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Abstract

In object detection, an intersection over union (loU)
threshold is required to define positives and negatives. An
object detector, trained with low IoU threshold, e.g. 0.5,
usually produces noisy detections. However, detection per-
formance tends to degrade with increasing the loU thresh-
olds. Two main factors are responsible for this: 1) overfit-
ting during training, due to exponentially vanishing positive
samples, and 2) inference-time mismatch between the loUs
for which the detector is optimal and those of the input hy-
potheses. A multi-stage object detection architecture, the
Cascade R-CNN, is proposed to address these problems. It
consists of a sequence of detectors trained with increasing
loU thresholds, to be sequentially more selective against
close false positives. The detectors are trained stage by
stage, leveraging the observation that the output of a detec-
tor is a good distribution for training the next higher qual-
ity detector. The resampling of progressively improved hy-
potheses guarantees that all detectors have a positive set of
examples of equivalent size, reducing the overfitting prob-
lem. The same cascade procedure is applied at inference,
enabling a closer match between the hypotheses and the
detector quality of each stage. A simple implementation of
the Cascade R-CNN is shown to surpass all single-model
object detectors on the challenging COCO dataset. Experi-
ments also show that the Cascade R-CNN is widely applica-
ble across detector architectures, achieving consistent gains
independently of the baseline detector strength. The code is
available at https://github.com/zhaoweicai/cascade-rcnn.

1. Introduction

Object detection is a complex problem, requiring the so-
lution of two main tasks. First, the detector must solve the
recognition problem, to distinguish foreground objects from
background and assign them the proper object class labels.
Second, the detector must solve the localization problem, to
assign accurate bounding boxes to different objects. Both
of these are particularly difficult because the detector faces
many “close” false positives, corresponding to “close but
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Figure 1. The detection outputs, localization and detection perfor-
mance of object detectors of increasing IoU threshold u.
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not correct” bounding boxes. The detector must find the
true positives while suppressing these close false positives.

Many of the recently proposed object detectors are based
on the two-stage R-CNN framework [14, 13, 30, 23], where
detection is framed as a multi-task learning problem that
combines classification and bounding box regression. Un-
like object recognition, an intersection over union (IoU)
threshold is required to define positives/negatives. How-
ever, the commonly used threshold values wu, typically
u = 0.5, establish quite a loose requirement for positives.
The resulting detectors frequently produce noisy bounding
boxes, as shown in Figure 1 (a). Hypotheses that most hu-
mans would consider close false positives frequently pass
the JoU > 0.5 test. While the examples assembled under
the v = 0.5 criterion are rich and diversified, they make
it difficult to train detectors that can effectively reject close
false positives.

In this work, we define the quality of an hypothesis as its
IoU with the ground truth, and the quality of the detector as
the IoU threshold u used to train it. The goal is to investi-
gate the, so far, poorly researched problem of learning high
quality object detectors, whose outputs contain few close



false positives, as shown in Figure 1 (b). The basic idea is
that a single detector can only be optimal for a single qual-
ity level. This is known in the cost-sensitive learning liter-
ature [7, 26], where the optimization of different points of
the receiver operating characteristic (ROC) requires differ-
ent loss functions. The main difference is that we consider
the optimization for a given IoU threshold, rather than false
positive rate.

The idea is illustrated by Figure 1 (c) and (d), which
present the localization and detection performance, respec-
tively, of three detectors trained with IoU thresholds of
u = 0.5,0.6,0.7. The localization performance is evalu-
ated as a function of the IoU of the input proposals, and
the detection performance as a function of IoU threshold,
as in COCO [22]. Note that, in Figure 1 (c), each bounding
box regressor performs best for examples of IoU close to
the threshold that the detector was trained. This also holds
for detection performance, up to overfitting. Figure 1 (d)
shows that, the detector of u = 0.5 outperforms the detec-
tor of u = 0.6 for low IoU examples, underperforming it
at higher IoU levels. In general, a detector optimized at a
single IoU level is not necessarily optimal at other levels.
These observations suggest that higher quality detection re-
quires a closer quality match between the detector and the
hypotheses that it processes. In general, a detector can only
have high quality if presented with high quality proposals.

However, to produce a high quality detector, it does not
suffice to simply increase v during training. In fact, as seen
for the detector of u = 0.7 of Figure 1 (d), this can degrade
detection performance. The problem is that the distribution
of hypotheses out of a proposal detector is usually heavily
imbalanced towards low quality. In general, forcing larger
IoU thresholds leads to an exponentially smaller numbers
of positive training samples. This is particularly problem-
atic for neural networks, which are known to be very exam-
ple intensive, and makes the “high «” training strategy quite
prone to overfitting. Another difficulty is the mismatch be-
tween the quality of the detector and that of the testing hy-
potheses at inference. As shown in Figure 1, high quality
detectors are only necessarily optimal for high quality hy-
potheses. The detection could be suboptimal when they are
asked to work on the hypotheses of other quality levels.

In this paper, we propose a new detector architecture,
Cascade R-CNN, that addresses these problems. It is a
multi-stage extension of the R-CNN, where detector stages
deeper into the cascade are sequentially more selective
against close false positives. The cascade of R-CNN stages
are trained sequentially, using the output of one stage to
train the next. This is motivated by the observation that the
output IoU of a regressor is almost invariably better than
the input IoU, in Figure | (c), where nearly all plots are
above the gray line. It suggests that the output of a detector
trained with a certain IoU threshold is a good distribution to

train the detector of the next higher IoU threshold. This is
similar to boostrapping methods commonly used to assem-
ble datasets in object detection literature [34, 9]. The main
difference is that the resampling procedure of the Cascade
R-CNN does not aim to mine hard negatives. Instead, by
adjusting bounding boxes, each stage aims to find a good
set of close false positives for training the next stage. When
operating in this manner, a sequence of detectors adapted to
increasingly higher IoUs can beat the overfitting problem,
and thus be effectively trained. At inference, the same cas-
cade procedure is applied. The progressively improved hy-
potheses are better matched to the increasing detector qual-
ity at each stage. This enables higher detection accuracies,
as suggested by Figure 1 (c¢) and (d).

The Cascade R-CNN is quite simple to implement and
trained end-to-end. Our results show that a vanilla imple-
mentation, without any bells and whistles, surpasses all pre-
vious state-of-the-art single-model detectors by a large mar-
gin, on the challenging COCO detection task [22], espe-
cially under the higher quality evaluation metrics. In addi-
tion, the Cascade R-CNN can be built with any two-stage
object detector based on the R-CNN framework. We have
observed consistent gains (of 2~4 points), at a marginal
increase in computation. This gain is independent of the
strength of the baseline object detectors. We thus believe
that this simple and effective detection architecture can be
of interest for many object detection research efforts.

2. Related Work

Due to the success of the R-CNN [14] architecture, the
two-stage detection framework, by combining a proposal
detector and a region-wise classifier, has become predom-
inant in the recent past. To reduce redundant CNN com-
putations in the R-CNN for speeds-up, the SPP-Net [17]
and Fast R-CNN [13] introduced the idea of region-wise
feature extraction. Later, the Faster R-CNN [30] achieved
further speeds-up by introducing a Region Proposal Net-
work (RPN). Some more recent works have extended it to
address various problems of detail. For example, the R-
FCN [4] proposed efficient region-wise fully convolutions
without accuracy loss, to avoid the heavy region-wise CNN
computations of the Faster R-CNN; while the MS-CNN [1]
and FPN [23] detect high-recall proposals at multiple out-
put layers, so as to alleviate the scale mismatch between the
RPN receptive fields and actual object size.

Alternatively, one-stage object detection architectures
have also become popular, mostly due to their computa-
tional efficiency. YOLO [29] outputs very sparse detection
results and enables real time object detection, by forward-
ing the input image once through an efficient backbone net-
work. SSD [25] detects objects in a way similar to the RPN
[30], but uses multiple feature maps at different resolutions
to cover objects at various scales. Their main limitation is



that their accuracies are typically below that of two-stage
detectors. Recently, RetinaNet [24] was proposed to ad-
dress the extreme foreground-background class imbalance
in dense object detection, achieving better results than state-
of-the-art two-stage object detectors.

Some explorations in multi-stage object detection have
also been proposed. The multi-region detector [10] intro-
duced iterative bounding box regression, where a R-CNN
is applied several times, to produce better bounding boxes.
[36, 12, 11] used a multi-stage procedure to generate accu-
rate proposals, and forwarded them to an accurate model
(e.g. Fast R-CNN). [37, 27] also attempted to localize ob-
jects sequentially. However, these methods usually used the
same regressor iteratively for accurate localization. [21, 28]
embedded the classic cascade architecture of [34] in object
detection networks. [3] iterated a detection and a segmen-
tation task alternatively, for instance segmentation.

3. Object Detection

In this paper, we extend the two-stage architecture of
the Faster R-CNN [30, 23], shown in Figure 3 (a). The
first stage is a proposal sub-network (“HO”), applied to the
entire image, to produce preliminary detection hypotheses,
known as object proposals. In the second stage, these hy-
potheses are then processed by a region-of-interest detec-
tion sub-network (“H1”"), denoted as detection head. A fi-
nal classification score (“C”) and a bounding box (“B”) are
assigned to each hypothesis. We focus on modeling a multi-
stage detection sub-network, and adopt, but are not limited
to, the RPN [30] for proposal detection.

3.1. Bounding Box Regression

A bounding box b = (b, by, by, bp,) contains the four
coordinates of an image patch x. The task of bounding box
regression is to regress a candidate bounding box b into a
target bounding box g, using a regressor f(xz,b). This is
learned from a training sample (g;,b;), so as to minimize
the bounding box L; loss function, Ljoc(f(2,bi),8;), as
suggested in Fast R-CNN [13]. To encourage a regression
invariant to scale and location, L;,. operates on the distance
vector A = (3, 6y, 0y, 05,) defined by

0p = (gm - bw)/bwa 67; = (gy - by)/bh 1)
6w = 10g(gw/bw),  On = log(gn/bn).

Since bounding box regression usually performs minor ad-
justments on b, the numerical values of (1) can be very
small. Hence, the regression loss is usually much smaller
than the classification loss. To improve the effectiveness
of multi-task learning, A is usually normalized by its mean
and variance, i.e. d, is replaced by 8, = (0 — y)/0x.
This is widely used in the literature [30, 1, 4, 23, 16].
Some works [10, 11, 18] have argued that a single re-
gression step of f is insufficient for accurate localization.
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Figure 2. Sequential A distribution (without normalization) at dif-
ferent cascade stage. Red dots are outliers when using increasing
ToU thresholds, and the statistics are obtained after outlier removal.

Instead, f is applied iteratively, as a post-processing step

f’(x,b):fofo-~-of(x,b), (2

to refine a bounding box b. This is called iterative bound-
ing box regression, denoted as iterative BBox. It can be
implemented with the inference architecture of Figure 3 (b)
where all heads are the same. This idea, however, ignores
two problems. First, as shown in Figure 1, a regressor f
trained at v = 0.5, is suboptimal for hypotheses of higher
IoUs. It actually degrades bounding boxes of IoU larger
than 0.85. Second, as shown in Figure 2, the distribution of
bounding boxes changes significantly after each iteration.
While the regressor is optimal for the initial distribution it
can be quite suboptimal after that. Due to these problems,
iterative BBox requires a fair amount of human engineer-
ing, in the form of proposal accumulation, box voting, etc.
[10, 11, 18], and has somewhat unreliable gains. Usually,
there is no benefit beyond applying f twice.

3.2. Detection Quality

The classifier h(x) assigns an image patch x to one of
M + 1 classes, where class 0 contains background and the
remaining the objects to detect. Given a training set (z;, y;),
it is learned by minimizing a classification cross-entropy
loss Leis(h(z;), y;), where y; is the class label of patch x;.

Since a bounding box usually includes an object and
some amount of background, it is difficult to determine if
a detection is positive or negative. This is usually addressed
by the IoU metric. If the IoU is above a threshold u, the
patch is considered an example of the class. Thus, the class
label of a hypothesis z is a function of u,

_J 9y
y{ O,

where g, is the class label of the ground truth object g. This
IoU threshold u defines the quality of a detector.

IoU(z,g) > u
otherwise

3)
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Figure 3. The architectures of different frameworks. “I” is input image, “conv” backbone convolutions, “pool” region-wise feature extrac-
tion, “H” network head, “B” bounding box, and “C” classification. “B0” is proposals in all architectures.
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Figure 4. The IoU histogram of training samples. The distribution
at 1st stage is the output of RPN. The red numbers are the positive
percentage higher than the corresponding IoU threshold.

Object detection is challenging because, no matter
threshold, the detection setting is highly adversarial. When
u is high, the positives contain less background, but it is dif-
ficult to assemble enough positive training examples. When
u is low, a richer and more diversified positive training set
is available, but the trained detector has little incentive to
reject close false positives. In general, it is very difficult
to ask a single classifier to perform uniformly well over all
IoU levels. At inference, since the majority of the hypothe-
ses produced by a proposal detector, e.g. RPN [30] or selec-
tive search [33], have low quality, the detector must be more
discriminant for lower quality hypotheses. A standard com-
promise between these conflicting requirements is to settle
on u = 0.5. This, however, is a relatively low threshold,
leading to low quality detections that most humans consider
close false positives, as shown in Figure 1 (a).

A naive solution is to develop an ensemble of classifiers,
with the architecture of Figure 3 (c), optimized with a loss
that targets various quality levels,

Les(h(x),y) = Z Lets(hu (), yu), “)

uelU

where U is a set of IoU thresholds. This is closely related to
the integral loss of [38], where U = {0.5,0.55,--- ,0.75},
designed to fit the evaluation metric of the COCO challenge.
By definition, the classifiers need to be ensembled at infer-
ence. This solution fails to address the problem that the
different losses of (4) operate on different numbers of pos-
itives. As shown in the first figure of Figure 4, the set of
positive samples decreases quickly with u. This is partic-
ularly problematic because the high quality classifiers are
prone to overfitting. In addition, those high quality classi-

fiers are required to process proposals of overwhelming low
quality at inference, for which they are not optimized. Due
to all this, the ensemble of (4) fails to achieve higher ac-
curacy at most quality levels, and the architecture has very
little gain over that of Figure 3 (a).

4. Cascade R-CNN

In this section we introduce the proposed Cascade R-
CNN object detection architecture of Figure 3 (d).

4.1. Cascaded Bounding Box Regression

As seen in Figure 1 (c), it is very difficult to ask a single
regressor to perform perfectly uniformly at all quality lev-
els. The difficult regression task can be decomposed into
a sequence of simpler steps, inspired by the works of cas-
cade pose regression [6] and face alignment [2, 35]. In the
Cascade R-CNN, it is framed as a cascaded regression prob-
lem, with the architecture of Figure 3 (d). This relies on a
cascade of specialized regressors

f(z,b) = frofr_10---0 fi(x,b), (5)

where 7' is the total number of cascade stages. Note that
each regressor f; in the cascade is optimized w.r.f. the sam-
ple distribution {b’} arriving at the corresponding stage, in-
stead of the initial distribution of {b'}. This cascade im-
proves hypotheses progressively.

It differs from the iterative BBox architecture of Figure
3 (b) in several ways. First, while iterative BBox is a post-
processing procedure used to improve bounding boxes, cas-
caded regression is a resampling procedure that changes the
distribution of hypotheses to be processed by the different
stages. Second, because it is used at both training and in-
ference, there is no discrepancy between training and infer-
ence distributions. Third, the multiple specialized regres-
sors {fr, fr—1,--, f1} are optimized for the resampled
distributions of the different stages. This opposes to the
single f of (2), which is only optimal for the initial distri-
bution. These differences enable more precise localization
than iterative BBox, with no further human engineering.

As discussed in Section 3.1, A = (dy, 0y, 6, 05) in (1)
needs to be normalized for effective multi-task learning. Af-



ter each regression stage, their statistics will evolve sequen-
tially, as displayed in Figure 2. At training, the correspond-
ing statistics are used to normalize A at each stage.

4.2. Cascaded Detection

As shown in the left of Figure 4, the distribution of the
initial hypotheses, e.g. RPN proposals, is heavily tilted to-
wards low quality. This inevitably induces ineffective learn-
ing of higher quality classifiers. The Cascade R-CNN ad-
dresses the problem by relying on cascade regression as a
resampling mechanism. This is is motivated by the fact
that in Figure 1 (c) nearly all curves are above the diagonal
gray line, i.e. a bounding box regressor trained for a certain
u tends to produce bounding boxes of higher IoU. Hence,
starting from a set of examples (x;, b;), cascade regression
successively resamples an example distribution (}, b}) of
higher IoU. In this manner, it is possible to keep the set of
positive examples of the successive stages at a roughly con-
stant size, even when the detector quality (IoU threshold) is
increased. This is illustrated in Figure 4, where the distribu-
tion tilts more heavily towards high quality examples after
each resampling step. Two consequences ensue. First, there
is no overfitting, since positive examples are plentiful at all
levels. Second, the detectors of the deeper stages are opti-
mized for higher IoU thresholds. Note that, some outliers
are sequentially removed by increasing IoU thresholds, as
illustrated in Figure 2, enabling a better trained sequence of
specialized detectors.

At each stage ¢, the R-CNN includes a classifier h; and
a regressor f; optimized for IoU threshold u®, where u! >
u!~!. This is learned by minimizing the loss

L(a',9) = Las(he(2"),y") + Aly* > 1 Loe(fe(2", %), 8),

(6)
where b® = f,_;(x'~1,b""1), g is the ground truth object
for z*, A = 1 the trade-off coefficient, [-] the indicator func-
tion, and 3 is the label of x! given u! by (3). Unlike the
integral loss of (4), this guarantees a sequence of effectively
trained detectors of increasing quality. At inference, the
quality of the hypotheses is sequentially improved, by ap-
plications of the same cascade procedure, and higher qual-
ity detectors are only required to operate on higher quality
hypotheses. This enables high quality object detection, as
suggested by Figure 1 (c) and (d).

5. Experimental Results

The Cascade R-CNN was evaluated mainly on MS-
COCO 2017 [22], which contains ~118k images for train-
ing, 5k for validation (val) and ~20k for testing without
provided annotations (test -dev). The COCO-style Aver-
age Precision (AP) averages AP across IoU thresholds from
0.5 to 0.95 with an interval of 0.05. These metrics measure
the detection performance of various qualities. All models

were trained on COCO training set, and evaluated on val
set. Final results were also reported on test -dev set.

5.1. Implementation Details

All regressors are class agnostic for simplicity. All cas-
cade detection stages in Cascade R-CNN have the same ar-
chitecture, which is the head of the baseline detection net-
work. In total, Cascade R-CNN have four stages, one RPN
and three for detection with U = {0.5, 0.6, 0.7}, unless oth-
erwise noted. The sampling of the first detection stage fol-
lows [13, 30]. In the following stages, resampling is imple-
mented by simply using the regressed outputs from the pre-
vious stage, as in Section 4.2. No data augmentation was
used except standard horizontal image flipping. Inference
was performed on a single image scale, with no further bells
and whistles. All baseline detectors were reimplemented
with Caffe [20], on the same codebase for fair comparison.

5.1.1 Baseline Networks

To test the versatility of the Cascade R-CNN, experi-
ments were performed with three popular baseline detec-
tors: Faster R-CNN with backbone VGG-Net [32], R-FCN
[4] and FPN [23] with ResNet backbone [18]. These base-
lines have a wide range of detection performances. Unless
noted, their default settings were used. End-to-end training
was used instead of multi-step training.

Faster R-CNN: The network head has two fully connected
layers. To reduce parameters, we used [15] to prune less
important connections. 2048 units were retained per fully
connected layer and dropout layers were removed. Train-
ing started with a learning rate of 0.002, reduced by a factor
of 10 at 60k and 90k iterations, and stopped at 100k itera-
tions, on 2 synchronized GPUs, each holding 4 images per
iteration. 128 Rols were used per image.

R-FCN: R-FCN adds a convolutional, a bounding box re-
gression, and a classification layer to the ResNet. All heads
of the Cascade R-CNN have this structure. Online hard
negative mining [31] was not used. Training started with
a learning rate of 0.003, which was decreased by a factor of
10 at 160k and 240k iterations, and stopped at 280k itera-
tions, on 4 synchronized GPUs, each holding one image per
iteration. 256 Rols were used per image.

FPN: Since no source code was publicly available for FPN,
our implementation details could be different. RolAlign
[16] was used for a stronger baseline. This is denoted
as FPN+ and was used in all ablation studies. As usual,
ResNet-50 was used for ablation studies, and ResNet-101
for final detection. Training used a learning rate of 0.005
for 120k iterations and 0.0005 for the next 60k iterations,
on 8 synchronized GPUs, each holding one image per iter-
ation. 256 Rols were used per image.
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Figure 5. (a) is detection performance of individually trained de-
tectors, with their own proposals (solid curves) or Cascade R-CNN
stage proposals (dashed curves), and (b) is by adding ground truth
to the proposal set.
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Figure 6. The detection performance of all Cascade R-CNN detec-
tors at all cascade stages.

5.2. Quality Mismatch

Figure 5 (a) shows the AP curves of three individu-
ally trained detectors of increasing IoU thresholds of U =
{0.5,0.6,0.7}. The detector of u = 0.5 outperforms the de-
tector of u = 0.6 at low IoU levels, but underperforms it at
higher levels. However, the detector of u = 0.7 underper-
forms the other two. To understand why this happens, we
changed the quality of the proposals at inference. Figure
5 (b) shows the results obtained when ground truth bound-
ing boxes were added to the set of proposals. While all
detectors improve, the detector of v = 0.7 has the largest
gains, achieving the best performance at almost all IoU lev-
els. These results suggest two conclusions. First, u = 0.5
is not a good choice for precise detection, simply more ro-
bust to low quality proposals. Second, highly precise de-
tection requires hypotheses that match the detector quality.
Next, the original detector proposals were replaced by the
Cascade R-CNN proposals of higher quality (v = 0.6 and
u = 0.7 used the 2nd and 3rd stage proposals, respectively).
Figure 5 (a) also suggests that the performance of the two
detectors is significantly improved when the testing propos-
als closer match the detector quality.

Testing all Cascade R-CNN detectors at all cascade
stages produced similar observations. Figure 6 shows that
each detector was improved when used more precise hy-
potheses, while higher quality detector had larger gain. For
example, the detector of u = 0.7 performed poorly for the
low quality proposals of the Ist stage, but much better for
the more precise hypotheses available at the deeper cascade
stages. In addition, the jointly trained detectors of Figure
6 outperformed the individually trained detectors of Figure
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Figure 7. (a) is the localization comparison, and (b) is the detection
performance of individual classifiers in the integral loss detector.

FPN+ baseline | 349 | 570 519 43,6 29.7 7.1
Iterative BBox 354 | 572 521 442 304 8.1
Integral Loss 354 | 573 525 444 299 69
Cascade R-CNN| 389 | 57.8 534 469 358 158

Table 1. The comparison with iterative BBox and integral loss.

5 (a), even when the same proposals were used. This indi-
cates that the detectors are better trained within the Cascade
R-CNN framework.

5.3. Comparison with Izerative BBox and Integral Loss

In this section, we compare the Cascade R-CNN to iz-
erative BBox and the integral loss detector. Iterative BBox
was implemented by applying the FPN+ baseline iteratively,
three times. The integral loss detector also has three classi-
fication heads, with U = {0.5,0.6,0.7}.

Localization: The localization performances of cascade
regression and iterative BBox are compared in Figure 7 (a).
The use of a single regressor degrades localization for hy-
potheses of high IoU. This effect accumulates when the re-
gressor is applied iteratively, as in iterative BBox, and per-
formance actually drops. Note the very poor performance
of iterative BBox after 3 iterations. On the contrary, the cas-
cade regressor has better performance at later stages, out-
performing iterative BBox at almost all IoU levels.

Integral Loss: The detection performances of all classi-
fiers in the integral loss detector, sharing a single regressor,
are shown in Figure 7 (b). The classifier of u = 0.6 is the
best at all IoU levels, while the classifier of v = 0.7 is the
worst. The ensemble of all classifiers shows no visible gain.

Table 1 shows, both iterative BBox and integral loss de-
tector improve the baseline detector marginally. The cas-
cade R-CNN has the best performance for all evaluation
metrics. The gains are mild for low IoU thresholds but sig-
nificant for the higher ones.

5.4. Ablation Experiments

A couple of ablation experiments were run to analyze the
proposed Cascade R-CNN.



test stage AP | AP5so APgo AP70 APgg APgo
1 355 | 572 524 441 305 8.1
2 383 | 579 534 464 352 142
3 383 | 56.6 522 463 357 159
1~2 385 | 582 538 46.7 350 14.0
1~3 389 | 57.8 534 469 358 158
FPN+ baseline| 349 | 57.0 519 43.6 297 7.1

Table 2. The stage performance of Cascade R-CNN. 1 ~ 3 indi-
cates the ensemble result, which is the average of the three classi-
fier probabilities, given the 3rd stage proposals.
IoUt stat \ AP \ APso APgy AP7g APgy APy
36.8 | 57.8 529 454 320 107
v 385 | 584 541 471 350 131
v 375 | 57.8 53.1 455 333 131
v v | 389 | 578 534 469 358 158

Table 3. The ablation experiments. “loU?” means increasing loU
thresholds, and “star” exploiting sequential regression statistics.

Stage-wise Comparison: Table 2 summarizes stage per-
formance. Note that the 1st stage already outperforms the
baseline detector, due to the benefits of multi-stage multi-
task learning. Deeper cascade stages prefer higher qual-
ity localization, encouraging to learn features conducive to
it. This benefits earlier cascade stages by features sharing
across stages. The 2nd stage improves performance sub-
stantially, and the 3rd is equivalent to the 2nd. This differs
from the integral loss detector, where the higher IoU clas-
sifier is relatively weak. While the former (later) stage is
better at low (high) IoU metrics, the ensemble of all classi-
fiers is the best overall.

IoU Thresholds: A preliminary Cascade R-CNN was
trained using the same IoU threshold « = 0.5 for all heads.
In this case, the stages differ only in the hypotheses they
receive. Each stage is trained with the corresponding hy-
potheses, i.e. accounting for the distributions of Figure 2.
The first row of Table 3 shows that the cascade improves on
the baseline detector. This suggests the importance of op-
timizing stages for the corresponding sample distributions.
The second row shows that, by increasing the stage thresh-
old u, the detector can be made more selective against close
false positives and specialized for more precise hypotheses,
leading to additional gains. This supports the conclusions
of Section 4.2.

Regression Statistics: Exploiting the progressively up-
dated regression statistics, of Figure 2, helps the effective
multi-task learning of classification and regression. Its ben-
efit is noted by comparing the models with/without it in Ta-
ble 3. The learning is not sensitive to these statistics.

Number of Stages: The impact of the number of stages is
summarized in Table 4. Adding a second detection stage
significantly improves the baseline detector. Three detec-
tion stages still produce non-trivial improvement, but the

#stages‘test stage‘ AP ‘AP50 APgo AP7g APgg APgg
1 1 349 | 570 519 436 297 7.1

2 1~2 | 382 | 580 53.6 467 346 13.6
3 1~3 | 389 | 578 534 469 358 1538
4 1~3 | 389 | 574 532 468 36.0 160
4 T~4 | 386 | 572 528 462 355 163

Table 4. The impact of the number of stages in Cascade R-CNN.

addition of a 4th stage (v = 0.75) led to a slight perfor-
mance decrease. Note, however, that while the overall AP
performance degrades, the four-stage cascade has the best
performance for high IoU levels. The three-stage cascade
achieves the best trade-off.

5.5. Comparison with the state-of-the-art

The Cascade R-CNN, based on FPN+ and ResNet-101
backbone, is compared to state-of-the-art single-model ob-
ject detectors in Table 5. The settings are as described in
Section 5.1.1, but a total of 280k training iterations were
run and the learning rate dropped at 160k and 240k itera-
tions. The number of Rols was also increased to 512. The
first group of detectors on Table 5 are one-stage detectors,
the second group two-stage, and the last group multi-stage
(3-stages+RPN for the Cascade R-CNN). All the compared
state-of-the-art detectors were trained with v = 0.5. It
is noted that our FPN+ implementation is better than the
original FPN [23], providing a very strong baseline. In ad-
dition, the extension from FPN+ to Cascade R-CNN im-
proved performance by ~4 points. The Cascade R-CNN
also outperformed all single-model detectors by a large mar-
gin, under all evaluation metrics. This includes the single-
model entries of the COCO challenge winners (Faster R-
CNN+++ [18], and G-RMI [19]), and the very recent De-
formable R-FCN [5], RetinaNet [24] and Mask R-CNN
[16]. Compared to the best multi-stage detector on COCO,
AttractioNet [11], although it used many enhancements, the
vanilla Cascade R-CNN still outperforms it by 7.1 points.
Note that, unlike Mask R-CNN, no segmentation informa-
tion is exploited in the Cascade R-CNN. Finally, the vanilla
single-model Cascade R-CNN also surpasses the heavily
engineered ensemble detectors that won the COCO chal-
lenge in 2015 and 2016 (AP 37.4 and 41.6, respectively)'.

5.6. Generalization Capacity

Three-stage Cascade R-CNN of all three baseline detec-
tors are compared in Table 6. All settings are as above, with
the changes of Section 5.5 for FPN+.

Detection Performance: Again, our implementations are
better than the original detectors [30, 4, 23]. Still, the Cas-
cade R-CNN improves on these baselines consistently by
2~4 points, independently of their strength. These gains

Thttp://cocodataset.org/#detections-leaderboard



backbone AP AP50 AP75 APS AP]\/[ APL
YOLOV2 [29] DarkNet-19 21.6 44.0 19.2 5.0 224 35.5
SSD513 [25] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet [24] ResNet-101 39.1 59.1 423 21.8 42.7 50.2
Faster R-CNN+++ [18]* ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [23] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w FPN+ (ours) | ResNet-101 38.8 61.1 41.9 21.3 41.8 49.8
Faster R-CNN by G-RMI [19] | Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Deformable R-FCN [5]* Aligned-Inception-ResNet | 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN [16] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
AttractioNet [11]* VGG16+Wide ResNet 35.7 534 39.3 15.6 38.0 52.7
Cascade R-CNN ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

Table 5. The state-of-the-art single-model detectors on COCO test -dev. The entries denoted by “*” used bells and whistles at inference.

train | test |model val (5k) test-dev (20k)
backbone |cascade .
speed | speed | size | AP APso AP75 APgs APp; APp | AP APs9 AP75 APgs APp; AP
Faster R-CNN VGG X 0.12s |0.075s| 278M | 23.6 43.9 23.0 8.0 262 355|235 439 226 81 251 347
v 0.14s [0.115s | 704M | 27.0 442 277 8.6 29.1 422|269 443 27.8 83 282 4l.1
R-FCN ResNet-50 X 0.19s | 0.07s | 133M | 27.0 48.7 269 9.8 30.9 403 |27.1 49.0 269 104 29.7 392
v 0.24s |0.075s| 184M | 31.1 49.8 32.8 104 344 485|309 499 32.6 10.5 33.1 469
R-FCN ResNet-101 X 0.23s |0.075s| 206M | 30.3 52.2 30.8 12.0 347 443|305 529 312 12.0 339 438
v 0.29s |0.083s| 256M | 33.3 52.0 352 11.8 37.2 51.1|333 52.6 352 12.1 362 493
X 0.30s |0.095s| 165M | 36.5 58.6 39.2 20.8 40.0 47.8|36.5 59.0 39.2 20.3 38.8 464
FPN+ ResNet-50

v 0.33s [0.115s | 272M | 40.3 59.4 437 229 43.7 54.1|40.6 599 440 22.6 427 52.1
FPN+ ResNet-101 X 0.38s [0.115s | 238M | 38.5 60.6 41.7 22.1 419 51.1|38.8 61.1 419 213 41.8 498
v 0.41s | 0.14s | 345M | 42.7 61.6 46.6 23.8 462 574|428 62.1 463 237 455 552

Table 6. Detailed comparison on multiple popular baseline object detectors. All speeds are reported per image on a single Titan Xp GPU.

Faster R-CNN R-FCN
backbone| AlexNet VGG RetNet-50 | RetNet-101
cascade | X v X v X v X v
AP 294 | 389 | 429 | 51.2 | 448 | 51.8 | 494 | 542
APso | 632 | 66.5 | 76.4 | 79.1 | 77.5 | 78.5 | 79.8 | 79.6
AP75 | 23.7 | 40.5 | 44.1 | 56.3 | 46.8 | 57.1 | 532 | 59.2

Table 7. Detection results on PASCAL VOC 2007 test.

are also consistent on val and test-dev. These results
suggest that the Cascade R-CNN is widely applicable across
detector architectures.

Parameter and Timing: The number of the Cascade R-
CNN parameters increases with the number of cascade
stages. The increase is linear in the parameter number of
the baseline detector heads. In addition, because the com-
putational cost of a detection head is usually small when
compared to the RPN, the computational overhead of the
Cascade R-CNN is small, at both training and testing.

5.7. Results on PASCAL VOC

The Cascade R-CNN was further experimented on PAS-
CAL VOC dataset [8]. Following [30, 25], the models
were trained on VOC2007 and VOC2012 trainval and
tested on VOC2007 test. Faster R-CNN (with AlexNet
and VGG-Net) and R-FCN (with ResNet) were tested. The
training details were similar to Section 5.1.1, and AlexNet
were also pruned. Since the goal of this paper is to explore

high quality detection, we used the COCO metrics for eval-
uation®. The detection results in Table 7 show that the Cas-
cade R-CNN also has significant improvements over mul-
tiple detection architectures on PASCAL VOC. These rein-
force our belief on the robustness of the Cascade R-CNN.

6. Conclusion

In this paper, we proposed a multi-stage object detec-
tion framework, the Cascade R-CNN, for the design of high
quality object detectors. This architecture was shown to
avoid the problems of overfitting at training and quality
mismatch at inference. The solid and consistent detection
improvements of the Cascade R-CNN on the challenging
COCO and the popular PASCAL VOC datasets suggest the
modeling and understanding of various concurring factors
are required to advance object detection. The Cascade R-
CNN was shown to be applicable to many object detection
architectures. We believe that it can be useful to many fu-
ture object detection research efforts.
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