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Abstract—Given the increasing scarcity of IPv4 addresses,
network operators are resorting to measures to expand their
address pool or prolong the life of existing addresses. One such
approach is Carrier-Grade NAT (CGN), where many end-users
in a network share a single public IPv4 address. There is limited
data about the prevalence of CGN, despite the implications on
performance, security, and ultimately, the adoption of IPv6. In
this work, we present passive measurement-based techniques for
detecting CGN deployments across the entire Internet, without
the requirement of access to machines behind a CGN. Specifically,
we identify patterns in how client IP addresses are observed at M-
Lab servers and at the UCSD network telescope to infer whether
those clients are behind a CGN. We apply our methods on data
collected from 2014 to 2016. We find that CGN deployment
is increasing rapidly. Overall, we infer that 4.1K autonomous
systems are deploying CGN, 6 times the number inferred by the
most recent studies.

I. INTRODUCTION

IPv4 addresses are rapidly running out. In 2011 the Internet
Assigned Numbers Authority assigned its last available 1Pv4
addresses to the Regional Internet Registries (RIRs); moreover,
RIRs are currently allocating from their last /8 block [1]. This
scarcity and the slow uptake of IPv6 [2] — the long term
solution to IPv4 depletion — have prompted Internet Service
Providers (ISPs) to search for alternatives to meet their address
needs. One alternative is to deploy large scale network address
translation (NAT) mechanism known as Carrier-Grade NAT
(CGN), which allows ISPs to put many customers behind a
single public IP address.

CGN is built on the IPv4 address sharing principle used by
the traditional NAT mechanism, where a single IPv4 address is
shared among a number of users (end devices) [3]. In NAT44
(traditional home NAT) — deployed in home networks and
small businesses — the address translation typically occurs at
the users’ Customer-Premise Equipment (CPE) device. In the
case of CGN, the address translation typically occurs inside
the service provider’s network.

Surprisingly, there is little information available about the
prevalence of CGN. Knowing which ISPs implement CGN
could assist in: developing IP reputation systems such as
blacklists, analyzing web usage from logs, capacity planning
by CDNs or content providers, troubleshooting degradations in
application performance [4], [5], and understanding the impli-
cations on regulatory tasks like lawful traffic interception and
anti-spoofing [6]. Most existing CGN inference approaches
require custom measurements from hosts within the ISP,

which prevents them from scaling to a comprehensive Internet-
wide study. An exception is Richter et al.’s recent work [7],
which (in addition to measurements from hosts within the
ISP) analyzed internal address space leakage to identify few
hundred ASes deploying CGN. However, it is unlikely this
leakage-based technique will extend to other datasets.

Our main contribution is two generalizable methods for
inferring CGN deployment using passive measurements, that
could be applied to many datasets, e.g., CDN logs or Web
access logs. The first method infers /24 blocks used for CGN
by analyzing traffic with client identifiers. We apply this
method to BitTorrent packets collected at the UCSD network
telescope [8]. The second method achieves the same goal by
investigating how frequently the same IP address accesses a
web service. We develop this method using tests against the
Measurement Lab (M-Lab) infrastructure [9].

There are limitations of our methodology, which we attempt
to overcome by filtering our final results. First, our meth-
ods identify cases of large-scale IP address sharing, which
is an inherent property but not a concrete proof of CGN.
Thus, we may detect middleware solutions other than CGN
(e.g., proxies). Moreover, there are diverse and complicated
relationships between service providers and their customers.
Without pinpointing the location of the CPE device, there is
ambiguity as to where address translation occurs. For example,
a non-CGN AS in our validation set announces prefixes for
universities; these universities may deploy CGN themselves.

Using data collected from July 2014 to September 2016,
we infer CGN deployments in 4.1K of the 17.4K measured
autonomous systems (ASes). We validate our methods against
recent CGN detection methodologies [7], [10], and detect
more than 85% of the networks they detect as deploying
CGN. We find that the number of inferred CGN ASes is
increasing over time. However, we find no evidence that
CGN deployment negatively impacts IPv6 adoption: ASes
with CGN deployments are 17% more likely to originate IPv6
prefixes than the average AS. Our findings suggest that a large
fraction of inferred CGN networks are deploying CGNs as
a solution to IP address shortage, and do not acquire IPv4
addresses from the IPv4 transfer markets.

II. DATASETS

A. Primary datasets
We infer CGN deployment with IBR and M-Lab data.



IBR data: The UCSD Network Telescope (UCSD-NT) [8]
passively collects unsolicited traffic, called Internet Back-
ground Radiation (IBR), sent to an unused contiguous /8
address block. We extract BitTorrent KRPC packets from IBR.
KRPC is the protocol implementing BitTorrent’s distributed
hash table (DHT) — the mechanism through which BitTorrent
nodes discover torrent locations [11]. UCSD-NT receives
KRPC packets because some DHT nodes spread misinforma-
tion — either accidentally (e.g., bit flips, programmatic bugs)
or intentionally (e.g., to inhibit torrent downloads) [12]. When
the misinformation states that a UCSD-NT address can assist
in a torrent download, genuine clients send it KRPC packets.
These packets provide a sample of BitTorrent users, but
there are several challenges with this dataset. First, there is
considerable fluctuation in the data: notably, starting with July
2015 the number of observed BitTorrent packets increased
from about 100M to 10 billion per month [13]. We further
refer to the months prior to July 2015 as low-volume, and
other months as high-volume. Additionally, there may be
some false information. According to the KRPC specification,
every packet contains the node’s globally unique, randomly
generated 160-bit ID. This should imply a one-to-one corre-
spondence between machines and IDs. However, not all nodes
follow the KRPC specification.
M-Lab data: The M-Lab project provides a set of measure-
ment tools that users can run to test their network connec-
tion [9]. From the M-Lab dataset, we use server-side logs
generated by the Network Diagnostic Tool (NDT) test to
extract the public IPv4 address of the client running each test,
then group these runs according to the origin Autonomous
Systems (AS). We use BGP data from RouteViews [14] and
RIPE NCC [15] to find the origin ASes of the IP adresses.
We leverage the intuition that within a period of time an IP
address is likely to appear more often if it is one of the public
addresses of a CGN, than if it comes from a network that does
not deploy CGN (see Sec. III-B).

B. Filtering the data

Our data is collected externally from the networks for
which we infer CGN deployment. However, such networks
may route prefixes for other entities (i.e., edge networks),
that could deploy within their networks large-scale IP address
sharing solutions. To avoid such cases, we filter the data to
only include /24 blocks owned by access/transit networks. We
further summarize the datasets used to filter our results, and
describe the filtering process.

AS Classification dataset: Researchers from the Center for
Applied Internet Data Analysis (CAIDA) developed a method
that classify ASes based on their business type [16] into: “En-
terprise” networks, “Content” and “Transit/Access” providers.
WHOIS data: RIRs maintain databases that contain infor-
mation regarding the registered Internet resources within their
own region. We leverage WHOIS data to identify routed IPv4
address blocks that are registered to “Transit/Access” ASes.

RIRs extended delegation files: The RIRs publish daily files
that summarize the current allocation and assignment of their

Internet resources (i.e., IPv4 and IPv6 addresses, and AS
numbers) [17]. For each resource, the RIR provides: type,
country, date of the allocation/assignments of the resource.
Recently, the RIRs started to provide for each resource also
an organization identifier that corresponds to the resource
holder [18]. This identifier is the same within a singe file
(i.e., for each day), but is not guaranteed to be consistent over
time. Using the organization identifier, we map the IPv4 space
allocated/assigned to “Transit/Access” ASes.

Filtering process: Using the AS classification dataset, we
identify 5.1M /24s routed by 17.4k “Transit/Access” ASes. We
then use RIRs extended delegation files to select IPv4 address
blocks that share the same organization identifier as the AS
that announces them. Next, we examine WHOIS data: we
query Team Cymru’s service [19] to extract the name of each
AS; we then compare this value to the name and description
of the blocks advertised by the AS in the bulk WHOIS data.
That is, for each AS we identify the IPv4 space that matches in
either name or description. In total, 4.2M (81.1%) /24 address
blocks matched the ASes in at least one of the two analyzed
datasets (i.e., RIRs extended delegation file or WHOIS data).

C. Validating our inferences

To validate our CGN detection techniques presented in
Sec. III, we construct lists of “Transit/Access” networks
(ASes) that were deploying CGNs and that were not deploying
CGN during July 2015. We leverage (i) information extracted
from a survey carried by CAIDA [20], (ii) email confirmations
and online resumes (LinkedIn profiles indicating experience
with CGN at an Internet provider), (iii) reverse DNS names
of IP addresses coming from a set of networks for which
we manually collected the number of subscribers, and (iv)
CGN networks detected with client-side measurements by
Lutu et al.[21]. Our list of validation networks is comprised
of 22 CGN ASes and 15 non-CGN ASes. Networks in both
categories include mobile and fixed operators and are spread
across four RIRs: 9 from ARIN, 8 from APNIC, 18 from RIPE
and 2 from LACNIC.

III. INFERRING CGNS USING PASSIVE MEASUREMENTS

In this section, we describe two methods for inferring
CGN. The first method leverages traffic containing unique
client identifiers to identify networks where many clients share
external IP addresses. We apply this method to BitTorrent IBR.
The second method estimates how frequently public-facing
CGN IP addresses appear in logs generated by users when
accessing a web service. We apply this method to logs of M-
Lab tests. Both methods aim to identify CGN networks with
100 or more users per external facing IP address, as this was
reported as a popular configuration in the CAIDA survey [20].

A. Inferring CGNs using IBR data

Many types of Internet traffic contain unique client iden-
tifiers (IDs) — a packet field or combination of fields that
uniquely identify a machine. Observing multiple IDs with the
same external (public) IP address indicates that the address



is shared. Unfortunately, technologies besides CGN, namely
home NAT and DHCP, also enable IP address sharing.

To differentiate CGN from home NAT, we leverage CGN
implementation characteristics. We expect that more clients
share an external IP address with CGN than home NAT.
Moreover, we expect that external IP addresses that the ISPs
configure for CGN are both numerous and contiguous. Specif-
ically, we look for /24 blocks where many IP addresses in
the block show evidence of address sharing. This requirement
helps eliminate single IP addresses used as web proxies. We
work at the /24 granularity as this is typically the smallest
block announced in BGP and likely similarly configured.

To differentiate CGN from DHCP, we leverage temporal
differences in traffic patterns. In CGN, many machines simul-
taneously use the same external IP address. In DHCP, a device
uses an external IP address until the lease expires or it is
relinquished. Intuitively, the observed sequence of IDs from
a given IP address should be more mixed in CGN than in
DHCP configurations. To capture the notion of mixed, we call
a sequence of time-ordered packets from the same source IP
address interwoven if there exists some ID whose associated
packets do not all appear consecutively.

From a temporal perspective, we also look for persis-
tence: in CGN configurations, clients collectively send traffic
throughout the observation period, resulting in a persistent
signal. Such a signal helps differentiate from home NAT and
DHCP,! and guards against temporary misinformation.?

Finally, we evaluate additional traffic attributes to increase
our confidence in our inferences (e.g., previous work fin-
gerprints machines using TTL [23] or TCP options [24]).
Attributes corroborate that diverse, heterogeneous clients gen-
erated the signal. In our analysis, we use the client version
contained in BitTorrent packets (e.g., uTorrent).
Methodology: We infer that a network deploys CGN in a
contiguous /24 block if the individual IP addresses send traffic
that is persistent, from heterogeneous clients, and associated
with many interwoven IDs. We score a contiguous /24 block,
B, using the following metric:

S(/24) = Z ids; X interwoven; X persistent; X diversity;
i€/24

where ids;, interwoven;, persistent;, and diversity; are
values assigned for an IP address, ¢, between 0 and 1 indicating
non-CGN-like and CGN-like behavior respectively. Higher
scores indicate higher confidence that a network deploys CGN.

In general, setting the values that compose our metric
depends both on the specific type of ID used and on the dataset
to which our method is applied (e.g., on the popularity of
the application generating IDs and the fraction of the traffic

'For moderately popular protocols or websites, we do not expect devices
behind home NAT/DHCP to collectively generate continual traffic as instead
happens for devices behind CGN.

2E.g., we observed an apparent programmatic error in an implementation
of the DHT security extension [22] that caused some clients to send a
single burst of many properly-formed-according-to-the-security-extension IDs.
Without evaluating temporal attributes we would have mistaken these IDs as
generated by many hosts.

observed). We use a combination of domain knowledge (how
popular is the program generating IDs?) and understanding of
the dataset (how common are interwoven IDs?) to effectively
set ids;, interwoven;, persistent;, and diversity;. For our
IBR dataset, we calculate our metric, on a monthly basis, for
a /24 block, as follows:

« ids;: Since we are interested in the magnitude of the number
of IDs, relative to CGN deployments with 100 devices per
external IP address, we use a logarithmic scale to compute
tds; as min(1, log(num IDs)/log(100)).

o interwoven;: We set this value to 1 if the packets are
interwoven (as defined above). Otherwise, we penalize the
IP address by assigning a value of 0.5.3

o persistent;: We calculate the fraction of days in the month
that we observe packets from the IP address.

o diversity;: If we observe multiple client versions (e.g.,
uTorrent and Vuze), we set this value to 1. Otherwise, we
assign a value of 0.5.

While chosen somewhat arbitrarily, these values represent a
reasonable starting point for datasets with unique client IDs.
With additional ground truth we could optimize the constants
and relative importance of the parameters. Moreover, we found
that slight alterations to the definitions did not substantially
alter the set of /24 blocks with high scores.

What score indicates a CGN deployment? Our threshold for
inferring CGN depends on the underlying traffic. To show this
dependence, we simulate various network configurations while
varying p, the probability that a BitTorrent host sends traffic to
the UCSD-NT on a given day. Specifically, we compare CGN
with 10, 100, and 1000 devices per IP address to home NAT
(with 5 devices [25]) and various DHCP lease times. With a
30% probability [26] we determine if a device runs BitTorrent;
for each device running BitTorrent we determine which days
(out of 30 days) it sends traffic to UCSD-NT by conducting
a Bernoulli trial with probability p of success.

Figure 1 shows the result of 100 runs with 10 different
values of p. The median score for a /24 block used in
CGN increases with the probability of observing BitTorrent
traffic. For most of the tested probability levels, we note a
clear separation of scores between networks in CGN with
100 or more devices sharing an IP address and non-CGN
deployments.

Although the results of a small experiment* suggest there is
a low probability of a BitTorrent host contacting to UCSD-NT,
it is unclear how to determine the exact probability. Absent a
comprehensive set of ground truth networks, we set the thresh-
old empirically — each month — by finding outliers in the score
distribution. We expect the scores from non-CGN deployments

3 In low-volume datasets scoring IP addresses as zero because they failed
to meet a criterion (e.g., not interwoven) resulted near-zero scores for all
/24 blocks, including networks known to deploy CGN. To overcome this
limitation and conduct a broad (though potentially less accurate) study, we
instead moderately penalize these IP addresses.

4We constantly ran two BitTorrent clients (but did not torrent any files) for
two months; one client attempted to contact UCSD-NT in 4 days, the other
attempted to contact UCSD-NT in 24 days.
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Fig. 1. Score for /24 address block used in different network configurations.
CGN configurations with at least 100 devices per IP have a higher score than
configurations involving home NAT and DHCP.

to follow the Poisson distribution in the Generalized Linear
Model’. We use the scores for all /24 blocks with clients
sending BitTorrent IBR (e.g., all 3.7M /24 blocks in July
2015) to estimate the parameters of the Poisson distribution.
By including CGN networks in the parameter estimation, we
conservatively set our threshold, but the result should not be
egregiously high as we expect non-CGN networks to dominate
our dataset (in terms of /24 blocks). Specifically, we set the
CGN threshold to the 99.99th percentile, which is 0.95 and
5.33 for January and July respectively.
Do low scores indicate that CGN is not deployed? A low
score does not imply that CGN is not deployed. We need
to observe significant traffic to determine that an operator
deploys CGN (e.g., in our data, /24 blocks with scores greater
than 5 sent at least 700 packets). We are unable to detect
CGN deployments if the operator prohibits or limits BitTorrent
usage. Additionally, our method is more likely to identify
CGN deployments when many hosts share an external address.
This limitation prevents us from conclusively determining
which networks deploy CGN, but does not hinder our primary
objective of improving our understanding of CGN prevalence.
In our analysis, we are interested in how an operator
configures their network. In these cases, we can argue that
there is evidence that CGN is not deployed when a low score
is accompanied by either significant traffic volume or other
/24 blocks with high scores in the same AS. However, there
may be exceptions to this argument (e.g., a single host could
generate significant BitTorrent IBR traffic; file-sharing policies
could differ throughout a network).
Sensitivity analysis: To understand the influence of each
component of our metric, we generalize the formula for
S(/24) as follows:

S(/24) = Z ids® xinterwoven? x persistent x diversityd

i€/24

The values a, b, ¢, and d are artificial weights used to
manipulate the importance of our parameters. That is, by
changing the values of a, b, ¢, d we can increase (e.g.,
a>1) or decrease (e.g., a<l) the importance of the respec-
tive component. Table I reports the percentage of ASes we
inferred as deploying CGN in January and July 2015 (i.e.,

5The Poisson distribution counts the number of events (IP addresses in
non-CGN configurations showing evidence of sharing) in a fixed interval (/24
block), and is appropriate when events occur independently (the behavior
observed for hosts with non-CGN address does not depend on other hosts) and
with a known average rate (our simulation shows the average score produced
by an IP address is close to zero in all non-CGN configurations).

TABLE I
PERCENTAGE OF ASES THAT APPEAR TO DEPLOY CGN UNDER THE
MODIFICATION OF OUR STANDARD INFERENCE (a=b=c=d=1). THE
RELATIVELY HIGH PERCENTAGES SHOW THAT OUR METRIC IS ROBUST TO
MINOR METRIC VARIATIONS.

Jan. 2015 - =
0] 0.125 | 0.25 0.5 2 4 8
ids: a=x,b=c=d=1 || 77% | 86% | 871% | 88% | 88% | 72% | 54%
interwoven:  b=x,a=c=d=1 || 87% | 88% | 88% | 90% | 91% | 88% | 85%
persistent: c=x,a=b=d=1 || 84% 84% | 86% | 86% | 80% | 65% | 54%
diversity: d=z,a=b=c=1 || 77% 86% | 87% | 88% | 88% | 72% | 54%
July 2015 - =
0] 0.125 | 0.25 0.5 2 4 8
ids: a=x,b=c=d=1 || 96% | 98% | 98% | 99% | 85% | 72% | 66%
interwoven:  b=x,a=c=d=1 97% 97% | 98% | 99% | 95% | 91% | 90%
persistent: c=x,a=b=d=1 || 89% | 90% | 92% | 95% | 87% | 77% | 69%
diversity: d=x,a=b=c=1 || 97% | 98% | 98% | 99% | 98% | 98% | 98%

a=b=c=d =1) that also meet the CGN thresholds under
the various parameters. In general, changing one parameter
does not exclude CGN ASes — especially in the high-volume
dataset (July 2015). The attributes of ids and persistent have
the largest effect on our results. We believe that this finding
stems from our dataset’s sparsity — both in the number of hosts
contributing traffic and how often they contribute.

B. Inferring CGNs using M-Lab data

M-Lab logs IP addresses of users that run performance
tests against its infrastructure. We leverage these IP addresses
and how frequently they appear in a given time window for
detecting CGN deployment. The underlying assumption of our
approach is that CGN public-facing IPs are likely to appear
more frequently than IPs from non-CGN configurations.
Methodology: We divide our measurement period, 7', into
N windows of length ¢, which we call detection windows.
Let p be the probability that a user runs an M-Lab test at
least once in 7, i.e., in at least one detection window. The
probability p captures M-Lab popularity and user’s behavior,
and can vary from one network to another. Our goal is to
estimate the likelihood of observing an IP address in more than
one detection window for different addressing configurations.
We start by discussing the likelihood of observing multiple IP
addresses from non-CGN configurations. Then we proceed to
identifying false negatives caused by M-Lab’s popularity.
Likelihood of observing IPs from non-CGN configurations. As
defined earlier, p is the probability that a user accesses M-Lab
at least once in 7'. However, once the user accesses M-Lab,
the probability that the same user accesses M-Lab again in
T is no longer p. This is because the user now knows about
M-Lab and thus her future access decisions do not depend
solely on M-Lab’s popularity. They will depend on the reasons
for accessing M-Lab the first time and the user’s satisfaction
with her first experience. In the absence of information about
these factors, we assume that the probability a user accesses
M-Lab, given that she has accessed it before, is 0.5. We
perform a sensitivity analysis (at the end of the section) to
explore the impact of this parameter on our inference. For
users with static IP addresses, this probability also represents
the probability that an IP address appears in more than one
detection window. Consequently, the probability of observing
(v IP addresses coming from static configurations in multiple
detection windows is @7, = (0.5)".



In DHCP and home NAT configurations, an IP address is
no longer assigned to one user. For these configurations, the
likelihood of observing an IP multiple times in 7' depends
also on the configuration parameters, i.e., DHCP time lease
and the number of users behind the NAT. Recent work showed
that a DHCP lease is typically a few days long [27], which is
longer than our detection window ¢. Recall that the probability
that a DHCP-assigned or NAT IP appears in our logs once is
p. The probability this IP appears again in 7T is: p if the IP
is reassigned/reused by another user or 0.5 if the same user
repeats the test. Hence, the probability of observing p IPs
used in DHCP or home NAT configurations is between p*
and (0.5)". Hence, DHCP and home NAT are not expected to
increase the likelihood of observing several IPs on multiple
detection windows beyond the static case.

Since @y, is the probability of observing 1 IPs coming from
a /24 block used in non-CGN configurations, its complement
corresponds to the probability of p IPs coming from a /24
block used in CGN configuration. That is, the complement of
@)}, corresponds to the level of confidence in the hypothesis
that the observed p is caused by a CGN configuration. Accord-
ingly, we can set the desired confidence level and calculate the
corresponding p value. For e.g., if we observe 15 IPs or more
from an address block in more than one detection window,
we can be 99.99% confident that this block is not assigned
statically, via DHCP, or behind a home NAT. Note that the
approach above is independent of address block lengths.
Addressing false negatives. The task of distinguishing CGN
from non-CGN configurations is prone to false negatives,
i.e., CGN IPs that are classified as being in a non-CGN
configuration. This happens when a public-facing CGN IP
appears only in a single detection window. To control for
false negatives, we derive an expression that estimates, for a
public-facing CGN address block, the number of IPs that we
expect to see in a single detection window in the measurement
period T'. Let x be the size of the address block and ¢ be the
CGN compression factor, i.e., the number of users that share a
single public IP address. Further, let P’ be the probability that
an public-facing CGN IP address appears once in T', which
follows a binomial distribution and is given by:

N
P/ = ( 1 )pcgn(l - pcgn)Nil (1)

where pcg, is the probability that a public-facing CGN IP
appears in at least one detection window, which is given by
Pegn = 1 — (1 —p)©. Recall that p is the probability that a user
accesses M-Lab and N is the number of detection windows
in T'. Hence, the expected number of false negatives, F, is:

E=(2"-2)x P 2)
Given the block size and compression factor, we can use Eq. 2
to estimate the expected number of false negatives. We then
reject (accept) the hypothesis that a non-statically configured
block is used for CGN, if the observed false negatives is higher
(lower) than this expected value.
Parameter estimation. The above methodology involves a
number of key parameters. First, we need to pick an appro-

priate measurement period 7', and detection window ¢. In the
following, we set 1" to 90 days and ¢ to one day. Setting
T to 90 days allows us to account for the low popularity
of the service. Also a one-day detection window makes our
methodology less prone to false positives due to DHCP address
reassignment. Essentially, ¢ needs to be shorter than typical
DHCP leases to reduce the number of times we see the same
IP because of reassignments. Second, we need to determine the
threshold for separating CGN and non-CGN configurations,
i.e., the minimum number of IPs that we need to observe in
more than one day. We set this threshold to 15 IPs which
corresponds to a 99.99% confidence level. Third, we need to
estimate the probability, p, that a user accesses M-Lab and
use it to estimate the expected number of false negatives, F,
per a given address block, i.e., using Eq. 1 and Eq. 2. For a
network a, let ¢, be the number of its customers (as estimated
by APNIC Labs [28]), ng be the number of IPs from this
network seen on a day d. The probabidlity p for this network
can be estimated as iy = o5 * > e, 2= To get an idea about
the range of p, we estimate it for the non-CGN networks in
the validation set. The estimated values vary from 0.0000039
to 0.00016, showing that M-lab has a very low popularity.
Using the maximum estimated value of p, and assuming a
compression factor of 100, we estimate that £ = 88 for a /24.
The choice of the compression factor is based on responses to
CAIDA’s IPv6 survey [20].

Sensitivity analysis: Using data from APNIC Labs, we are
able to estimate the number of false negatives F for a /24
address blocks. However, we rely on different assumptions
when choosing the values for the probability p that the same
user accesses M-Lab multiple times in 7" and the minimum
number of y IP addresses observed from a /24 address block
in multiple detection windows. Thus, we seek to determine the
impact of p and p on our inference of CGN configurations.
We show in figure 2 the level of confidence that p observed
IPs come from /24 blocks behind CGNs, for different values
of w and p. We find that observing p<10 IPs during our
measurement period provides a high confidence level only for
p<0.1. For 0.1<p<0.9, we need to observe at least 10 IPs
in multiple detection windows in order to classify with a 90%
confidence that an address block as used in CGN deployments.
For p>0.9, we obtain the same level of confidence only for
©>44 TPs. In the figure, the vertical solid line corresponds to
our chosen threshold of y = 15 IPs, which provides a high
confidence level for p<0.9. We thus believe that observing 15
IPs from a /24 block in multiple detection windows is a strong
indicator that the /24 is used in a CGN deployment.
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Fig. 2. Confidence level that p IPs come from /24 blocks behind CGNs.



IV. CROSS-CHECKING WITH THE VALIDATION SET

We use the validation set of CGN and non-CGN networks

to check our methodologies. For each AS from the validation
set, we compare the IBR and M-Lab inferences at the /24
granularity during both the low-volume (January-March) and
high-volume (July-September) periods of time in 2015; recall
that BitTorrent IBR increased 100-fold between the two time
periods [13]. The two datasets collectively (commonly) ob-
serve 111K (81K) and 144K (77K) /24s from 28 and 30 ASes
during the former and latter periods, respectively. Figure 3
shows our inferences for the commonly observed /24 blocks.
For each AS, we represent the percentage of /24 blocks
inferred as used in CGN deployment by both methodologies
(Both), by only one methodology (Only M-Lab/IBR), and the
percentage of /24s that both IBR and M-Lab classify as not
used in CGN deployments (Neither). The solid and hashed
patterns distinguish between the two periods of time.
True Positives/False Negatives: A network operator may de-
ploy CGN in only a portion of it’s network, keeping traditional
deployments (home NAT, one IP address per machine, etc.) in
the other parts (see Sec. V). Accordingly, we should infer CGN
for at least one /24 block from the ASes known to deploy CGN
in our validation set.

Our methods successfully inferred 1,233 CGN /24 blocks
in 15 of the 19 ASes known to deploy CGN. There is a
high degree of consensus between the two methods: in July-
August 2015, 99% of /24 blocks inferred as CGN through the
M-Lab method are also inferred as CGN by the IBR-based
method. The M-Lab method is consistent across time periods,
identifying 80 and 93 /24 blocks (11 and 14 ASes) in the two
measurement periods. The IBR traffic increase resulted in an
increase from 7 to 15 ASes that are true positives.

Four ASes known to deploy CGN are false negatives as
they did not meet either IBR or M-Lab requirements. While
our methods miss CGN deployments with few users per
external IP address, these false negatives more likely reflect the
unpopularity of BitTorrent and M-Lab. For example, two of the
ASes, British Telecom (AS2856) and Sky (AS5607) are based
in the UK, which is known to block popular torrent sites [29].
Our inability to infer CGN in this scenario is reasonable, and
highlights the potential benefit using of multiple data sources.
True Negatives/False Positives: Failing to meet the criteria set
by our methods does not imply that CGN is not deployed.
However, /24 blocks in ASes that use traditional deployments
should not meet our CGN requirements.

In both time periods almost all of the 90K /24 blocks from
traditional deployments fail to meet our CGN requirements.
Moreover, we rarely find exceptions. Both methods identify
/24 blocks in Orange (AS3215) used by mobile clients (ac-
cording to WHOIS) as deploying CGN, which is consistent
with a presentation by the company [30]. The remaining false
positives, identified by the IBR-based method, come from
Hungarian universities with larger student populations than
allocated IP addresses. We believe this is a case where a
large-scale IP address sharing is implemented by the university

and not their upstream provider, Hungranet (AS1955). Conse-
quently, these false positives reflect the difficulties involved in
curating a set of ground-truth ASes and not a misclassification
of traditional deployments as CGN.

V. CGN DEPLOYMENT ANALYSIS

In this section, we analyze our inference by assessing the

number of ASes and /24s used in CGN deployment.
Inferred CGN networks
We apply our methodologies to five three-month periods of
IBR and M-Lab® data collected from 2014 to 2016, and report
our findings for “Transit/Access” ASes and the advertised /24s
space owned by such networks.
Analysis of the inferred CGN networks: Figure 4 shows
the CGN deployment in terms of percentage and num-
ber of inferred ASes and /24s. We split the results into
three categories: /24s and ASes inferred by both methodolo-
gies (Intersection(IBR,MLab)) and by just one methodology
(Only(IBR/MLab)). From the second half of 2015, we observe
a significant increase both in the number of inferred ASes
and /24 blocks. This finding is the result of the hundred-fold
increase in BitTorrent IBR volume, which enabled the analysis
of significantly more networks. Overall, we infer 4,191 ASes
and 154,098 /24 blocks involved in a CGN deployment. These
correspond to 23.9% and 3.64% of the measured ASes and
/24 blocks. Three-quarters of the inferred ASes are detected
only by the IBR-based method, whereas 22% are inferred
by both methodologies. Networks comprised in the former
category fail to meet the M-Lab method’s CGN requirements
most likely due to the low popularity of the service. For these
networks, we observe M-Lab tests coming on average from
4 IPs per /24 blocks, which is significantly lower than the
minimum number of IPs we impose to observe multiple times
from /24s used in CGN deployments. However, the Only(IBR)
values are not consistent across the periods.

The overall number of inferred networks increased signif-
icantly over time — from 1.2K in 2014 to 3.4K in 2016.
While our visibility improved due to an increase in BitTorrent
volume in July 2015, we still see an increase from late 2015 to
2016. Digging deeper into the set of inferred CGN networks,
we progressively infer 2,920 ASes; i.e., networks that start
deploying CGN at some point during the study period and
continue deploying it until the end. A large fraction of these
ASes (2,177) are inferred starting with the July-September
2015. 634 ASes are inferred throughout study period (2014-
2016). Our analysis suggests that CGN has been used to solve
IPv4 address scarcity. This is consistent with the observation
that the heavy-hitter addresses (e.g., those used by CGN)
received an increased share of the bytes served by a CDN [31].
Types of networks that deploy CGN: Using WHOIS data
we classify the inferred CGN ASes from the perspective of
regional registry, and whether the network is a mobile operator
or not. The majority of networks (66.52%) are from the RIPE

SWe curate the M-Lab data by filtering 556 IPs responsible for a dispropor-
tionately large number of tests, which we call heavy hitters. We confirm that
these IPs correspond to users that run periodic measurements against M-Lab.
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both methodologies (Intersection(IBR,MLab)) and just one methodology
Only(IBR/MLab)). Starting with July-September 2015, the IBR results account
for more than 98% and 80% of the inferred /24 blocks and ASes, respectively.

region. The remaining networks are distributed among all other
RIRs; 13.88% from APNIC, 11.23% from LACNIC, 4.74%
from ARIN and 3.60% from AFRINIC. To classify a network
as a mobile operator, we retrieve the name and description
of the inferred /24 blocks in the WHOIS data, and search
for keywords (e.g., “mobile”, “mobility”’) and names of well-
known mobile operators [32]. 28.85% of the inferred networks
appear to be mobile operators.

Comparison with active inference methodologies

We compare our inference to the results reported by two recent
active measurement studies [7], [10]. NAT Revelio [21] is
an active inside-the-network technique for detecting CGN at
the IP address granularity. Using this technique, Mandalari e?
al. [10] detected CGN deployment in 52 /24 blocks. We
inferred 47 (90%) of those 52 /24 blocks as part of a
CGN configuration in at least one time period. The most
comprehensive prior study on CGN prevalence [7] infers CGN
deployment through Netalyzr [33] clients and internal address
space leakage exposed during crawls of the BitTorrent DHT.
In their study, Richter ef al. collected data during the second
part of 2015 to discover 421 ASes deploying CGN. However,
the authors supplied us with an updated list that included
609 CGN-positive ASes. Of these ASes, 582 are classified as
“Transit/Access” networks. We inferred 507 (87.11%) ASes
of the 582 as deploying CGN; most of the networks that we
miss are inferred by Netalyzr.

Overall, we discover more than 85% of the CGN networks
inferred by previous work. The missed CGN deployments may
be due to a small number of devices sharing an external IP
address (e.g., operators preemptively deploying CGN), or a
lack of visibility of our datasets into the networks with NAT
Revelio or Netalyzr clients.

Using our approach we detect six times more ASes than
the inferred 609 ASes by Richter et al. By applying our
generic techniques to large datasets, we achieved our goal of

addresses which is a better indicator of CGN — as opposed to
other middleware technologies — than concurrent clients).
CGN deployment configuration

Mixed configurations: Our data suggests that most ASes
deploying CGN, use non-CGN network configurations in other
portions of their address space. For example, only mobile
address ranges in Orange (AS3215) have high IBR scores,
while all other blocks have low scores. We say these networks
have a mixed configuration. Mixed configurations most likely
result from ISPs incrementally converting their addresses to
CGN to meet the increased demand for IPs.

If we infer that an AS deploys CGN using BitTorrent IBR,
then the AS does not universally block BitTorrent, and a low
score for other /24 blocks is evidence of non-CGN deploy-
ment. For the ASes meeting our IBR CGN requirements, we
conclude that the AS has a mixed configuration if there is
at least one /24 block sending BitTorrent IBR with a below
average score (in all three months). Overall, three-quarters
of ASes inferred to deploy CGN using BitTorrent IBR have
mixed configurations.

Which IP addresses are used for CGN? We find that some
networks deploy CGN in only a portion of a /24 block. In
particular, T-mobile (AS21928), had 12 /24 blocks where the
lower half of each block appeared to be part of a CGN
configuration (IBR score for IP address greater than 0.5), while
we did not receive traffic from the upper half. A T-mobile
engineer confirmed that this pattern was consistent with their
implementation [34]. Using July 2015 IBR data, we found 187
/24 blocks in 88 ASes where the CGN deployment appeared
to be limited to a single /25, /26, /27 or /28.

Pooling types: A CGN device maps internal addresses to
external addresses in either an arbitrary or paired config-
uration [35]. In the arbitrary case, an internal IP address
may map to multiple external addresses at the same time.
In the paired case, the same external address is used for all
sessions associated with the internal address. For proper UDP
functionality, RFC 4787 recommends paired address pooling.

Using our IBR dataset, we say that there is evidence of



arbitrary pooling for an IP address ¢ if the upper bound on its
usage is less than 5 minutes. That is, given a sequence of time
ordered packets with the same ID, there exists a subsequence
of three packets, pa, p;, pp from IP addresses A, i, and B
respectively (A # i and B # i), such that the difference in
timestamps of pp and p4 is less than 5 minutes. We include
a /24 block in our final count if more than five IDs using IPs
in the /24 block provide evidence of arbitrary pooling.

In the dataset from July 2015, we identify 14k /24 blocks

in 73 ASes that likely use arbitrary pooling. These 14k blocks
account for 42% of all CGN blocks in the July 2015 IBR
dataset. This percentage is skewed due to the behavior of two
Chinese ASes (AS4134 and AS4812) that collectively account
for 94% of the /24 blocks inferred to use arbitrary pooling.
Outside of these ASes, most networks appear to follow the
recommendations of RFC 4787.
Are networks that deploy CGN acquiring address space?
To understand whether inferred CGN networks also acquire
more address space to satisfy their addressing needs, we
collect routing tables [14] in July 2014 and September 2016,
and compute for each network the size of the advertised IPv4
space. We conduct this analysis for 3,906 of the inferred CGN
ASes that route IPv4 blocks in both months. For 44.87% of
these ASes we do not detect any change in their address space;
these networks seem to satisfy their addressing needs only by
deploying CGN. 41% of the ASes increased their advertised
address space; 32.27% of the ASes that increased their IPv4
space advertised IP blocks from the last /8s allocated to the
four RIRs that entered the exhaustion phase. A closer analysis
shows that for 49% of the inferred CGN ASes the IP address
space change is by at most 256 /24 address blocks (i.e., one
/16 block). We hypothesize that most CGN networks rely on
their CGN deployment to satisfy their address space needs.

Given that the RIRs are now rationing the allocation of IPv4
addresses, our next question is whether inferred CGN networks
are resorting to other means such as the IPv4 address transfer
market. We use the list of reported transferred prefixes [36],
[37], [38], to extract the organizations involved in the transfer
(using the process described in [39]), and match them against
the inferred CGN networks. We find 208 of the overall 3,050’
inferred networks participated in the IPv4 transfer market.
Thus, most of the inferred networks seem to satisfy their
address space needs without going to the IPv4 transfer market.
IPv6 adoption
Finally, to understand whether the inferred CGN networks
deploy CGN as a “stop-gap” measure during the transition
to IPv6, we first examined whether they also originated IPv6
prefixes. As of July-September 2016, 39.48% of the inferred
ASes deployed IPv6. For the same period, however, 22% ASes
from the IPv4 AS graph had deployed IPv6, i.e., the inferred
CGN networks were more likely to have deployed IPv6 than
the average AS. Second, we consider our measurement period
(July-September 2014 to July-September 2016) and analyze

7Our analysis does not comprise networks inferred in 2016 as the study
period of the IPv4 transfer markets stops in September 2015.

whether the inferred dual-stacked CGN ASes start advertising
IPv6 prefixes prior to the period when we first detect them
as deploying CGN; 46.55% of the dual-stacked CGN ASes
appear to deploy CGN prior to advertising IPv6 prefixes. Our
results indicate that CGN deployment does not have a negative
impact on IPv6 adoption. However, given the rate at which
the number of CGN deployments is increasing, this analysis
deserves future revisiting.

VI. RELATED WORK

Many existing NAT analysis techniques rely on active
measurements [40], [41], [33], [42], [43], [44], including
methods for inferring CGN [21], [45], [7]. Researchers can
learn detailed information about NAT deployments by ini-
tiating measurements from custom tests running on clients
behind the NAT (e.g., the implementation of NAT444 [21],
the topology of cascaded NATs [45], distance from the NAT
device, or mapping timeouts [7]). Coverage can improve by
conducting active measurements from outside the network
(e.g., Casado et al. induced any client communicating with
their custom web server to run active network characterization
tests [44]; Richter et al. crawled BitTorrent’s DHT to identify
cases of internal address leakage [7]).

Alternatively, applying passive NAT detection algorithms to
datasets containing Internet-wide traffic requires little over-
head. Existing techniques fingerprint machines based on spe-
cific packet fields such as TTL [23], operating system-specific
TCP options [24], ephemeral ports [46], or the HTTP user-
agent string [47]. These algorithms infer NAT when multiple
fingerprints are observed with the same publicly routed IP
address. While these algorithms are applicable to any packet
trace, we are unaware of any extensions to the CGN setting.

VII. CONCLUSIONS AND DISCUSSION

We have presented two methods for detecting CGN deploy-
ment using existing passive measurement datasets collected
from outside the target network. We have developed and
validated our using IBR and M-Lab data, and expect that our
methodology generalize to similar passively collected datasets.

To the best of our knowledge, our methods are the first
to detect CGN with passive measurements collected outside
the network, which comes with three advantages. First, our
techniques do not require clients to install and execute any
tests, and can thus achieve a larger coverage in terms of
measured networks. Second, our techniques are simple and
general. We can apply our IBR-based method to any traffic
with unique client identifiers, and our M-Lab-based method
to any traffic where we can model the likelihood of seeing
an IP address as a function of user’s behavior. Finally, our
methodology can be applied to data collected in the past, to
analyze the evolution of CGN deployment.

In total, we have inferred that 4.1K ASes and 154K /24s are
deploying CGN for the period from July 2014 to September
2016. During this period, we find a significant increase in
the number of CGN networks. Our analysis shows that CGN
deployment does not negatively impact the IPv6 adoption. Half



of the inferred networks seem to deploy CGN to prolong the
lifespan of their IPv4 address space. Moreover, the remaining
networks also seem to rely on CGN as they appear to acquire
a small number of /24s blocks from the RIRs. Given that IPv4
depletion is still ongoing, each of these findings will need to be
reassessed. Also, we find evidence of arbitrary pooling usage
for CGN deployments. Our findings highlight the challenging
nature of inferring CGN.
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