
in these two cases J(U) = 1+ 15 and J(U') — (t1 + t2) =
% — % Hence, the cost function of the operator decreased
by offering the incentive and the incentive is in the benefit
of the operator.

Social optimality may not always be satisfied by incentive
design. In general due to lack of information on cost function
of the agents, one can not come up with an incentive design

which always (for all cost function) satisfies the properties.

B. Interpretation as Cost Allocation

The role of any cost allocation is to suitably allocate the
excess cost © of the operator that is generated due to the self-
interested behavior of the agents to the agents in a manner
that satisfies certain properties. We propose the following
proportional cost allocation rule, under which the incentive
t; for agent ¢ by the operator is given by

9.

ZNl 5"

j=1Y7

We sometimes use the alternative notation t;(U,., U*). We
now analyze the properties of the cos allocation scheme (4)
when the underlying framework is that of classical cost
allocation. Recall that in classical cost allocation, the agents
are assumed to be non-anticipatory in that they do not
anticipate the effect of the incentive scheme while choosing
their actions. An alternate interpretation is that each agent
minimizes its own cost function and incurs a cost for that
action in an ex-post manner.

The presence of non-anticipatory agents implies that the
participation constraint needs to be modified. Recall that
the participation constraint was of the form C;(a;,u_;) >
C;(U") + t;(U’). However, when the agents are non-
anticipatory, they optimize their own cost functions irrespec-
tive of the incentive design and the participation constraint
in this case implies C;(U) > C;(U) +t;, which is never sat-
isfied. Thus the central operator needs to have the authority
to penalize the agents so that they participate. To proceed in
this case, we define weak participation constraint as being
satisfied when the agents have to pay 6;, if they do not
participate in the incentive scheme. Thus, the participation
constraint in the weak sense is given as

ti+ Ci(U) < 0; + Ci(U),

t; = @)

or as t; < 6;. Non-anticipatory agents ignore the cost allo-
cation rule while selecting their actions and do not modify
their decision due to the incentive design. Thus, the same
actions are chosen irrespective of the design of the incentive
scheme ¢;. Thus, social optimality is not guaranteed unless
the objectives of the agents and the operator are aligned due
to some special structure on the cost functions J and Cj.
Since the operator does not require the knowledge of the
cost function of each agent C; in implementing (4), the same
incentive design can be used if agents are anticipatory.
Remark 3: For the anticipatory agent, the following is
a sufficient condition for the proposed cost function to be



socially optimal

forany U, and i € N,  Cy(U,) + t;(U,.,U*) > C;(U™).
We make the following assumption that would be crucial
to satisfying budget balance and participation constraint
simultaneously.

Assumption 3: The excess cost that needs to be allocated
is less than the sum of the individual marginal costs that
cause it, i.e., © < Zjvzl 0;.

Theorem 1: Consider the proportional allocation incentive
design in (4) when the agents are non-anticipatory. The
design:

(1) satisfies participation constraint if Assumption 3 holds.

(ii) always satisfies budget balance, equity, and monotonic-
ity.
Further, there is no incentive design ¢; that satisfies participa-
tion constraint and budget balance simultaneously if agents
are non-anticipatory and Assumption 3 does not hold.
Proof: See Appendix. [ |

In the following, we provide sufficient conditions on the
cost functions {.J,C;} for Assumption 3 to hold.

Definition 3 (Separability): A function .J is defined to be
separable if it can be written as J(U) = Zfil fi(u;), where
fi(+) is a function of w; but not of u;, j # 1.

Proposition 2: Assumption 3 holds, if one of the follow-
ing statements is true.

(i) J is separable.

(i) J is of the form

J(U,U*)Z |j(ula 7UN)_j(uI"" ’U7V)|’

where .J is separable.
(iii) J(U},) > J(U) for any agent i.

Proof: See Appendix. [ |

Example 2: Consider a system with two non-anticipatory

agents and the cost function of the central operator being
given by J(uy,us) = u? + u3 + u + us — ujus, that is
minimized by the choice (u}, u5) = (=1, —1). Further, using
the definition of the marginal costs and the excess cost, we
have

0, = ﬂ% —u*f —uy(ay —uy), O = ﬁ% —u*g —uy (a2 —uj)

and © = @} — u*3 + @3 — u*3 — U1lz + uiub. Assumption
3 implies that 6 + 65 > ©, which yields

—ub(uy —uy) — ui(Uy — ul) > —Uslly + ujts

Given that (u}, u%) = (=1, —1), Assumption 3 leads to (@ +
1)(2 + 1) > 0. The feasible region for @ and @9 is {u; >
—1,u9 > —1} and {@1 < —l,ug < —1}. Any C1 and Cy
which have a Nash equilibrium solution in the feasible region
satisfy Assumption 3.

C. Interpretation as Mechanism Design

As discussed earlier, a crucial assumption in our frame-
work is that the cost functions are private knowledge to the
agents. If that assumption does not hold, the classical theory
of mechanism design becomes relevant. In particular, we

can consider the following incentive mechanism ¢; that is
inspired by the VCG mechanism:

ti=Cp, —Cr,, Cp,=J—Cy Cp =Cr (4, 0;) (5)

Under this incentive scheme, the agents fully internalize the
effect of their actions on the cost function of the central
operator, in that the cost function of each agent becomes
equal to J.

Remark 4: Note that the operator utilizes the knowledge
of the cost functions C;. Further, the incentive design is
similar to VCG in that the incentive for the i-th agent
can be interpreted as the marginal cost incurred by the
central operator due to the self-interested actions of the -
th agent. However, two factors make its form different from
the traditional VCG design. First, the objective of the central
operator is not social welfare given by the sum of the costs
C;, but rather, to minimize his cost J. Further, when the
agent opts out, it still chooses an action that affects the
cost incurred by the central operator. Second, the actions are
implemented by the agents and the operator does not have
direct control over them.

Theorem 2: The incentive design in (5):

(i) is socially optimal if Hessian of J is positive definite
for any U,
(ii) satisfies the participation constraint.
(iii) is weak budget balanced if
Cyr,(U*) = Cy, (li—y,u;) > 0, Vi. (6)
Proof: See Appendix. [ |

Remark 5: The incentive scheme (5) does not, in general,
satisfy monotonicity and equity.

Remark 6: 1t is worth mentioning that Theorem 2(i) pro-

vides a sufficient condition on J for achieving an optimal
centralized solution in the distributed system. Further, the
Hessian of J being positive definite implies that there is a
unique optimal solution for the cost function of the operator.
Thus, Theorem 2(i) states that if there is a unique solution
that optimizes the cost function of the central operator, it
can ensure that the agents will adopt those optimal actions
by offering the incentive design specified in (5).
The price to pay for achieving social optimality and par-
ticipation constraint in such an incentive design is that the
incentives may be large and vary in a non-intuitive way
among the agents. Thus, budget balance, monotonicity, and
equity may be lost.

Example 3: Consider a systemzwith the cost function of
the central operator being J = - + u3 — uy + up — uiuy
and two agents. It is easy to see that U* = (1,0).
o If the cost functions of the agents are C; = u; —up and

Cy = “2—3 + ujug — ug, it is easy to calculate (U, 1) =

(0,1), and (@1, a2) = (1,0). It is easy to verify that (6)

holds and budget balance is satisfied. 2
o If the cost functions of the agents are C; = % +u1 and

2
Cy = “2—2 + ujus — ug, budget balance is not satisfied.
o Note that the incentive design in (5) is socially ogtimal;
hence, 0; = 0 for i € N. However, for C; = % + uy



TABLE II
COMPARISON BETWEEN INCENTIVE SCHEMES IN TERMS OF PROPERTIES

Property Known cost func- | Private cost func-
tions tions

Social optimality Y C

Budget balance C Y

Participation constraint | Y C

Equity & Monotonicity | C Y

2
and Cy = 11«2_2 + ujugs — ug, although 01 = 05 = 0,
t1 # to. Thus, monotonicity is not satisfied in this case.

D. Discussion

Table II summarizes the fulfillment of different properties
by incentive designs under various assumptions on the sys-
tem as analyzed in this paper. In this table, ‘Y’ means the
allocation satisfies the corresponding property, whereas ‘C’
states that satisfaction of the property is conditional.

We see that the information available to the operator about
the cost functions of the agents is crucial in selecting the
properties that he can satisfy through an incentive scheme.
If the cost functions are public information, then the operator
can enact a VCG-like mechanism to ensure that the agents
fully internalize the cost of their actions on his cost function.
In other words, he can ensure that the actions chosen by the
agents minimize his cost function. However, these incentives
may not satisfy properties such as equity and monotonicity.
On the other hand, if these cost functions are private in-
formation, satisfaction of social optimality and participation
constraints may not be guaranteed.

IV. CONCLUSION

In this paper, we considered a general distributed system
with multiple agents who select and then implement actions
on a system. The system has an operator with a given ob-
jective. However, the agents are self-interested and strategic
in the sense that each agent optimizes its own individual
objective. The operator aims to mitigate this misalignment by
designing an incentive scheme for the agents. The problem is
difficult due to the cost functions of the agents being coupled,
the objective of the operator not being social welfare, and
the operator having no direct control over actions being
implemented by the agents.

This problem has been studied in many fields, particu-
larly in mechanism design and cost allocation. However,
mechanism design typically assumes that the operator has
knowledge of the cost functions of the agents and the
actions being implemented by the operator. On the other
hand, cost allocation classically assumes that agents do
not anticipate the effect of their actions on the incentive
that they obtain. We have removed these assumptions and
presented an incentive rule for this setup by bridging the gap
between mechanism design and classical cost allocation. We
have analyzed whether the proposed design satisfies various
desirable properties such as social optimality, budget balance,
participation constraint, and so on. We have also analyzed
which of these properties can be satisfied if the assumptions

of cost functions of the agents being private and the agents
being anticipatory are relaxed.

The work can be extended in various directions. The
framework was inspired by smart infrastructure systems and
various applications of the framework with formulations
inspired by such systems can be considered. We are also
interested in spanning the spectrum between full knowledge
and no knowledge of the cost functions of the agents by the
operator.

V. APPENDIX

Proof of Proposition 1:
Proof: Participation constraint implies that the agent is
better off if it participates in the incentive design, i.e.,

Ci(t—, w;) > C;(U") + t;.
If C; = C;(u;), participation constraint is translated to

Ci(ts) > Ci(ug) + t; — t; < Ci(is) — Ci(uj).  (7)

3

Given that u; denotes the optimal solution when agent
opts out of mechanism, i.e., 4; = arg min C;(u;), C;(U;) <
C;(u;) for any u;. Therefore, C;(u;) < C;(u}) and it means
that for participation constraint to hold ¢; < 0.
On the other hand, recall that for (weak) budget balance
constraint to hold we must have
N

d ti>e.

i=1

Note that since © > (0, we have Zﬁl t; > 0.

In summary, the participation constraint for every agent
leads to vazl t; < 0, on the other hand, budget balance
dictates never Zfil t; > 0. Thus, one can see it is impossible
to have both participation constraint as well as (weak) budget
balance.

|

Proof of Theorem 1:

Proof: The proportional allocation rule of the form

0;
o Zé‘\le 0; ©
(i) satisfies the participation constraint if ¢; < 6;, which is
true if Assumption 3 holds.
(ii) satisfies budget balance since

t;

N N 0. o N
Z“ZZ NZ 0==x Zei:@
i=1 i=1 Zj:l 0; Zj:l 0; i=1

Equity is satisfied since if 0; = 0; then t; = %@

j=1"J
is equal to t; = f,—jaQ Similarly, monotonicity is

satisfied since if 6; 12716‘]- then t; > t;.

Now, to prove necessity of Assumption 3, assume that
t; satisfies participation constraint. Participation constraint
implies that

ti <0;. (®)

Writing inequality (8) for all the agents ¢ € {1,--- , N} and
summing them up, we can write



(C))

N N
}:mgzﬁ@
1=1 =1

If Assumption 3 does not hold, it means that sz\il 0; < ©.
Therefore, using equation (2), we have

(10)

N
Z t; < O.
=1

Thus, it is clear that #; can not be budget-balanced. In

other words, if Assumption 3 does not hold, there exists no

incentive design that can satisfy participation constraint and

budget balance constraints simultaneously. [ |
Proof of Proposition 2:

@

(i)

(iii)

Proof:
If J is separable, we can write J as

N
J(uy, - un) :Zfi(ui).

As a result, total realized cost imposed on the sys-
tem operator due to self-interested behavior of all the
agents, © and the marginal cost developed by strategic
behavior of agent ¢, #; can be derived as

N
O = filun) - fi(u)
i=1

0; = fi(uri) — fi(uy).

Thus, © = S.V 6, and Assumption 3 holds with
equality regardless of value of U, and U™.
Note that J(U*) =0

O = J(U,) — J(U*) = J(U,) =
|j(ur17 -

7UTN) - J(uiv 7u7\/)|

Given J is separable, we can write J = S0 fi(u;).
Using the triangle inequality, we can write

N N N
0= |Zfz‘(um')—z fi(uf)] < Z | fi(wri) = fi(u?)].

Noting that 0; = f;(u,;) — fi(u}), we can claim that
© = 6; and Assumption (3) holds.

Assumption 3 implies
N
ST - NIU) = J(0) - J(UF) (1)
i=1
or
N
> (W) = J(U) + (N = 1)J(U*) (12)
i=1

Now it is easy to see that since J(U*) is the minimum
value of J, (N —1)J(U*) is less than or equal to sum
of (N — 1) non optimal J s. Thus if J(U?) > J(U),
then Assumption 3 is true.

Proof of Theorem 2:

®

(i)

Proof:
Given an incentive scheme of the form

ti = C’I‘i - éTiu C’r‘i = J - Ci7 éTi = C’r‘i (ﬁ—iu ﬁl)u

the optimization problem of each agent ¢ is to choose
u; such that J — CA'TI. is minimized. Note that CA'TI.
is a constant and not a function of w; and thus the
optimization problem for agent ¢ can be written as

uj(u’_;) = argmin J.

This is a coupled problem that is solved to obtain
a Nash equilibrium. It is straight-forward to see that
U’ = U* is one such Nash equilibrium. Next, we have
to prove that the Nash equilibrium is unique. In the
following, we find a sufficient condition for the Nash
equilibrium to be unique.

We use the fact that a sufficient condition for the Nash
Equilibrium to be unique is that the cost functions of
the agents are diagonally strictly convex [23]. The cost
functions of the agents are diagonally strictly convex if
C + C7 is positive definite, where C is defined as

8% C, 8 C,y
Ou? Ouy0us
2
C fd o) C42 s

8’[1.2 371,1

where C; represents the cost function of agent 4. Since
cost function of each agent is J —C).,, C can be written
as

8%J 8%J
Ou? OuyOus
C = 2%J

8’[1.2 371,1

Note that according to the definition of the Hessian, C'
is the Hessian of .J. Thus, under this incentive mech-
anism, the cost functions of the agents is diagonally
strictly convex if Hessian of .J is positive definite.
Participation constraint holds if

Ci(t_i, ;) > C;(U") + t:(U").
Given the following incentive design
ti=Cp, — OTi? Cr,=J =0, OTi =0, (ﬁfia ﬁi)a

the agent chooses the solution U’ = U* that optimizes
the cost function of the central operator. Thus, the
participation constraint is modified to
Ci(ﬁ,i, ﬂz) > Ol(U*) + ti(U*)
— Ci(ﬁfi, ﬁz) > J(U*) — Ori (ﬂ,i, ﬂl)
Thus,
J(i—i, @;) = J(U"). (13)

On the other hand, given the optimality of U*, we can
write J(t_;, ;) > J(U*). Thus, (13) always holds and



(iii)
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the proposed incentive design satisfies the participation
constraint.

First note that since the incentive design is socially
optimal, the value of excess cost is zero, i.e., © = 0.
Thus, the incentive design is weakly budget balance
if Zf\;l t; > 0. On the other hand, note that t; =
C,, —Cp. = C,..(U*) = Cp,(ii_s, ;). Thus, if

C, (U*) = Cy (it—s, i) > 0, Vi,

the incentive design is weakly budget balanced.
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