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Abstract

In object detection, an intersection over union (IoU)

threshold is required to define positives and negatives. An

object detector, trained with low IoU threshold, e.g. 0.5,

usually produces noisy detections. However, detection per-

formance tends to degrade with increasing the IoU thresh-

olds. Two main factors are responsible for this: 1) overfit-

ting during training, due to exponentially vanishing positive

samples, and 2) inference-time mismatch between the IoUs

for which the detector is optimal and those of the input hy-

potheses. A multi-stage object detection architecture, the

Cascade R-CNN, is proposed to address these problems. It

consists of a sequence of detectors trained with increasing

IoU thresholds, to be sequentially more selective against

close false positives. The detectors are trained stage by

stage, leveraging the observation that the output of a detec-

tor is a good distribution for training the next higher qual-

ity detector. The resampling of progressively improved hy-

potheses guarantees that all detectors have a positive set of

examples of equivalent size, reducing the overfitting prob-

lem. The same cascade procedure is applied at inference,

enabling a closer match between the hypotheses and the

detector quality of each stage. A simple implementation of

the Cascade R-CNN is shown to surpass all single-model

object detectors on the challenging COCO dataset. Experi-

ments also show that the Cascade R-CNN is widely applica-

ble across detector architectures, achieving consistent gains

independently of the baseline detector strength. The code is

available at https://github.com/zhaoweicai/cascade-rcnn.

1. Introduction

Object detection is a complex problem, requiring the so-

lution of two main tasks. First, the detector must solve the

recognition problem, to distinguish foreground objects from

background and assign them the proper object class labels.

Second, the detector must solve the localization problem, to

assign accurate bounding boxes to different objects. Both

of these are particularly difficult because the detector faces

many “close” false positives, corresponding to “close but
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Figure 1. The detection outputs, localization and detection perfor-

mance of object detectors of increasing IoU threshold 𝑢.

not correct” bounding boxes. The detector must find the

true positives while suppressing these close false positives.

Many of the recently proposed object detectors are based

on the two-stage R-CNN framework [14, 13, 30, 23], where

detection is framed as a multi-task learning problem that

combines classification and bounding box regression. Un-

like object recognition, an intersection over union (IoU)

threshold is required to define positives/negatives. How-

ever, the commonly used threshold values 𝑢, typically

𝑢 = 0.5, establish quite a loose requirement for positives.

The resulting detectors frequently produce noisy bounding

boxes, as shown in Figure 1 (a). Hypotheses that most hu-

mans would consider close false positives frequently pass

the 𝐼𝑜𝑈 ≥ 0.5 test. While the examples assembled under

the 𝑢 = 0.5 criterion are rich and diversified, they make

it difficult to train detectors that can effectively reject close

false positives.

In this work, we define the quality of an hypothesis as its

IoU with the ground truth, and the quality of the detector as

the IoU threshold 𝑢 used to train it. The goal is to investi-

gate the, so far, poorly researched problem of learning high

quality object detectors, whose outputs contain few close
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false positives, as shown in Figure 1 (b). The basic idea is

that a single detector can only be optimal for a single qual-

ity level. This is known in the cost-sensitive learning liter-

ature [7, 26], where the optimization of different points of

the receiver operating characteristic (ROC) requires differ-

ent loss functions. The main difference is that we consider

the optimization for a given IoU threshold, rather than false

positive rate.

The idea is illustrated by Figure 1 (c) and (d), which

present the localization and detection performance, respec-

tively, of three detectors trained with IoU thresholds of

𝑢 = 0.5, 0.6, 0.7. The localization performance is evalu-

ated as a function of the IoU of the input proposals, and

the detection performance as a function of IoU threshold,

as in COCO [22]. Note that, in Figure 1 (c), each bounding

box regressor performs best for examples of IoU close to

the threshold that the detector was trained. This also holds

for detection performance, up to overfitting. Figure 1 (d)

shows that, the detector of 𝑢 = 0.5 outperforms the detec-

tor of 𝑢 = 0.6 for low IoU examples, underperforming it

at higher IoU levels. In general, a detector optimized at a

single IoU level is not necessarily optimal at other levels.

These observations suggest that higher quality detection re-

quires a closer quality match between the detector and the

hypotheses that it processes. In general, a detector can only

have high quality if presented with high quality proposals.

However, to produce a high quality detector, it does not

suffice to simply increase 𝑢 during training. In fact, as seen

for the detector of 𝑢 = 0.7 of Figure 1 (d), this can degrade

detection performance. The problem is that the distribution

of hypotheses out of a proposal detector is usually heavily

imbalanced towards low quality. In general, forcing larger

IoU thresholds leads to an exponentially smaller numbers

of positive training samples. This is particularly problem-

atic for neural networks, which are known to be very exam-

ple intensive, and makes the “high 𝑢” training strategy quite

prone to overfitting. Another difficulty is the mismatch be-

tween the quality of the detector and that of the testing hy-

potheses at inference. As shown in Figure 1, high quality

detectors are only necessarily optimal for high quality hy-

potheses. The detection could be suboptimal when they are

asked to work on the hypotheses of other quality levels.

In this paper, we propose a new detector architecture,

Cascade R-CNN, that addresses these problems. It is a

multi-stage extension of the R-CNN, where detector stages

deeper into the cascade are sequentially more selective

against close false positives. The cascade of R-CNN stages

are trained sequentially, using the output of one stage to

train the next. This is motivated by the observation that the

output IoU of a regressor is almost invariably better than

the input IoU, in Figure 1 (c), where nearly all plots are

above the gray line. It suggests that the output of a detector

trained with a certain IoU threshold is a good distribution to

train the detector of the next higher IoU threshold. This is

similar to boostrapping methods commonly used to assem-

ble datasets in object detection literature [34, 9]. The main

difference is that the resampling procedure of the Cascade

R-CNN does not aim to mine hard negatives. Instead, by

adjusting bounding boxes, each stage aims to find a good

set of close false positives for training the next stage. When

operating in this manner, a sequence of detectors adapted to

increasingly higher IoUs can beat the overfitting problem,

and thus be effectively trained. At inference, the same cas-

cade procedure is applied. The progressively improved hy-

potheses are better matched to the increasing detector qual-

ity at each stage. This enables higher detection accuracies,

as suggested by Figure 1 (c) and (d).

The Cascade R-CNN is quite simple to implement and

trained end-to-end. Our results show that a vanilla imple-

mentation, without any bells and whistles, surpasses all pre-

vious state-of-the-art single-model detectors by a large mar-

gin, on the challenging COCO detection task [22], espe-

cially under the higher quality evaluation metrics. In addi-

tion, the Cascade R-CNN can be built with any two-stage

object detector based on the R-CNN framework. We have

observed consistent gains (of 2∼4 points), at a marginal

increase in computation. This gain is independent of the

strength of the baseline object detectors. We thus believe

that this simple and effective detection architecture can be

of interest for many object detection research efforts.

2. Related Work

Due to the success of the R-CNN [14] architecture, the

two-stage detection framework, by combining a proposal

detector and a region-wise classifier, has become predom-

inant in the recent past. To reduce redundant CNN com-

putations in the R-CNN for speeds-up, the SPP-Net [17]

and Fast R-CNN [13] introduced the idea of region-wise

feature extraction. Later, the Faster R-CNN [30] achieved

further speeds-up by introducing a Region Proposal Net-

work (RPN). Some more recent works have extended it to

address various problems of detail. For example, the R-

FCN [4] proposed efficient region-wise fully convolutions

without accuracy loss, to avoid the heavy region-wise CNN

computations of the Faster R-CNN; while the MS-CNN [1]

and FPN [23] detect high-recall proposals at multiple out-

put layers, so as to alleviate the scale mismatch between the

RPN receptive fields and actual object size.

Alternatively, one-stage object detection architectures

have also become popular, mostly due to their computa-

tional efficiency. YOLO [29] outputs very sparse detection

results and enables real time object detection, by forward-

ing the input image once through an efficient backbone net-

work. SSD [25] detects objects in a way similar to the RPN

[30], but uses multiple feature maps at different resolutions

to cover objects at various scales. Their main limitation is



that their accuracies are typically below that of two-stage

detectors. Recently, RetinaNet [24] was proposed to ad-

dress the extreme foreground-background class imbalance

in dense object detection, achieving better results than state-

of-the-art two-stage object detectors.

Some explorations in multi-stage object detection have

also been proposed. The multi-region detector [10] intro-

duced iterative bounding box regression, where a R-CNN

is applied several times, to produce better bounding boxes.

[36, 12, 11] used a multi-stage procedure to generate accu-

rate proposals, and forwarded them to an accurate model

(e.g. Fast R-CNN). [37, 27] also attempted to localize ob-

jects sequentially. However, these methods usually used the

same regressor iteratively for accurate localization. [21, 28]

embedded the classic cascade architecture of [34] in object

detection networks. [3] iterated a detection and a segmen-

tation task alternatively, for instance segmentation.

3. Object Detection

In this paper, we extend the two-stage architecture of

the Faster R-CNN [30, 23], shown in Figure 3 (a). The

first stage is a proposal sub-network (“H0”), applied to the

entire image, to produce preliminary detection hypotheses,

known as object proposals. In the second stage, these hy-

potheses are then processed by a region-of-interest detec-

tion sub-network (“H1”), denoted as detection head. A fi-

nal classification score (“C”) and a bounding box (“B”) are

assigned to each hypothesis. We focus on modeling a multi-

stage detection sub-network, and adopt, but are not limited

to, the RPN [30] for proposal detection.

3.1. Bounding Box Regression

A bounding box b = (𝑏𝑥, 𝑏𝑦, 𝑏𝑤, 𝑏ℎ) contains the four

coordinates of an image patch 𝑥. The task of bounding box

regression is to regress a candidate bounding box b into a

target bounding box g, using a regressor 𝑓(𝑥,b). This is

learned from a training sample (g𝑖,b𝑖), so as to minimize

the bounding box 𝐿1 loss function, 𝐿𝑙𝑜𝑐(𝑓(𝑥𝑖,b𝑖), g𝑖), as

suggested in Fast R-CNN [13]. To encourage a regression

invariant to scale and location, 𝐿𝑙𝑜𝑐 operates on the distance

vector Δ = (𝛿𝑥, 𝛿𝑦, 𝛿𝑤, 𝛿ℎ) defined by

𝛿𝑥 = (𝑔𝑥 − 𝑏𝑥)/𝑏𝑤, 𝛿𝑦 = (𝑔𝑦 − 𝑏𝑦)/𝑏ℎ
𝛿𝑤 = log(𝑔𝑤/𝑏𝑤), 𝛿ℎ = log(𝑔ℎ/𝑏ℎ).

(1)

Since bounding box regression usually performs minor ad-

justments on 𝑏, the numerical values of (1) can be very

small. Hence, the regression loss is usually much smaller

than the classification loss. To improve the effectiveness

of multi-task learning, Δ is usually normalized by its mean

and variance, i.e. 𝛿𝑥 is replaced by 𝛿′𝑥 = (𝛿𝑥 − 𝜇𝑥)/𝜎𝑥.

This is widely used in the literature [30, 1, 4, 23, 16].

Some works [10, 11, 18] have argued that a single re-

gression step of 𝑓 is insufficient for accurate localization.
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Figure 2. Sequential Δ distribution (without normalization) at dif-

ferent cascade stage. Red dots are outliers when using increasing

IoU thresholds, and the statistics are obtained after outlier removal.

Instead, 𝑓 is applied iteratively, as a post-processing step

𝑓 ′(𝑥,b) = 𝑓 ∘ 𝑓 ∘ ⋅ ⋅ ⋅ ∘ 𝑓(𝑥,b), (2)

to refine a bounding box b. This is called iterative bound-

ing box regression, denoted as iterative BBox. It can be

implemented with the inference architecture of Figure 3 (b)

where all heads are the same. This idea, however, ignores

two problems. First, as shown in Figure 1, a regressor 𝑓
trained at 𝑢 = 0.5, is suboptimal for hypotheses of higher

IoUs. It actually degrades bounding boxes of IoU larger

than 0.85. Second, as shown in Figure 2, the distribution of

bounding boxes changes significantly after each iteration.

While the regressor is optimal for the initial distribution it

can be quite suboptimal after that. Due to these problems,

iterative BBox requires a fair amount of human engineer-

ing, in the form of proposal accumulation, box voting, etc.

[10, 11, 18], and has somewhat unreliable gains. Usually,

there is no benefit beyond applying 𝑓 twice.

3.2. Detection Quality

The classifier ℎ(𝑥) assigns an image patch 𝑥 to one of

𝑀 + 1 classes, where class 0 contains background and the

remaining the objects to detect. Given a training set (𝑥𝑖, 𝑦𝑖),
it is learned by minimizing a classification cross-entropy

loss 𝐿𝑐𝑙𝑠(ℎ(𝑥𝑖), 𝑦𝑖), where 𝑦𝑖 is the class label of patch 𝑥𝑖.

Since a bounding box usually includes an object and

some amount of background, it is difficult to determine if

a detection is positive or negative. This is usually addressed

by the IoU metric. If the IoU is above a threshold 𝑢, the

patch is considered an example of the class. Thus, the class

label of a hypothesis 𝑥 is a function of 𝑢,

𝑦 =

{

𝑔𝑦, 𝐼𝑜𝑈(𝑥, 𝑔) ≥ 𝑢
0, otherwise

(3)

where 𝑔𝑦 is the class label of the ground truth object 𝑔. This

IoU threshold 𝑢 defines the quality of a detector.



convI

B0 H1

C1 B1

poolH0

C0

(a) Faster R-CNN

convI

B0

pool

H1

C1 B1

pool

H1

C2 B2

pool

H1

C3 B3

(b) Iterative BBox at inference

convI

B0
H1

C1 B1

pool

H2

C2

H3

C3

(c) Integral Loss

convI

B0

pool

H1

C1 B1

pool

H2

C2 B2
pool

H3

C3 B3

(d) Cascade R-CNN
Figure 3. The architectures of different frameworks. “I” is input image, “conv” backbone convolutions, “pool” region-wise feature extrac-

tion, “H” network head, “B” bounding box, and “C” classification. “B0” is proposals in all architectures.

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

4

IoU

1st stage

1
6
.7

%

8
.0

%

2
.9

%

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

4

IoU

2nd stage

2
5
.6

%

2
1
.7

%

1
7
.3

%

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10
x 10

4

IoU

3rd stage

2
8
.0

%

2
5
.1

%

2
1
.7

%
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at 1st stage is the output of RPN. The red numbers are the positive

percentage higher than the corresponding IoU threshold.

Object detection is challenging because, no matter

threshold, the detection setting is highly adversarial. When

𝑢 is high, the positives contain less background, but it is dif-

ficult to assemble enough positive training examples. When

𝑢 is low, a richer and more diversified positive training set

is available, but the trained detector has little incentive to

reject close false positives. In general, it is very difficult

to ask a single classifier to perform uniformly well over all

IoU levels. At inference, since the majority of the hypothe-

ses produced by a proposal detector, e.g. RPN [30] or selec-

tive search [33], have low quality, the detector must be more

discriminant for lower quality hypotheses. A standard com-

promise between these conflicting requirements is to settle

on 𝑢 = 0.5. This, however, is a relatively low threshold,

leading to low quality detections that most humans consider

close false positives, as shown in Figure 1 (a).

A naı̈ve solution is to develop an ensemble of classifiers,

with the architecture of Figure 3 (c), optimized with a loss

that targets various quality levels,

𝐿𝑐𝑙𝑠(ℎ(𝑥), 𝑦) =
∑

𝑢∈𝑈

𝐿𝑐𝑙𝑠(ℎ𝑢(𝑥), 𝑦𝑢), (4)

where 𝑈 is a set of IoU thresholds. This is closely related to

the integral loss of [38], where 𝑈 = {0.5, 0.55, ⋅ ⋅ ⋅ , 0.75},

designed to fit the evaluation metric of the COCO challenge.

By definition, the classifiers need to be ensembled at infer-

ence. This solution fails to address the problem that the

different losses of (4) operate on different numbers of pos-

itives. As shown in the first figure of Figure 4, the set of

positive samples decreases quickly with 𝑢. This is partic-

ularly problematic because the high quality classifiers are

prone to overfitting. In addition, those high quality classi-

fiers are required to process proposals of overwhelming low

quality at inference, for which they are not optimized. Due

to all this, the ensemble of (4) fails to achieve higher ac-

curacy at most quality levels, and the architecture has very

little gain over that of Figure 3 (a).

4. Cascade R-CNN

In this section we introduce the proposed Cascade R-

CNN object detection architecture of Figure 3 (d).

4.1. Cascaded Bounding Box Regression

As seen in Figure 1 (c), it is very difficult to ask a single

regressor to perform perfectly uniformly at all quality lev-

els. The difficult regression task can be decomposed into

a sequence of simpler steps, inspired by the works of cas-

cade pose regression [6] and face alignment [2, 35]. In the

Cascade R-CNN, it is framed as a cascaded regression prob-

lem, with the architecture of Figure 3 (d). This relies on a

cascade of specialized regressors

𝑓(𝑥,b) = 𝑓𝑇 ∘ 𝑓𝑇−1 ∘ ⋅ ⋅ ⋅ ∘ 𝑓1(𝑥,b), (5)

where 𝑇 is the total number of cascade stages. Note that

each regressor 𝑓𝑡 in the cascade is optimized w.r.t. the sam-

ple distribution {b𝑡} arriving at the corresponding stage, in-

stead of the initial distribution of {b1}. This cascade im-

proves hypotheses progressively.

It differs from the iterative BBox architecture of Figure

3 (b) in several ways. First, while iterative BBox is a post-

processing procedure used to improve bounding boxes, cas-

caded regression is a resampling procedure that changes the

distribution of hypotheses to be processed by the different

stages. Second, because it is used at both training and in-

ference, there is no discrepancy between training and infer-

ence distributions. Third, the multiple specialized regres-

sors {𝑓𝑇 , 𝑓𝑇−1, ⋅ ⋅ ⋅ , 𝑓1} are optimized for the resampled

distributions of the different stages. This opposes to the

single 𝑓 of (2), which is only optimal for the initial distri-

bution. These differences enable more precise localization

than iterative BBox, with no further human engineering.

As discussed in Section 3.1, Δ = (𝛿𝑥, 𝛿𝑦, 𝛿𝑤, 𝛿ℎ) in (1)

needs to be normalized for effective multi-task learning. Af-



ter each regression stage, their statistics will evolve sequen-

tially, as displayed in Figure 2. At training, the correspond-

ing statistics are used to normalize Δ at each stage.

4.2. Cascaded Detection

As shown in the left of Figure 4, the distribution of the

initial hypotheses, e.g. RPN proposals, is heavily tilted to-

wards low quality. This inevitably induces ineffective learn-

ing of higher quality classifiers. The Cascade R-CNN ad-

dresses the problem by relying on cascade regression as a

resampling mechanism. This is is motivated by the fact

that in Figure 1 (c) nearly all curves are above the diagonal

gray line, i.e. a bounding box regressor trained for a certain

𝑢 tends to produce bounding boxes of higher IoU. Hence,

starting from a set of examples (𝑥𝑖,b𝑖), cascade regression

successively resamples an example distribution (𝑥′

𝑖,b′

𝑖) of

higher IoU. In this manner, it is possible to keep the set of

positive examples of the successive stages at a roughly con-

stant size, even when the detector quality (IoU threshold) is

increased. This is illustrated in Figure 4, where the distribu-

tion tilts more heavily towards high quality examples after

each resampling step. Two consequences ensue. First, there

is no overfitting, since positive examples are plentiful at all

levels. Second, the detectors of the deeper stages are opti-

mized for higher IoU thresholds. Note that, some outliers

are sequentially removed by increasing IoU thresholds, as

illustrated in Figure 2, enabling a better trained sequence of

specialized detectors.

At each stage 𝑡, the R-CNN includes a classifier ℎ𝑡 and

a regressor 𝑓𝑡 optimized for IoU threshold 𝑢𝑡, where 𝑢𝑡 >
𝑢𝑡−1. This is learned by minimizing the loss

𝐿(𝑥𝑡, 𝑔) = 𝐿𝑐𝑙𝑠(ℎ𝑡(𝑥
𝑡), 𝑦𝑡)+𝜆[𝑦𝑡 ≥ 1]𝐿𝑙𝑜𝑐(𝑓𝑡(𝑥

𝑡,b𝑡), g),
(6)

where b𝑡 = 𝑓𝑡−1(𝑥
𝑡−1,b𝑡−1), 𝑔 is the ground truth object

for 𝑥𝑡, 𝜆 = 1 the trade-off coefficient, [⋅] the indicator func-

tion, and 𝑦𝑡 is the label of 𝑥𝑡 given 𝑢𝑡 by (3). Unlike the

integral loss of (4), this guarantees a sequence of effectively

trained detectors of increasing quality. At inference, the

quality of the hypotheses is sequentially improved, by ap-

plications of the same cascade procedure, and higher qual-

ity detectors are only required to operate on higher quality

hypotheses. This enables high quality object detection, as

suggested by Figure 1 (c) and (d).

5. Experimental Results

The Cascade R-CNN was evaluated mainly on MS-

COCO 2017 [22], which contains ∼118k images for train-

ing, 5k for validation (val) and ∼20k for testing without

provided annotations (test-dev). The COCO-style Aver-

age Precision (AP) averages AP across IoU thresholds from

0.5 to 0.95 with an interval of 0.05. These metrics measure

the detection performance of various qualities. All models

were trained on COCO training set, and evaluated on val

set. Final results were also reported on test-dev set.

5.1. Implementation Details

All regressors are class agnostic for simplicity. All cas-

cade detection stages in Cascade R-CNN have the same ar-

chitecture, which is the head of the baseline detection net-

work. In total, Cascade R-CNN have four stages, one RPN

and three for detection with 𝑈 = {0.5, 0.6, 0.7}, unless oth-

erwise noted. The sampling of the first detection stage fol-

lows [13, 30]. In the following stages, resampling is imple-

mented by simply using the regressed outputs from the pre-

vious stage, as in Section 4.2. No data augmentation was

used except standard horizontal image flipping. Inference

was performed on a single image scale, with no further bells

and whistles. All baseline detectors were reimplemented

with Caffe [20], on the same codebase for fair comparison.

5.1.1 Baseline Networks

To test the versatility of the Cascade R-CNN, experi-

ments were performed with three popular baseline detec-

tors: Faster R-CNN with backbone VGG-Net [32], R-FCN

[4] and FPN [23] with ResNet backbone [18]. These base-

lines have a wide range of detection performances. Unless

noted, their default settings were used. End-to-end training

was used instead of multi-step training.

Faster R-CNN: The network head has two fully connected

layers. To reduce parameters, we used [15] to prune less

important connections. 2048 units were retained per fully

connected layer and dropout layers were removed. Train-

ing started with a learning rate of 0.002, reduced by a factor

of 10 at 60k and 90k iterations, and stopped at 100k itera-

tions, on 2 synchronized GPUs, each holding 4 images per

iteration. 128 RoIs were used per image.

R-FCN: R-FCN adds a convolutional, a bounding box re-

gression, and a classification layer to the ResNet. All heads

of the Cascade R-CNN have this structure. Online hard

negative mining [31] was not used. Training started with

a learning rate of 0.003, which was decreased by a factor of

10 at 160k and 240k iterations, and stopped at 280k itera-

tions, on 4 synchronized GPUs, each holding one image per

iteration. 256 RoIs were used per image.

FPN: Since no source code was publicly available for FPN,

our implementation details could be different. RoIAlign

[16] was used for a stronger baseline. This is denoted

as FPN+ and was used in all ablation studies. As usual,

ResNet-50 was used for ablation studies, and ResNet-101

for final detection. Training used a learning rate of 0.005

for 120k iterations and 0.0005 for the next 60k iterations,

on 8 synchronized GPUs, each holding one image per iter-

ation. 256 RoIs were used per image.
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Figure 5. (a) is detection performance of individually trained de-

tectors, with their own proposals (solid curves) or Cascade R-CNN

stage proposals (dashed curves), and (b) is by adding ground truth

to the proposal set.
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Figure 6. The detection performance of all Cascade R-CNN detec-

tors at all cascade stages.

5.2. Quality Mismatch

Figure 5 (a) shows the AP curves of three individu-

ally trained detectors of increasing IoU thresholds of 𝑈 =
{0.5, 0.6, 0.7}. The detector of 𝑢 = 0.5 outperforms the de-

tector of 𝑢 = 0.6 at low IoU levels, but underperforms it at

higher levels. However, the detector of 𝑢 = 0.7 underper-

forms the other two. To understand why this happens, we

changed the quality of the proposals at inference. Figure

5 (b) shows the results obtained when ground truth bound-

ing boxes were added to the set of proposals. While all

detectors improve, the detector of 𝑢 = 0.7 has the largest

gains, achieving the best performance at almost all IoU lev-

els. These results suggest two conclusions. First, 𝑢 = 0.5
is not a good choice for precise detection, simply more ro-

bust to low quality proposals. Second, highly precise de-

tection requires hypotheses that match the detector quality.

Next, the original detector proposals were replaced by the

Cascade R-CNN proposals of higher quality (𝑢 = 0.6 and

𝑢 = 0.7 used the 2nd and 3rd stage proposals, respectively).

Figure 5 (a) also suggests that the performance of the two

detectors is significantly improved when the testing propos-

als closer match the detector quality.

Testing all Cascade R-CNN detectors at all cascade

stages produced similar observations. Figure 6 shows that

each detector was improved when used more precise hy-

potheses, while higher quality detector had larger gain. For

example, the detector of 𝑢 = 0.7 performed poorly for the

low quality proposals of the 1st stage, but much better for

the more precise hypotheses available at the deeper cascade

stages. In addition, the jointly trained detectors of Figure

6 outperformed the individually trained detectors of Figure
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Figure 7. (a) is the localization comparison, and (b) is the detection

performance of individual classifiers in the integral loss detector.

AP AP50 AP60 AP70 AP80 AP90

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1

Iterative BBox 35.4 57.2 52.1 44.2 30.4 8.1

Integral Loss 35.4 57.3 52.5 44.4 29.9 6.9

Cascade R-CNN 38.9 57.8 53.4 46.9 35.8 15.8

Table 1. The comparison with iterative BBox and integral loss.

5 (a), even when the same proposals were used. This indi-

cates that the detectors are better trained within the Cascade

R-CNN framework.

5.3. Comparison with Iterative BBox and Integral Loss

In this section, we compare the Cascade R-CNN to it-

erative BBox and the integral loss detector. Iterative BBox

was implemented by applying the FPN+ baseline iteratively,

three times. The integral loss detector also has three classi-

fication heads, with 𝑈 = {0.5, 0.6, 0.7}.

Localization: The localization performances of cascade

regression and iterative BBox are compared in Figure 7 (a).

The use of a single regressor degrades localization for hy-

potheses of high IoU. This effect accumulates when the re-

gressor is applied iteratively, as in iterative BBox, and per-

formance actually drops. Note the very poor performance

of iterative BBox after 3 iterations. On the contrary, the cas-

cade regressor has better performance at later stages, out-

performing iterative BBox at almost all IoU levels.

Integral Loss: The detection performances of all classi-

fiers in the integral loss detector, sharing a single regressor,

are shown in Figure 7 (b). The classifier of 𝑢 = 0.6 is the

best at all IoU levels, while the classifier of 𝑢 = 0.7 is the

worst. The ensemble of all classifiers shows no visible gain.

Table 1 shows, both iterative BBox and integral loss de-

tector improve the baseline detector marginally. The cas-

cade R-CNN has the best performance for all evaluation

metrics. The gains are mild for low IoU thresholds but sig-

nificant for the higher ones.

5.4. Ablation Experiments

A couple of ablation experiments were run to analyze the

proposed Cascade R-CNN.



test stage AP AP50 AP60 AP70 AP80 AP90

1 35.5 57.2 52.4 44.1 30.5 8.1

2 38.3 57.9 53.4 46.4 35.2 14.2

3 38.3 56.6 52.2 46.3 35.7 15.9

1 ∼ 2 38.5 58.2 53.8 46.7 35.0 14.0

1 ∼ 3 38.9 57.8 53.4 46.9 35.8 15.8

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1

Table 2. The stage performance of Cascade R-CNN. 1 ∼ 3 indi-

cates the ensemble result, which is the average of the three classi-

fier probabilities, given the 3rd stage proposals.

IoU↑ stat AP AP50 AP60 AP70 AP80 AP90

36.8 57.8 52.9 45.4 32.0 10.7

✓ 38.5 58.4 54.1 47.1 35.0 13.1

✓ 37.5 57.8 53.1 45.5 33.3 13.1

✓ ✓ 38.9 57.8 53.4 46.9 35.8 15.8

Table 3. The ablation experiments. “IoU↑” means increasing IoU

thresholds, and “stat” exploiting sequential regression statistics.

Stage-wise Comparison: Table 2 summarizes stage per-

formance. Note that the 1st stage already outperforms the

baseline detector, due to the benefits of multi-stage multi-

task learning. Deeper cascade stages prefer higher qual-

ity localization, encouraging to learn features conducive to

it. This benefits earlier cascade stages by features sharing

across stages. The 2nd stage improves performance sub-

stantially, and the 3rd is equivalent to the 2nd. This differs

from the integral loss detector, where the higher IoU clas-

sifier is relatively weak. While the former (later) stage is

better at low (high) IoU metrics, the ensemble of all classi-

fiers is the best overall.

IoU Thresholds: A preliminary Cascade R-CNN was

trained using the same IoU threshold 𝑢 = 0.5 for all heads.

In this case, the stages differ only in the hypotheses they

receive. Each stage is trained with the corresponding hy-

potheses, i.e. accounting for the distributions of Figure 2.

The first row of Table 3 shows that the cascade improves on

the baseline detector. This suggests the importance of op-

timizing stages for the corresponding sample distributions.

The second row shows that, by increasing the stage thresh-

old 𝑢, the detector can be made more selective against close

false positives and specialized for more precise hypotheses,

leading to additional gains. This supports the conclusions

of Section 4.2.

Regression Statistics: Exploiting the progressively up-

dated regression statistics, of Figure 2, helps the effective

multi-task learning of classification and regression. Its ben-

efit is noted by comparing the models with/without it in Ta-

ble 3. The learning is not sensitive to these statistics.

Number of Stages: The impact of the number of stages is

summarized in Table 4. Adding a second detection stage

significantly improves the baseline detector. Three detec-

tion stages still produce non-trivial improvement, but the

# stages test stage AP AP50 AP60 AP70 AP80 AP90

1 1 34.9 57.0 51.9 43.6 29.7 7.1

2 1 ∼ 2 38.2 58.0 53.6 46.7 34.6 13.6

3 1 ∼ 3 38.9 57.8 53.4 46.9 35.8 15.8

4 1 ∼ 3 38.9 57.4 53.2 46.8 36.0 16.0

4 1 ∼ 4 38.6 57.2 52.8 46.2 35.5 16.3

Table 4. The impact of the number of stages in Cascade R-CNN.

addition of a 4th stage (𝑢 = 0.75) led to a slight perfor-

mance decrease. Note, however, that while the overall AP

performance degrades, the four-stage cascade has the best

performance for high IoU levels. The three-stage cascade

achieves the best trade-off.

5.5. Comparison with the state-of-the-art

The Cascade R-CNN, based on FPN+ and ResNet-101

backbone, is compared to state-of-the-art single-model ob-

ject detectors in Table 5. The settings are as described in

Section 5.1.1, but a total of 280k training iterations were

run and the learning rate dropped at 160k and 240k itera-

tions. The number of RoIs was also increased to 512. The

first group of detectors on Table 5 are one-stage detectors,

the second group two-stage, and the last group multi-stage

(3-stages+RPN for the Cascade R-CNN). All the compared

state-of-the-art detectors were trained with 𝑢 = 0.5. It

is noted that our FPN+ implementation is better than the

original FPN [23], providing a very strong baseline. In ad-

dition, the extension from FPN+ to Cascade R-CNN im-

proved performance by ∼4 points. The Cascade R-CNN

also outperformed all single-model detectors by a large mar-

gin, under all evaluation metrics. This includes the single-

model entries of the COCO challenge winners (Faster R-

CNN+++ [18], and G-RMI [19]), and the very recent De-

formable R-FCN [5], RetinaNet [24] and Mask R-CNN

[16]. Compared to the best multi-stage detector on COCO,

AttractioNet [11], although it used many enhancements, the

vanilla Cascade R-CNN still outperforms it by 7.1 points.

Note that, unlike Mask R-CNN, no segmentation informa-

tion is exploited in the Cascade R-CNN. Finally, the vanilla

single-model Cascade R-CNN also surpasses the heavily

engineered ensemble detectors that won the COCO chal-

lenge in 2015 and 2016 (AP 37.4 and 41.6, respectively)1.

5.6. Generalization Capacity

Three-stage Cascade R-CNN of all three baseline detec-

tors are compared in Table 6. All settings are as above, with

the changes of Section 5.5 for FPN+.

Detection Performance: Again, our implementations are

better than the original detectors [30, 4, 23]. Still, the Cas-

cade R-CNN improves on these baselines consistently by

2∼4 points, independently of their strength. These gains

1http://cocodataset.org/#detections-leaderboard



backbone AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

YOLOv2 [29] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [25] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet [24] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

Faster R-CNN+++ [18]* ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [23] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN w FPN+ (ours) ResNet-101 38.8 61.1 41.9 21.3 41.8 49.8

Faster R-CNN by G-RMI [19] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0

Deformable R-FCN [5]* Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN [16] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2

AttractioNet [11]* VGG16+Wide ResNet 35.7 53.4 39.3 15.6 38.0 52.7

Cascade R-CNN ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

Table 5. The state-of-the-art single-model detectors on COCO test-dev. The entries denoted by “*” used bells and whistles at inference.

backbone cascade
train test model val (5k) test-dev (20k)

speed speed size AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿 AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

Faster R-CNN VGG
✗ 0.12s 0.075s 278M 23.6 43.9 23.0 8.0 26.2 35.5 23.5 43.9 22.6 8.1 25.1 34.7

✓ 0.14s 0.115s 704M 27.0 44.2 27.7 8.6 29.1 42.2 26.9 44.3 27.8 8.3 28.2 41.1

R-FCN ResNet-50
✗ 0.19s 0.07s 133M 27.0 48.7 26.9 9.8 30.9 40.3 27.1 49.0 26.9 10.4 29.7 39.2

✓ 0.24s 0.075s 184M 31.1 49.8 32.8 10.4 34.4 48.5 30.9 49.9 32.6 10.5 33.1 46.9

R-FCN ResNet-101
✗ 0.23s 0.075s 206M 30.3 52.2 30.8 12.0 34.7 44.3 30.5 52.9 31.2 12.0 33.9 43.8

✓ 0.29s 0.083s 256M 33.3 52.0 35.2 11.8 37.2 51.1 33.3 52.6 35.2 12.1 36.2 49.3

FPN+ ResNet-50
✗ 0.30s 0.095s 165M 36.5 58.6 39.2 20.8 40.0 47.8 36.5 59.0 39.2 20.3 38.8 46.4

✓ 0.33s 0.115s 272M 40.3 59.4 43.7 22.9 43.7 54.1 40.6 59.9 44.0 22.6 42.7 52.1

FPN+ ResNet-101
✗ 0.38s 0.115s 238M 38.5 60.6 41.7 22.1 41.9 51.1 38.8 61.1 41.9 21.3 41.8 49.8

✓ 0.41s 0.14s 345M 42.7 61.6 46.6 23.8 46.2 57.4 42.8 62.1 46.3 23.7 45.5 55.2

Table 6. Detailed comparison on multiple popular baseline object detectors. All speeds are reported per image on a single Titan Xp GPU.

Faster R-CNN R-FCN

backbone AlexNet VGG RetNet-50 RetNet-101

cascade ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

AP 29.4 38.9 42.9 51.2 44.8 51.8 49.4 54.2

AP50 63.2 66.5 76.4 79.1 77.5 78.5 79.8 79.6

AP75 23.7 40.5 44.1 56.3 46.8 57.1 53.2 59.2

Table 7. Detection results on PASCAL VOC 2007 test.

are also consistent on val and test-dev. These results

suggest that the Cascade R-CNN is widely applicable across

detector architectures.

Parameter and Timing: The number of the Cascade R-

CNN parameters increases with the number of cascade

stages. The increase is linear in the parameter number of

the baseline detector heads. In addition, because the com-

putational cost of a detection head is usually small when

compared to the RPN, the computational overhead of the

Cascade R-CNN is small, at both training and testing.

5.7. Results on PASCAL VOC

The Cascade R-CNN was further experimented on PAS-

CAL VOC dataset [8]. Following [30, 25], the models

were trained on VOC2007 and VOC2012 trainval and

tested on VOC2007 test. Faster R-CNN (with AlexNet

and VGG-Net) and R-FCN (with ResNet) were tested. The

training details were similar to Section 5.1.1, and AlexNet

were also pruned. Since the goal of this paper is to explore

high quality detection, we used the COCO metrics for eval-

uation2. The detection results in Table 7 show that the Cas-

cade R-CNN also has significant improvements over mul-

tiple detection architectures on PASCAL VOC. These rein-

force our belief on the robustness of the Cascade R-CNN.

6. Conclusion

In this paper, we proposed a multi-stage object detec-

tion framework, the Cascade R-CNN, for the design of high

quality object detectors. This architecture was shown to

avoid the problems of overfitting at training and quality

mismatch at inference. The solid and consistent detection

improvements of the Cascade R-CNN on the challenging

COCO and the popular PASCAL VOC datasets suggest the

modeling and understanding of various concurring factors

are required to advance object detection. The Cascade R-

CNN was shown to be applicable to many object detection

architectures. We believe that it can be useful to many fu-

ture object detection research efforts.
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