


softmax layer at the top of the CNN, converting features

from probability space to the natural parameter space.

All these methods suffer from two drawbacks. First, the

Fisher vector structure is not easy to integrate in a CNN.

This is because the Fisher vector is defined with respect

to the probability distribution of the CNN features, usually

estimated with a mixture learned by maximum likelihood.

The Fisher vector is then a complex expression of the mix-

ture parameters, which changes when these change. In re-

sult, the Fisher vector cannot be learned by simply back-

propagating the output of the scene classifier. All methods

above avoid this difficulty by using the CNN to extract fea-

tures and learning the Fisher vector indepeddently. This,

however, prevents end to end training and, consequently,

the finetuning of the object network to the scene classifica-

tion task. In result, the transfer between the two tasks relies

solely on the Fisher vector, which is sub-optimal.

The second problem is that the Fisher vector is usually

learned with respect to a Gaussian mixture model (GMM).

Since CNN features are high dimensional, it is impractical

to rely on Gaussians of full covariance. Instead, the mix-

ture components are chosen to have diagonal covariance.

This creates problems when the feature manifold is non-

linear. In this case, a large number of diagonal GMM com-

ponents are required and the Fisher vector is very high di-

mensional. This is indeed the norm for computer vision ap-

plications, where Fisher vectors usually have several thou-

sand dimensions. While the CNN is trained to produce lin-

early separable responses to the different classes, there is

no guarantee CNN feature distributions are prone to mod-

eling with the diagonal GMM. On the contrary, given the

highly non-linear feature transformation implemented by a

deep CNN, this is unlikely. Hence, a Fisher vector based

on the diagonal-GMM is likely to be very high dimensional

and potentially sub-optimal for scene classification.

Recently, some works have attempted to solve these

problems. One possibility is to bypass the Fisher vector

altogether. For example, [7] proposed a compact bilinear

pooling (CBP) mechanism that enables end-to-end training

by simple backpropagation. While this was shown applica-

ble to scene classification, the performance of CBP is infe-

rior to those of previous approaches, such as the semantic

Fisher vector of [5] or the sparse coding methods of [18], for

equivalent object CNNs. Another possibility is to embed the

Fisher vector in the CNN architecture, by deriving a neural

network implementation of its equations. [1] proposed the

NetVLAD, an embedded implementation of the VLAD de-

scriptor, and [26] proposed the Deep FisherNet, an embed-

ded implementation of the GMM Fisher vector. However,

to avoid the difficulties of the complete Fisher vector, these

methods make approximations, such as disregarding covari-

ance structure (VLAD) or using crude approximations of

posterior mixture probabilities (Deep FisherNet). These ap-

proximations can be quite sub-optimal.

An alternative strategy, proposed by [6], is to use a better

model of CNN feature statistics than the diagonal GMM.

Instead, this work proposed a Fisher vector based on the

mixture of factor analyzers (MFA). This has the advantage

of accounting for the covariance information of each mix-

ture component, which is modeled through factor analysis.

Under the MFA model, good results can be achieved with

mixtures of few components and Fisher vectors of reduced

dimension. However, while the MFA-Fisher vector (MFA-

FV) currently holds state of art results for scene classifica-

tion, it is not an integrated model, i.e. it is learned inde-

pendently of the network. This raises all the reservations

discussed above.

In this work, we derive an embedded implementation

of the MFA-FV, and use it to design a network architec-

ture, the MFAFVNet, which can be trained in an end to

end manner. This involves the derivation of a MFA-FV

layer that implements a statistically correct version of the

MFA-FV, through a combination of network computations

and regularization. The computations replicate those of the

MFA-FV, regularization guarantees that all parameters have

a statistically valid interpretation. When compared to pre-

vious embedded implementations, the MFAFVNet relies

on a more powerful statistical model, which accounts for

covariance information, and a more accurate implementa-

tion. This results in significant performance gains for scene

classification. When compared to previous non-embedded

models, the MFAFVNet relies on a state of the art model,

which is embedded. This enables end to end training and

better scene classification performance. Extensive experi-

ments on the MIT Indoor and SUN datasets show that the

MFAFVNet achieves state of the art performance for scene

classification.

2. The MFA Fisher Vector

In this section, we review the main ideas behind the

MFA-FV.

2.1. Mixture of Factor Analyzers

The factor analysis (FA) model is a probabilistic exten-

sion of principal component analysis (PCA) [23]. Given a

vector x ∈ R
D of D observations, it explains its covariance

structure by assuming that the variability of the observations

can be explained by a small number d < D of hidden or la-

tent factors, usually represented as a factor vector z ∈ R
d.

Observations x are assumed to be sampled according to the

model

x− µ = Λz + ǫ, (1)

where µ is the mean value of x, Λ ∈ R
D×d is a fac-

tor loading matrix, and ǫ is a noise term. Factors z and

noise ǫ are independent of each other and Gaussian, and the
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Figure 1. Probability distributions defined on linear susbpaces (left) or

non-linear manfolds (right) can require many mixture components to ap-

proximate, when covariances are diagonal (shown in red). However, they

can frequently be approximated by a few MFA components (in green).

noise variables are assumed uncorrelated, i.e. distributed

as N (ǫ; 0, I). The factors can be dependent, i.e. they are

distributed as N (z; 0, ψ), but the matrix ψ is sometimes as-

sumed diagonal. It follows from the linearity of (1) that x is

Gaussian with covariance

Σ = cov(x− µ) = cov(Λz + ǫ) = ΛΛT + ψ. (2)

Hence, the factor loading matrix Λ has a role similar to the

principal component matrix of PCA.

The mixture of factor analyzers (MFA) is a mixture

model whose components follow the factor analysis model.

A MFA of C components is defined by the distributions

p(c) = πc (3)

p(z|c) = N (z; 0, I) (4)

p(x|z, c) = N (x; Λcz + µc,Ψc) (5)

where p(c) is the probability of component c and this com-

ponent is a FA of mean µc, factor loading matrix Λc and

noise covariance Ψc.

The MFA can be learned with a EM algorithm, which is

discussed in [8]. This iterates between an expectation step

that computes expected values for the hidden class c and

factors z variables, and a maximization step that updates

these model parameters so as to maximize the likelihoods

of a set of observations {xi}
N
i=1

.

2.2. Fisher vectors

Given a dataset D = {xi} and a probability model

p(x; θ) the score G(θ) = ∂
∂θ log p(D; θ) measures the sen-

sitivity of the likelihood p(D; θ) to parameter θ. The nor-

malization of this gradient vector by the square root of the

Fisher information matrix I(θ) = −
∑

i
∂2

∂θ2 log p(xi; θ),

i.e. the vector I−1/2G(θ) is usually denoted as the Fisher

vector [23]. However, because the Fisher information can

be difficult to compute, it is frequently ignored and the

Fisher vector reduces to the score G(θ). As is common in

computer vision, we adopt this practice in this work.

The Fisher vector is commonly used with the standard

Gaussian mixture model, defined by

p(c) = πc (6)

p(x|c) = N (x;µc,Σc). (7)

However, because vision data tends to be high-dimensional,

it is usually difficult to use full covariance Gaussians in

this model, and the covariances Σc are assumed as diago-

nal. This removes a lot of the expressiveness of the mix-

ture model. In general, many components are needed to

achieve a good approximation of the distribution p(x). As

illustrated in Figure 1, this is particularly true when the

data lives on correlated low-dimensional subspaces or non-

linear manifolds that can be approximated by a set of low-

dimensional subspaces. The MFA is a substantially better

model for this type of data since, in this case, only a few

mixture components and a small number d of hidden factors

are required to estimate the covariance structure of (2). This

is illustrated in Figure 1 as well. This observation, moti-

vated the introduction of the MFA-Fisher vector (MFA-FV)

in [6], which was shown to have the form

Gµc
(I) =

∑

i

p(c|xi; θ)ψ
−1(I − ΛcΓc)(xi − µc)(8)

GΛc
(I) =

∑

i

p(c|xi; θ)ψ
−1(ΛcΓc − I)

[(xi − µc)(xi − µc)
TΓT

c − Λc] (9)

Γc = ΛT
c S

−1

c . (10)

This work has also shown that the MFA-FV is a substan-

tially better representation than the classical FV when the

observations x are feature vectors produced by a deep con-

volutional neural network (CNN). As far as we know, this

is the state of the art representation for scene classification.

However, [6] did not integrate the MFA-FV in the network

computation. This prevents end-to-end training and the tun-

ing of the network to the scene classification task. Since end

to end training is an important reason for the recent success

of the deep CNN architecture, it appears natural to pursue

this integration.

3. Network implementation of the MFA-FV

In this section, we derive a neural network implementa-

tion of the MFA-FV.

3.1. The MFA­FV layer

To derive a version of (8)-(10) implementable as a neural

network, we start by defining

∆ic = xi − µc (11)

Sc = ΛcΛ
T
c + ψc. (12)
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Figure 2. The MFA-FV layer. The expressions in red are the parameters of the c
th MFA component. The remaining expressions show what is computed

at each stage of the network.

Combining this with (10),

ψ−1

c (I − ΛcΓc) = (Sc − ΛcΛ
T
c )

−1(I − ΛcΛ
T
c S

−1

c )

= S−1

c (I − ΛcΛ
T
c S

−1

c )−1(I − ΛcΛ
T
c S

−1

c )

= S−1

c ,

and it follows that (8)-(9) can be written as

Gµc
(I) =

∑

i

p(c|xi; θ)S
−1

c ∆ic (13)

GΛc
(I) = −

∑

i

p(c|xi; θ)S
−1

c [∆ic∆
T
icS

−1

c Λc − Λc]

= −
∑

i

p(c|xi; θ)S
−1

c ∆ic[S
−1

c ∆ic]
TΛc

+
∑

i

p(c|xi; θ)S
−1

c Λc (14)

Furthermore, since (2) implies that the cth mixture com-

ponent p(x|c) is distributed as N (x, µc, Sc), it follows that

p(c|xi; θ) =
πcN (xi;µc, Sc)

∑

k πkN (xi;µk, Sk)
(15)

=

πc

|Sc|
1

2

exp{− 1

2
∆T

icS
−1
c ∆ic}

∑

k
πk

|Sk|
1

2

exp{− 1

2
∆T

icS
−1

k ∆ic}

Denoting

Pc = S−1

c , (16)

Ωc = S−1

c Λc, (17)

κc =
πc

|Sc|
1

2

, (18)

finally leads to

Gµc
(I) =

∑

i

p(c|xi; θ)Pc∆ic (19)

GΛc
(I) = −

∑

i

p(c|xi; θ){Pc∆ic(Pc∆ic)
TΛc − Ωc}

(20)

p(c|xi; θ) =
κc exp{−

1

2
∆T

icPc∆ic}
∑

k κk exp{−
1

2
∆T

ikPk∆ik}
(21)

An implementation of (20) as a neural network layer is

shown in Figure 2. The bottom branch computes the pos-

terior probability of (21). The top branch computes the re-

mainder of the argument of the summation in (20). The

computations of (19) are similar. The bottom branch is

identical, and the top branch omits the operations beyond

Pc∆ic. However, preliminary experiments showed no gains

for the addition of this component. Hence, we use only the

second order information, i.e. (20). Note that the operations

inside circle are applied entry-wise, the boxes implement

matrix multiplications implementable with standard layers

of weights, the outer product layer is similar to that of [16],

and the dot-product layer can be implemented with an ele-

mentwise multiplication and a sum.

3.2. Relation to other Fisher vectors

The MFA-FV is related to various previous representa-

tions of the same type. For example, if Λc is the identity

matrix and Sc a diagonal matrix of elements σ2

ck, then (19)

reduces to

Gµck
(I) =

∑

i

p(c|xik; θ)
(xik − µck)

σ2

ck

(22)

and (20) to

Gσck
(I) =

∑

i

p(c|xi; θ)
1

σ2

ck

{

(xik − µck)
2

σ2

ck

− 1

}

, (23)

which are similar to the Fisher Score of the standard Gaus-

sian mixture model [23, 21]. Further omitting the second

other information leads to

Gµck
(I) =

∑

i

p(c|xi; θ)(xik − µck) (24)
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Table 1. Effect of initialization on MFAFVNet classification accuracy.

Initialization MIT Indoor SUN

AlexNet

Random 69.82 50.23

Pre-Trained MFA 71.44 54.14

VGG-16

Random 77.3 56.2

Pre-Trained MFA 80.3 62.51

to control the strength of the regularization. In our imple-

mentation we use p = 2. The choice of the hinge loss

is mostly for consistency with the Fisher vector literature,

which is mostly based on SVMs. Any other classification

loss could in principle be used.

4. Experiments

In this section, we report on an extensive experimental

evaluation of the MFAFVNet.

4.1. Experimental Setup

Datasets: All experiments were based on the 67 class

MIT Indoor scenes dataset [22] and the 397 class MIT SUN

dataset [28]. MIT Indoor includes 80 images of each cate-

gory for training and 20 images for testing. SUN includes

multiple train/test splits, with 50 images per class in the test-

ing set. We present results for the average accuracy over

splits.

Baselines: The MFAFVNet was compared to eight pre-

vious methods for scene classification. The VLAD of

[11], the Sparse and H-Sparse coding of [17, 18], the Se-

mantic Fisher Vector (SFV) of [5], the full (FBN) and

compact (compact BN) bilinear pooling networks of [7],

the MFA-FS of [6], the Deep FisherNet of [26] and the

MetaClass method of [27]. While most of these methods

[11, 5, 6, 26, 27] present results for both MIT Indoor and

SUN, some [7, 18] only report in MIT Indoor. With the

exception of the Deep FisherNet of [26], all these results

are obtained by simply using features extracted from CNN

layers, without any finetuning of the network. We simple

restate their result. [26] did not address scene classifica-

tion, only presenting results for object detection on PAS-

CAL VOC 2012. We implemented the network as described

in [26] and present its results on MIT Indoor and SUN.

Implementation Details: The MFAFVNet was imple-

mented with three different object recognition networks

trained on ImageNet [4]: Alexnet [13], VGG-16, and VGG-

19 [24]. The object class probability vectors produced by

these networks, per l × l patch, was converted to its natural

Table 2. Effect of regularization strength on MFAFVNet classifi-

cation accuracy.

AlexNet

λ 0.01 0.1 1 10 100

Accuracy 70.69 71.11 71.44 71.42 71.43

VGG-16

λ 0.01 0.1 1 10 100

Accuracy 79.79 80.19 80.3 80.12 80.14

parameter form, as described in [5], to generate the vec-

tor p(x) of Figure 3. The PCA layer reduced this 1, 000
dimensional vector to the one with 500 dimensions, which

was used to compute the MFA-FV. Input images were re-

sized, by making the smaller side 512-pixel long and main-

taining the original aspect ratio. Three patch sizes, l ∈
{96, 128, 160} were used, producing between 590 and 1000
patches per image.

The MFA contained 100 mixture components and a 10
dimension latent variable subspace. This produced a vector

of 500× 100× 10 dimensions at the output of the MFA-FV

layer. The parameters of the fully connected layer (FC9)

at the network output were initialized randomly. The ini-

tialization of the resulting parameters is discussed below.

Layer FC9 was learned with a learning rate of 0.001 and

all other layers with a learning rate of 0.00001. Momen-

tum and weight decay were set to 0.9 and 0.0005 respec-

tively. For both datasets, the complete network was trained

on 10 epochs. As is costumary in the literature, some results

are presented for the combination of the MFA-FV and the

Places network [29], a network learned on the large Places

scene dataset. In this case, the output of the L2 normal-

ization layer of the MFAFVNet was concatenated with the

output of the penultimate layer of the Places network.

4.2. Parameter Initialization

Our experiments have shown that a good initialization

of the the PCA and MFA-FV layers can lead to substantial

gains in classification accuracy. The PCA layer was initial-

ized by a PCA transformation learned from all patches at

the output p(x) of Alexnet or VGG. The low dimensional

vectors at the output of the PCA layer were then used to

learn the MFA parameters with the EM algorithm of [8].

Table 1 compares this initialization to one where all param-

eters are randomly initialized with a zero mean Gaussian

distribution of standard deviation 0.01. The results in the

table refer to a single patch size of 96 and λ1 = λ2 = 1,

but we observed a similar behavior for other configurations.

The performance of the randomly initialized network is 2%
weaker on MIT Indoor and about 4% weaker on SUN. It is

clear that the optimization has strong local minima, and it is

important to rely on an initialization with a strong statistical

interpretation.
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Table 3. Effect of patch scale on MFAFVNet classification accuracy. “3 scale” denotes the combination of three scales.

AlexNet VGG-16 VGG-19

MIT Indoor SUN MIT Indoor SUN MIT Indoor SUN

96× 96 71.44 54.14 80.3 62.51 80.5 62.62

128× 128 71.4 54.03 78.44 61.47 79.29 61.48

160× 160 69.89 52.51 78.01 61.22 78.44 61.31

3 scales 75.01 57.15 81.12 64.51 82.66 64.59

4.3. Influence of Regularization

We next investigated the importance of regularization, by

considering different values of λ1 and λ2 in (26). For sim-

plicity, we considered only the case where λ1 = λ2 = λ,

which was also adopted in the remaining experiments. For

small values of λ the network is free to learn a model that

does not reflect the constraints of the MFA-FV, i.e. of weak

statistical significance. For larger λ the parameters reflect

the MFA constraints and the network has a stronger statisti-

cal significance. Table 2 presents results on MIT Indoor for

different values of λ and a single scale patch with l = 96.

There is an improvement of up to 1% when λ increases from

0.01 to 1 and performance stays approximately constant for

larger λ. This shows that it is important to enforce the sta-

tistical significance of the parameters. In all subsequent ex-

periments we have used the value of λ = 1.

4.4. Impact of Multiple Scales

Various recent works [5, 6, 17] have shown that is impor-

tant combine multiple patch scales, since objects of differ-

ent sizes can be informative for scene classification. Table

3 summarizes the effect of patch sizes (l ∈ {96, 128, 160})

on the classification accuracy of the MFAFVNet, for the

three object recognition models. While scale 96 × 96 out-

performs the other two, results improve substantially when

the three scales are combined. This confirms the previous

observations of [5, 6, 17] for the benefits of multi-scale fea-

ture combination.

4.5. Comparison to Object­based Scene Classifiers

Table 4 compares the MFAFVNet to various previous

scene classifiers based on an object recognition network

trained on ImageNet [2, 6, 7, 17, 6, 26, 1]. The FV of [2]

uses both Alexnet and VGG-16 as CNN model and 10 patch

scales. [17] extracts feature vectors at the output of the first

fully connected layer, for a single patch size of l = 128,

and uses them to derive a sparse coding based FV. [6] uses

an MFA-based Fisher vector to pool the local features ex-

tracted from AlexNet, VGG-16, or VGG-19, but has no fine

tuning. [26] simplifies the Fisher vector to allow end to end

training of the network.

The MFAFVNet achieves state-of-the-art results on both

datasets for both networks, even outperforming [2] which

combines patches of ten different scales. The improved per-

formance over [11, 17, 2] is justified by the fact that these

works rely on a FV derived from a Gaussian mixture of di-

agonal covariance and no fine tuning of the network. The

improvements over the sparse coding techniques [17, 18]

suggest that the MFA is a better model for the statistics

of features learned by deep CNNs. Overall, the closest

competitor to the MFAFVNet is [6], which also uses an

MFA-FV but does not support end-to-end network finetun-

ing. The MFAFVNet improves the results of this method

by 1 − 2%, even though [6] concatenates Fisher vectors of

different patch scales, to form a vector that is three times as

long as that of the MFAFVNet.

Somewhat surprising is the improvement of 6% over the

only other method that tried to train the network end-to-end

[26]. We have found that this is due to their simplification of

the FV, which includes removing the weights of the mixture

components and the normalization terms in the denomina-

tors of the posterior probabilities of (21). A similar sim-

plification of the MFAFVNet incurred losses of significant

magnitude. Note that the simplification is computationally

significant since, as can be seen in Figure 3, these are the

only terms that require inputs from the other mixture com-

ponents k in the softmax of the bottom branch. On the other

hand, these are the only connections that allow the mixture

components to interact with each other. From a statistical

standpoint, in the absence of the normalization, the poste-

rior probabilities are not even probabilities and the model

looses coherence. Note that much of the computation of

EM is aimed to get the posterior probabilities right, since

they determine the mixture assignments of the samples xi.

In fact, the E-step is mostly about getting good estimates of

these probabilities.

4.6. Comparison to Scene Classifiers

[29] trained a network with the same architecture as

Alexnet or VGG for scene image classification directly from

the Places scene dataset. This contains 2.4M scene images.

Comparisons to this network test the effectiveness of rep-

resentations such as the Fisher vector for transfer learning.

Since the dimension of the feature vector extracted by the

Places network is 4096, the dimension of the MFA-FS was

reduced to this value in these experiments1. A comparison

of the two approaches is presented in Table 5. Interest-

1Note that this explains the slight difference to the results in Table 3.
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Table 4. Performance of sccene classifiers based on object recognition

models.

Method MIT Indoor SUN

AlexNet-based

Sparse Coding [17] 68.2 -

VLAD [11] 68.88 51.98

FV [5] 72.86 54.4

MFA-FS [6] 73.58 55.95

FV+FC [2] 74.4 -

MFAFVNet 75.01 57.15

VGG-based

Compact BN [7] 76.17 -

Deep FisherNet [26] 76.48 57.91

Full BN[7] 77.55 -

Sparse Coding [18] 77.6 -

H-Sparse [18] 79.5 -

MFA-FS [6] 81.43 63.31

FV+FC [2] 81.0 -

MFAFVNet 82.66 64.59

Table 5. Comparison to a scene classifier learned on Places.

Method MIT Indoor SUN

AlexNet

Places 68.24 54.3

MFAFVNet 74.86 56.96

VGG-16

Places 79.47 61.32

MFAFVNet 80.72 64.08

ingly, the object-based network outperforms the Places net-

work by a significant amount (up to 6%). This is likely due

to the fact that scenes involve complicated combinations of

objects, which may appear at different scales and poses. A

network that is trained holistically, i.e. over the whole im-

age, likely has difficulty in inferring these object cues. On

the other hand, the combination of the object-based network

and the pooling operation of the Fisher vector is basically

just learning the statistics of object appearances and some

aspects of their configurations in the scene, e.g. relative

properties such objects that appear at different sizes in a

class of scenes. In any case, these results show that objects

are informative for scene classification. As far as we know,

this is also the only task on which transfer learning outper-

forms the training of a deep network directly from a large

dataset of the target domain.

4.7. Combined networks

It is also possible to combine the object- and scene-

based models. This is, in fact, done in most previous works

and shown to improve performance. Following the stan-

dard practice in these experiments, we concatenate the fea-

ture vectors extracted by the two networks and classify

Table 6. Performance of combinations of object-based and scene-

based scene classifiers.
Method MIT Indoor SUN

AlexNet

MetaClass+Places [27] 78.9 58.11

FV+Places [5] 79.0 61.72

MFA-FS+Places [6] 79.86 63.16

MFAFVNet+Places 80.47 64.1

VGG-16

Deep FIsherNet+Places [26] 78.81 59.7

MFA-FS+Places [6] 87.23 71.06

MFAFVNet+Places 87.97 72.01

the resulting vector with a linear SVM of hyperparameter

Csvm = 2. These experiments did not use VGG-19, which

has not been used in the Places network.

Table 6 shows the results obtained by combining the

two networks. The combination of the Fisher vector with

the holistic scene representations achieves a big improve-

ment (up to 8%) over the performace of either of the rep-

resentations independently, on both MIT Indoor and SUN.

Since the networks capture complementary information -

the scene gist for Places and the object composition of the

scene for the MFAFVNet - this suggests that these two

classes of information are important, even complementary,

for scene classification. Table 6 also shows that, even after

combination with Places, the MFAFVNet achieves the best

results among all Fisher vector representations. These re-

sults are, to the best of our knowledge, the state-of-art for

scene image classification.

5. Conclusion

In this work, we considered the transfer of a deep CNN

trained for object recognition to the task of scene image

classification. An embedded implementation of the MFA-

FV was proposed. This enabled the design of a network

architecture, the MFAFVNet, that can be trained in an end

to end manner. The new architecture is based on a MFA-FV

layer that implements a statistically correct version of the

MFA-FV, through a combination of network computations

and regularization. When compared to previous neural im-

plementations of Fisher vectors, the MFAFVNet relies on

a more powerful statistical model and a more accurate im-

plementation. When compared to previous non-embedded

models, the MFAFVNet relies on a state of the art model,

which is now embedded into a CNN. Experiments have

shown the importance of maintaining a valid statistical in-

terpretation for the network, through proper initialization

and regularization and the benefits of end to end training.

The MFAFVNet achieves state of the art performance on

scene classification, both as an object-based scene model

and when combined with the holistic Places representation.
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