
Towards Practical Program Repair with On-Demand Candidate
Generation

Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid
The University of Texas at Austin, USA

{lisahua,mengshi.zhang,kaiyuanw,khurshid}@utexas.edu

ABSTRACT

Effective program repair techniques, which modify faulty programs

to fix themwith respect to given test suites, can substantially reduce

the cost of manual debugging. A common repair approach is to

iteratively first generate candidate programs with possible bug fixes

and then validate them against the given tests until a candidate that

passes all the tests is found. While this approach is conceptually

simple, due to the potentially high number of candidates that need

to first be generated and then be compiled and tested, existing

repair techniques that embody this approach have relatively low

effectiveness, especially for faults at a fine granularity.

To tackle this limitation, we introduce a novel repair technique,

SketchFix, which generates candidate fixes on demand (as needed)

during the test execution. Instead of iteratively re-compiling and

re-executing each actual candidate program, SketchFix translates

faulty programs to sketches, i.e., partial programs with “holes”, and

compiles each sketch once which may represent thousands of con-

crete candidates. With the insight that the space of candidates can

be reduced substantially by utilizing the runtime behaviors of the

tests, SketchFix lazily initializes the candidates of the sketches

while validating them against the test execution.

We experimentally evaluate SketchFix on the Defects4J bench-

mark and the experimental results show that SketchFix works

particularly well in repairing bugs with expression manipulation

at the AST node-level granularity compared to other program re-

pair techniques. Specifically, SketchFix correctly fixes 19 out of

357 defects in 23 minutes on average using the default setting. In ad-

dition, SketchFix finds the first repair with 1.6% of re-compilations

(#compiled sketches/#candidates) and 3.0% of re-executions out of

all repair candidates.

ACM Reference Format:

Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid. 2018.

Towards Practical Program Repair with On-Demand Candidate Generation.

In ICSE ’18: ICSE ’18: 40th International Conference on Software Engineering

, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3180155.3180245

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180245

1 INTRODUCTION

Manually debugging faulty code is often tedious and costly, and

itself error-prone. The last decade has seen much progress in the

area of program repair, which has shown much promise for au-

tomating debugging to reduce its cost and increase its effective-

ness [2, 11, 19, 23, 29, 32, 45, 46, 54]. A common approach for auto-

mated program repair is generate-and-validate [22, 25, 30, 55, 56, 58],

where several candidate programs that represent potential bug

fixes are iteratively generated using repair templates, and validated

against the given tests until a candidate that passes all tests is

found. While techniques that embody this approach have shown

their effectiveness on repairing a number of defects using various

search algorithms [21, 43, 55, 56], a limiting characteristic of these

techniques, especially for repairing faults at a fine granularity, is

that they require potentially many candidates to first be generated

and then be compiled and tested. The costs of compilation and test

execution are non-trivial [26, 31, 55], especially for open source

projects like the Closure compiler [4], which takes around 1 minute

for the compilation and the test execution. Given a typical search

space of repair candidates (around 5k), the total re-compilation and

re-execution time can be as long as 3 days.

To allow the exploration of large numbers of candidates, re-

searchers have developed various techniques in previous work. For

example, some techniques [7, 24, 36, 37, 40] infer constraints and

synthesize repairs by translating the constraints to propositional

satisfiability (SAT) formulas. Such translation-based synthesis may

involve incomplete translations or create impractical problems that

require creating complex models for all involved libraries. More-

over, they generally exclusively reason about boolean or integer

type [24, 37] and can hardly handle manipulation of non-primitive-

type expressions in presence of libraries or complex constructs

like AST node-level type casting. Some techniques mine historical

data [25, 28, 30] or analyze documents [27, 58] to rank the repair

candidates. These techniques have shown their effectiveness on

some classes of defects like exception handling, yet they may not

be effective at repairs that require fine-grained expression manipu-

lations at the AST node-level.

We present SketchFix, which is a novel technique for more

effective generate-and-validate program repair using a perspective

different from previous work. Our key insight is that the space of

candidate programs can be pruned substantially by utilizing run-

time information and by generating candidates on-demand during

test validation. To illustrate, consider trying to fix a faulty condition

in a while-loop as well as the body of the loop; if a test execution

raises an exception upon evaluating a specific candidate while-loop

condition, all candidates of the while-loop body are pruned from

search for that choice of the candidate condition expression. In

fact, our approach for lazy candidate generation will not create any

12

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

candidates for the while-loop body (which may contain thousands

of patches) if the while-loop body is not executed. When a test

fails due to either a runtime exception or a test assertion failure,

the parts of the candidate program that were directly executed

determine the generation of the future candidates. Instead of the

traditional approach of iteratively generating and validating each

repair candidate, we tightly integrate the generation and validation

of candidates by effectively utilizing runtime behaviors of the test

executions to prune a large part of the search space, which must be

explored otherwise.

At the AST node-level, SketchFix performs a systematic re-

duction of program repair to program synthesis [10, 18, 41, 51] by

translating a faulty Java program to sketches [16, 50], which will be

completed by a synthesizer [13] with respect to the given test suite.

Given a faulty Java program and a test suite as input, SketchFix

introduces holes to suspicious statements based on the AST node-

level transformation schemas. To fill in these holes, SketchFix

employs a practical sketch engine called EdSketch [13] to syn-

thesize sketches with backtracking search. Whenever EdSketch

encounters runtime exceptions or test failures, it backtracks imme-

diately and fetches for the next choice until the space of candidates

is exhausted or a complete program that satisfies all tests is found.

This complete program is regarded as a repair for the original faulty

program.

SketchFix defines transformation schemas at a fine granularity

and prioritizes first the schemas that introduce smaller perturba-

tions to the original program. Recent techniques present the insight

that patches that are semantically closer to the original programs

are more likely to be correct from the perspective of the develop-

ers [5, 24]. Our ranking strategy is in line with this insight and aims

to mitigate the overfitting issue [49] in automated program repair.

We evaluate SketchFix using Defects4J [20]—a dataset that

has been widely used to evaluate automated program repair tech-

niques. With default setting, SketchFix correctly fixes 19 out of

357 bugs in 23 minutes on average. It additionally fixes 15 faults

with alternative settings, such as applying more transformation

schemas, etc. Furthermore, we compare SketchFix with other re-

pair techniques and illustrate favored defect classes for different

automated program repair approaches. With on-demand candidate

generation, SketchFix requires only 1.6% of re-compilations (#com-

piled sketches/ #candidates) and 3% of re-executions out of all repair

candidates when it finds the first repair. Lastly, we demonstrate

that our find-grained transformation schemas are able to generate

high-quality patches by introducing AST node-level edits to the

original programs.

In summary, we make the following contributions:

• On-DemandCandidateGeneration for ProgramRepair.Uti-

lizing runtime behaviors, we lazily generate on-demand candi-

dates during the test execution for more practical program repair.

This integration of the generation and the validation phases sub-

stantially prunes the search space of the repair candidates.

• AST node-level ProgramRepairWe design a set of AST node-

level transformation schemas to repair faulty programs at a fine

granularity. This strategy is effective for generating high-quality

patches that are semantically closer to the original programs.

• Practical Reduction of Program Repair to Synthesis.With-

out inferring constraints or creation of constraint solving prob-

lems for SAT/SMT solvers, we transform the faulty subjects to

sketches and synthesize code to complete the sketches using a

backtracking search-based sketch system. Our evaluation shows

that this reduction from program repair to program synthesis

helps build effective and well-founded repair techniques.

2 MOTIVATING EXAMPLE

(A) Part of the human-written patch to fix the Chart14 defect

1.public class CategoryPlot extends Plot...{...

2. public boolean removeDomainMarker (...,boolean notify) {

3. ArrayList markers;

4. if (...) {...} else {

5.+ if (markers == null)

6.+ return false;

7. ...} }

(B) A sketch generated by SketchFix and synthesized solutions

1.public class CategoryPlot extends Plot...{...

2. public boolean removeDomainMarker (...,boolean notify) {

3. ArrayList markers;

4. if (...) {...} else {

5. if(SketchFix.COND(ArrayList.class,new Object[]{markers,..}))

6. return (Boolean) SketchFix.EXP(Boolean.class,

new Object[]{markers,..};

7. ...} }

// Synthesized solution:

// SketchFix.COND: markers==null,...

// SketchFix.EXP: false,...

Figure 1: An Illustrative Example for a Fault and the Repair

Generated by SketchFix

To illustrate the large search space of repair candidates, we

present a part of a defect derived from the JFreeChart project [17].

Figure 1 (A) presents a human-written patch to fix this part of the

bug that omits the null pointer checking for an ArrayList object

(markers). The class CategoryPlot contains 49 fields and 5 local

variables (54 candidates in total). Given a suspicious location, if an

automated repair tool wants to insert an if-condition and a return

statement to fix the bug, without considering field dereferences

derived from the variables and visible fields inherited from parent

classes, the space of candidates for the if-condition alone can be

more than 5k. We define conditions as left and right hand side ex-

pressions combined with a relational operator (either “==” or “!=”)

for non-primitive types, thus the space is 542 × 2. The return ex-

pression has another 15 candidates with the boolean type including

the default boolean values (true and false). Given an average com-

pilation and test-execution time of 15 seconds for the JFreeChart

project, it takes more than 15 days to validate all 87k candidates.

To effectively explore this large search space of repair candidates,

SketchFix translates the faulty program to sketches with holes and

synthesizes sketches with on-demand candidate generation. Given

13

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

a suspicious location, SketchFix applies AST node-level transfor-

mation schemas to generate a set of sketches, and each sketch

can represent thousands of concrete repair candidates. Figure 1

(B) illustrates a sketch generated by SketchFix. To generate this

sketch, SketchFix applies two schemas at the suspicious location,

one schema introduces an if-condition (if-condition schema) and

another introduces a return statement (return-statement schema).

To represent an unknown condition hole, i.e, if (??), SketchFix

defines an API SketchFix.COND(...) in Java syntax, which returns a

non-deterministic boolean value (either true or false) during the

test execution. This API takes two parameters: the hole’s target

type (i.e, ArrayList), and an array of visible variables as candidates

to fill in the hole. The hole’s target type is defined as the type of the

variables used to fill in the hole. SketchFix enumerates all types

derived from visible variables and generates one sketch for each

target type. At line 6, the return-statement schema inserts a return

statement with a non-deterministic expression SketchFix.EXP(...),

i.e, return ??, whose target type is the return type of the method.

The sketch shown in Figure 1 (B) will be compiled only once, yet

it represents 87k candidate patches. SketchFix directly executes

the given test suite after the compilation. When the test execution

first reaches the hole SketchFix.COND(...), instead of considering

thousands of concrete candidates like “markers!=null”, SketchFix

only considers two boolean values and non-deterministically se-

lects either true or false to fill in the condition hole. If SketchFix

selects false for the if condition, it will not initialize any candi-

dates for the return expression because the test execution does not

reach the hole SketchFix.EXP(...) inside the if block. In this example,

choosing the value false for the if condition leads to a test failure at

runtime. SketchFix backtracks immediately and selects the next

choice which is the value true for the if-condition. SketchFix gen-

erates candidates for the expression SketchFix.EXP(...) when the

test execution reaches the hole at the first time. Given 15 candidates

of the expression hole, SketchFix selects one candidate at a time

during the test execution until a candidate that satisfies all tests

is found. In this example, SketchFix finds the first solution in 40

seconds after compiling the sketch once and executing the tests

twice.

3 APPROACH

In this section, we describe how we translate faulty programs to

sketches usingAST node-level transformation schemas (Section 3.1).

These sketches are further synthesized by a practical sketch engine

with on-demand candidate generation (Section 3.2).

3.1 AST Node-Level Transformation
We perform a systematic reduction of program repair to program

synthesis by translating faulty programs to sketches at a fine gran-

ularity.

Syntax of Partial Expressions (Holes). Figure 2 denotes the

syntax of holes. We define two basic types of non-deterministic

holes for sketches: expression holes and operator holes. The atomic

expression holes (SketchFix.EXP()) represent visible variables, con-

stant values and field dereferences. As to the operator holes, we

define arithmetic operators {+,−,×, /,%} (SketchFix.AOP()), rela-

tional operators {==, ! =, >, <,�,�} (Sketch Fix.ROP()) and logical

atomic expr e := var | const | var . f

constant const := null | true | f alse | k

arithmetic op aop := + | − | × | / |%

relational op rop := == | ! = | > | < | � | �

logical op lop := && | | |

composite expr e := e1 op e2 or array[eint]

Figure 2: Syntax of Partial Expressions

Mexp =
p[ℓ] ⊢ et
et �→ ωt

Mop =
p[ℓ] ⊢ op
op �→ δ

Mpar =
p[ℓ] ⊢ f (par), f (par) ⊢ f ′(par ∪ et)

f (par) �→ f ′(par ∪ ωt)

Mcon =
p[ℓ] ⊢ if (c)

c �→ c lop (ωt rop ω′t)

Mi f =
p (ℓ) ⊢ (v,t)

p (ℓ) �→ if (ωt rop ω′t) p (ℓ)

Mr tn =
p (ℓ) ⊢ (v,t)

p (ℓ) �→ return ωt p (ℓ)

Figure 3: Program Transformation Schemas

operators {| |,&&} (SketchFix.BOP()) that combine multiple clauses.

SketchFix generates composite expressions by combining expres-

sion holes with operator holes or combining array variables with the

index of array elements. Composite holes can further combine to-

gether. For instance, we define a hole for conditions (SketchFix.COND

()) as two expression holes at left and right hand side combined

with a relational operator. Both sides of expression holes in the

condition can be replaced by infix expressions (e.g., a+b) with arith-

metic operators, and the condition holes can further be combined

together with logical operators to support multiple clauses. To spec-

ify these holes in Java syntax, SketchFix provides a list of method

invocations and these invocations take two parameters: the target

type of the hole and a list of objects.

Base on the syntax of the holes, we define six AST node-level

transformation schemas (Figure 3) that take a faulty program p as

the input and produce sketches with holes.

Expression TransformationMexp : Given a suspicious statement

ℓ in the faulty program p, if it contains any variables, constant val-

ues, or field dereferences with the type t ,Mexp transforms this ex-

pression et to a partial expressionωt that represents any expression

candidates with the same type t . That is, the original expression will

be replaced by a hole SketchFix.EXP(t, new Object[]{v1,v2,...})

while the object list contains all visible variables, parameters and

fields.

Operator TransformationMop : Given a suspicious statement, if

it contains any arithmetic, relational or logical operators defined

in the syntax of holes (Figure 2), Mop transforms the operator to

an operator hole δ that denotes any operators of the same opera-

tor type. For instance, given a clause a > b in the faulty program,

Mop will replace this clause with a partial expression a ?? b where

14

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

Algorithm 1: Static Transformation for Sketch Generation

Input : Faulty program p , Fault locations L, Schemas M

Output : List of sketches Q

1 Function transformSketch (p , L, M) is

2 Q ← ∅;

3 foreach ℓ ∈ L do

/* apply one schema */

4 foreach σ ∈ M do

5 Q ← Q ∪ σ (p, ℓ) ;

/* apply two schemas */

6 i ← 0;

7 while i < M .size do

8 ω ← M[i](p, ℓ) ;

9 j ← i ;

10 while j < M .size do

11 Q ← Q ∪M[j](ω, ℓ), j + + ;

12 i + +;

the operator hole ?? can be any of {==, ! =, >, <,�,�}. The cor-

responding generated sketch is SketchFix.ROP(Integer.class, new

Object[]{a,b}) if a and b are of Integer type.

Overloading Transformation Mpar : Given a suspicious state-

ment, if it contains a method invocation f that has a overloading

method f ′, SketchFix tries to map parameter types for f and f ′

using an approach similar to the edit distance [9]. SketchFix only

considers overloading methods f ′ whose edit distances in terms of

the parameter types are no more than two. SketchFix generates

holes ωt for f
′ to represent parameters in different types.

Condition TransformationMcon : Given a suspicious condition

expression c ,Mcon introduces a new clause for the condition. The

new clause is represented as ωt rop ω ′t where ωt and ω
′
t represent

any expression candidates with the type t. The hole rop represents

relational operators. If t is a non-primitive type, SketchFix applies

relational operators “==” and “! =” to construct the clause, whereas

for primitive types, it applies all 6 relational operators. The new

clause is appended to the existing boolean expression c with logical

operators (“&&” and “| |”).

If-condition transformation Mi f : Given a suspicious location

ℓ, SketchFix introduces an if-condition before ℓ with a condition

“hole”. If SketchFix selects the target type t, the schema will in-

sert an if-condition as if (SketchFix.COND (t, new Object[]{v1,

v2,...}), where the target type t is derived from visible variables

v at the location ℓ.

Return-statement transformationMr tn : Given a suspicious lo-

cation ℓ, SketchFix inserts a return statement before ℓ. If the return

type of the current method is void, SketchFix simply inserts an

empty return statement, otherwise, SketchFix inserts a hole ωt
based on themethod’s return type, i.e., return (t) SketchFix.EXP(t,

new Object[]{v1, v2,...}).

To handle defects that require multiple holes to fix, such as the

omission of null-pointer-checking in Figure 1, we apply transfor-

mation schemas incrementally at the suspicious statements. Al-

gorithm 1 shows the static transformation approach that applies

no more than two schemas on the faulty program p. The loop at

line 4 applies each applicable schema on the suspicious location ℓ to

create sketches. The nested loop starting from line 7 enumerates all

combinations of two schemas and applies these two schemas at the

same location ℓ. Given the large search space of repair candidates

in open source projects, by default SketchFix applies no more than

two transformation schemas at the same location. We leave the

discussion of applying more schemas in Section 4.2.2.

Intuitively, the synthesis cost increases with more holes in the

sketch. We define the cost of transformation schemas as the number

of atomic holes (expression holes and operator holes) introduced

by the schemas. We prioritize the schemas with lower synthesis

cost. For instance, we favor expression (Mexpr) and operator (Mop)

manipulation over the condition transformation schema (Mcon) be-

cause theMcon inserts a relational operator hole and two expression

holes at the left and right hand side of the operator. This strategy is

in line with existing literatures [5, 24] based on the heuristic that

repair candidates semantically closer to the original programs are

relatively easier to comprehend and are more likely to be accepted

by the developers.

Existing automated repair techniques have utilized various sup-

portive resources to improve the repair efficacy, such as historical

data [25, 30], documents [27, 58], anti-patterns [53] and test gener-

ation [57]. Yet we preserve SketchFix’s practicality and leave the

improvement of fix patterns [28, 30, 58] as future work.

3.2 Practical Sketch Synthesis

After transforming the original faulty program to sketches based

on the schemas, SketchFix executes test cases to synthesize sketches

with on-demand candidate generation. SketchFix will not generate

concrete candidates for a hole until the test execution reaches the

hole. The candidates are created based on the runtime information.

For instance, we will not generate field dereferences for null vari-

ables (refer to [13]). Algorithm 2 describes the procedure of lazy

candidate generation and the sketching using backtracking search.

On-Demand Candidate Generation. When the test execution

first reaches a hole (line 2), SketchFix initializes the hole’s expres-

sion candidates based on the given visible variable list. For the

expression hole SketchFix.EXP(...), the method candidateGen()

at line 3 collects visible variables, constant values and field deref-

erences (refer to EdSketch [13]), and returns a candidate vector

(hole.candidates). Each candidate is assigned a unique identifier,

which is its index in the vector. Each hole’s candidate identifier is

initialized as -1, indicating that SketchFix has not selected a candi-

date for this hole (Algorithm 2 line 4). During the test execution,

the sketch engine non-deterministically selects an identifier using

choose() operator (line 5), and the candidate with the correspond-

ing identifier is used to fill in the hole. The execution continues

with this selection until it encounters a runtime exception or a

test failure, leading to a backtrack to the next choice of candidates,

i.e., incrementing the candidate identifier and selecting the next

candidate at runtime.

Synthesis with Backtracking Search. Algorithm 2 illustrates

the idea of synthesizing sketches with backtracking search, which

is embodied in the sketch engine EdSketch [13]. Instead of infer-

ring constraints and translating them to SAT for the repair synthesis,

EdSketch starts sketching by directly executing the given tests.

Whenever a runtime exception or a test failure occurs, EdSketch

backtracks by throwing a BacktrackException, which will enforce

15

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 2: On-Demand Candidate Generation based

on EdSketch [13]

Input : Sketches P , test suite T

Output :Complete Program P ′ that pass all test cases

1 Function synthesizeHole (hole) is

2 if hole.candidates==null then

/* First Access */

3 hole.candidates← candidateGen(hole);

4 if hole.id == -1 then

/* First Access */

5 hole.id← choose(0, hole.candidates.size-1) ;

6 return hole.candidates[hole.id] ;

7 Function sketch () is

8 do

9 try

10 exploreCurrentChoice();

11 catch BacktrackException

12 createNextChoice() ;

13 while incrementCounter();

14 Function exploreCurrentChoice() is

15 try

16 foreach test ∈ T do

17 test.run() ;

18 catch TestFailureException

19 throw BacktrackException;

20 printSolution() ;

21 searchExit(); /* if only needs the first solution */

the program to re-execute from the beginning (line 19). For each

re-execution, the sketch engine increments the counter for the

non-deterministic choose() operator and selects the next candidate

(line 12) to fill the hole. The synthesizing process terminates when

the space of candidate programs is exhausted or a complete pro-

gram that satisfies all tests is found. EdSketch embeds a range of

pruning strategies to effectively explore the space of candidates.

For instance, based on the program symmetry, the condition clause

a==b is equivalent to b==a, thus only one clause is considered.

Ranking Candidates Based on The Locality. With the notion

that variables declared closer to the hole are more likely to be

used [24, 58], we rank variables based on their proximity to the

hole location, i.e., the number of statements between the hole and

the variable declaration. We rank the target types of the hole with

a similar heuristic based on the number of statements between the

hole and variable declarations of this type in ascending order. For

instance, in our motivating example (Figure 1(B)), the condition

hole at line 5 favors the type ArrayList because the closest variable

is with this type.

In summary, we discuss how we systematically reduce the prob-

lem of program repair to program synthesis at the fine granularity.

We utilize the runtime behaviors of tests to prune a large amount

of search space with on-demand candidate generation.

4 EVALUATION

We evaluate SketchFix on the Defects4J benchmark [20], which

consists of 357 real defects from 5 open source Java applications. De-

fects4J contains various types of defects from open source projects

Table 1: Overview of the Evaluation Dataset and the Repair

Results of SketchFix

Project LoC Tests #Bug #Fix
FL Sketch Repair

Time(m) Time(s) Time(m)

Chart 96k 2.2k 26 6/2 1.1 9.9 44.2

Closure 90k 7.8k 133 3/2 7.2 10.8 3.6

Lang 22k 2.2k 65 3/1 0.4 1.5 26.7

Math 85k 3.6k 106 7/1 1.8 3.7 4.0

Time 28k 4.1k 27 0/1 0.4 14.2 27.3

Total 357 19/7

#Fix shows the number of correct fixes and plausible fixes (repairs that pass

tests but fail in manual inspection).

to eliminate the bias of the dataset [39] in terms of the defects

types and the abundance of these defect classes [34, 39]. In Sec-

tion 4.2, we compare SketchFix’s repair efficacy and favored defect

types with other automated repair techniques. In Section 4.3, we

investigate if the on-demand candidate generation could effectively

reduce the search space of repair candidates. We finally discuss how

our AST node-level transformation influences the patch quality in

Section 4.4.

We address the following research questions in this section:

• What’s the repair efficacy of SketchFix compared to other

repair techniques?

• Does the on-demand candidate generation technique reduce

the search space of repair candidates?

• How does our fine-grained transformation affect the quality

of the generated repairs?

4.1 Experiment Setting

Defects4J is a collection of reproducible bugs with triggering tests

verified. SketchFix regards the test suite of each subject as the

correctness property and tries to synthesize a new program such

that all tests could pass.

To identify suspicious statements for the defects, we use the ASM

bytecode analysis framework [3] together with JavaAgent [14] to

capture the test coverage of both failing and passing test execu-

tions. SketchFix uses an existing spectrum-based fault localization

technique called Ochiai [1] to rank potential faulty statements

based on their suspiciousness. Existing empirical studies [52, 59]

illustrate that Ochiai is more effective on localizing the faults in

object-oriented programs than other techniques. Ochiai has been

applied to numerous repair techniques [7, 25, 35, 37, 58], including

all four repair techniques [7, 25, 35, 58] we use in the compari-

son. We rank the suspicious statements based on the Ochiai [1]

suspiciousness value for each statement covered by failing exe-

cutions and select the top 50 suspicious statements by default. If

multiple statements have the same suspiciousness score, we order

them randomly. We leave the discussion for the number of selected

statements in Section 4.2.2.

Table 1 presents the basic information of the subjects used in

the evaluation, including the lines of code (LoC), the number of

test cases (Test), the number of defects collected in the benchmark

16

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

HDRepair [25] assumes that the faulty methods are known in advance.

SketchFix fixes 8 more defects with this assumption, 5 of them are also

fixed by HDRepair. We report two results without and with the

assumption.

Figure 4: Comparison of Correct Patches Generated by

SketchFix and Other Repair Techniques

(#Bug), and the average performance time to identify faulty state-

ments (FL Time). To translate faulty programs to sketches, we im-

plement transformation schemas using JavaParser [15], a tool that

parses and transforms Java programs. The column Sketch Time de-

notes the average performance time to generate program sketches.

SketchFix explores the search space of repair candidates for each

program sketch until the space of candidates is exhausted or we

find a pre-defined number of repairs that pass all tests. Currently

we terminate after finding the first repair yet we set the number of

output repairs as configurable. We report the average performance

time SketchFix takes to find the first repair (column Repair Time)

following the spirit of existing literatures [29, 37]. We execute only

the tests that reach the holes following the spirit of recent work

on test pruning [38]. We manually check all synthesized repairs

against human-written patches from the version history, and report

the number of correct repairs and plausible ones that pass all tests

but fail in manual inspection in column #Fix.

All performance experiments are conducted on a platform with

4-core Intel Core i7-6700 CPU (3.40 GHz) and 16 Gigabyte RAM on

Ubuntu Linux 16.04.

4.2 Repair Efficacy
In this section, we answer the first research question by com-

paring SketchFix’s repair efficacy with other repair techniques—

Astor [35], Nopol [7], ACS [58] and HDRepair [25]. We select

these four publicly available repair techniques that have been eval-

uated against the Defects4J benchmark and ignore others which

either focus on another language [29, 40, 56] or are not publicly

available [22, 24]. All four techniques use Ochiai [1] to identify the

suspicious statements. Note that HDRepair assumes that the faulty

methods are known in advance and performs Ochiai to identify the

faulty statements in the given methods. We thus add this assump-

tion when conducting the comparison with HDRepair. Due to the

difference in experiment platforms, we can hardly reproduce all

experiments for these four techniques, we thus mainly refer to the

generated repairs provided by the authors and refer to their results

of the manual inspection.

Table 2: Manual Assessment Result of Patches Generated by

SketchFix and Other Repair Approaches

No. SF A N C H No. SF A N C H

CH1 � ? × × � M5 � � × � �

CH3 × ? ? × × M8 × ? × × ×

CH5 × ? × × × M22 × × × × �

CH7 × ? × × × M25 × × × � ×

CH8 � × × × � M28 × ? × × ×

CH9 � × × × × M32 × ? ? × ×

CH11 � × × × × M33 � × ? × ×

CH13 ? ? ? × × M34 × × × × �

CH14 × × × � × M35 × × × � ×

CH15 × ? × � × M40 × ? ? × ×

CH19 × × × × × M42 × × ? × ×

CH20 � × × × × M49 × ? ? × ×

CH21 × × ? × × M50 � � � × �

CH24 � × × × × M53 × � × × �

CH25 × ? ? × × M57 × × ? × ×

CH26 ?∗ ? ? × × M58 × × ? × ×

C1 ×∗ × × × × M59 � × × × ×

C10 × × × × � M61 × × × � ×

C11 ×∗ × × × × M69 × × ? × ×

C14 � × × × � M70 � � × × �

C51 × × × × � M71 × ? ? × ×

C62 � × × × � M73 ? � ? × ×

C70 ?∗ × × × � M78 × ? ? × ×

C73 ?∗ × × × � M80 × ? ? × ×

C126 � × × × � M81 × ? ? × ×

L6 � × × × � M82 � ? ? � �

L7 × × ? � × M84 × × × × ×

L10 ×∗ × × × � M85 � ? ? � ×

L24 × × × � × M87 × × ? × ×

L35 × × × � × M88 × × ? × ×

L39 × × × × × M89 × × × � ×

L43 × × × × � M90 × × × � ×

L44 × × � × × M93 × × × � ×

L46 × × ? × × M95 × ? × × ×

L51 ?∗ × ? × � M97 × × ? × ×

L53 × × ? × × M99 × × × � ×

L55 � ? � × × M104 × × ? × ×

L57 × × × × � M105 × × ? × ×

L58 × × � × × T4 ? ? × × ×

L59 � × × × � T11 × ? ? × ×

M2 × ? × × × T15 × × × � ×

M3 × × × � × T19 ×∗ × × × �

M4 × × × � ×

SF represents SketchFix, A represents Astor [35], N represents Nopol [7],

C represents ACS [58], and H represents HDRepair [25]. �represents

correct fix, ? represents plausible fix, and × represents not generating fix.

We use the * to mark the new generated fixes by providing the faulty

methods when comparing with HDRepair. We highlight the correct

repairs generated by SketchFix.

17

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

(A) A bug fix for Chart24 generated by SketchFix

//Human-Written patch for the defect

private int upperBound, lowerBound;

public Paint getPaint(double value) {

double v=Math.max(value,this.lowerBound);

- int g=(int)((value-this.lowerBound)/...;

+ int g=(int)((v-this.lowerBound)/...; ...}

// A sketch generated by SketchFix and the synthesis result

public Paint getPaint(double value) {

double v=Math.max(value,this.lowerBound);

int g=(int)(((Integer)SketchFix.EXP(int.class,

new Object[]{v,value,...}) - this.lowerBound)/...;}

// Synthesized solution: SketchFix.EXP: v

(B) A bug fix for Math73 generated by Astor

//Human-Written patch for the defect Math73

if (yInitial*yMax<0) return solve(f,initial,yInitial,...);

+ if (yMin*yMax>0) throw new llegalArgumentException(...);

return solve(f, min, yMin,...);

//bug fix generated by Astor with API replacement

if (yInitial*yMax<0) return solve(f,initial,yInitial,...);

- return solve(f, min, yMin, max,...);

+ return solve(f, min, max);

(C) A bug fix for Lang58 generated by Nopol

//Human-Written patch for the defect

//Omit complex clauses for simplicity

- if (dec == null && exp == null && (A && B) || C) {..}

+ if (dec == null && exp == null && B && (A || D)) {..}

//bug fix generated by Nopol that is regarded as correct

- if (dec == null && exp == null && (A && B) || C) {..}

+ if ((dec == null) && (exp == null)) {..}

(D) A bug fix for Time15 generated by ACS

//Human-Written patch for the defect and ACS's result is

// semantically identical to this.

+ if (val1 == Long.MIN_VALUE) {

+ throw new ArithmeticException("...");}

(E) A bug fix for Math34 generated by HDRepair

//Human-Written patch for the defect and HDRepair's result

// is identical to this.

public Iterator<Chromosome> iterator() {

+ return chromosomes.iterator();

- return getChromosomes().iterator(); }

Figure 5: Comparison of Favored Defect Classes for Sketch-

Fix and Other Repair Techniques

Figure 4 denotes Venn Diagrams for the defects that can be cor-

rectly repaired by SketchFix and other techniques. Given that

SketchFix, Astor and Nopol do not require supportive informa-

tion such as documents (ACS [58]) or historical data (HDRepair [25]),

we separate the comparison into two Venn Diagrams. Table 2

presents the repair result through manual inspection.

4.2.1 Defect Classes favored by the repair techniques . Different

repair techniques focus on different types of bugs [39] (e.g., Nopol

only deals with condition faults). We are not intended to perform an

apple-to-apple comparisonwith these repair techniques, instead, we

highlight favored defect classes of SketchFix and other techniques

with examples.

SketchFix. Figure 5 (A) presents a defect that can be fixed by

SketchFix. In this example, SketchFix applies theMexp schema

to a type-casting expression at the AST node-level. It synthesizes a

variable v for the expression hole to replace the original variable

value. Note that the constraint-solving-based repair techniques [36,

37, 40] in general only modify expressions in conditions or the

right-side of assignments with boolean or integer types, other tech-

niques that leverage statement-level mutation [35] or supportive

information [25, 58] can hardly repair the defect because this AST

node-level replacement has a rare chance to be duplicated in ex-

isting program context, history [25] or documents [58]. Table 3

reports the schema types that finally generate repairs for each

defect. SketchFix correctly generates repairs for 19 subjects and

around half of them (9 subjects) yield expression manipulation.

The manipulation of operators and variable types (parameters for

overloading methods) correctly fixes another 6 defects, and the rest

schemas or their combinations fix another 4 subjects. For the 6

defects that can only be fixed by SketchFix with respect to other

four repair techniques (Table 2), 4 of them yield expression manip-

ulation, one of them is variable type manipulation in overloading

methods, and the last one applies an insertion of the if-condition.

Astor. Astor is a program repair library that contains three

repair modes based on the genetic algorithm, statement/condition

removal, and operator mutation. Figure 5 (B) shows a defect that can

be fixed by Astor. It replaces the return expression with another

method invocation. The new return-statement exists in the current

program context, and the Astor correctly generates this repair

based on the statement-level search. SketchFix generates the same

repair by transforming the original invocation to an overloading

method with holes at the AST node-level.

Nopol. Nopol is a repair technique that focuses on the condition

faults by modifying existing if-conditions or adding pre-conditions.

Figure 5 (C) shows a defect and a bug fix generated by Nopol.

The generated patch removes multiple clauses and is reported as

correct in the literature [33]. SketchFix fails to repair this intricate

condition defect that requires changes on multiple clauses.

ACS. ACS leverages document analysis to rank patches and it

advances other techniques on fixing the omission error of the ex-

ception handling (if-throw). Figure 5 (D) presents an example of

the repair generated by ACS which is semantically equivalent to

the human-written patch. SketchFix is not designed to handle

exception omission and we leave this as future work.

HDRepair. HDRepair prioritizes patches based on the mined

repair models from historical data. It prefers the repairs that require

the method invocation replacement. Figure 5 (E) shows a repair

generated by HDRepair that replaces an expression with a method

invocation. SketchFix can be extended to support API synthesis

with a similar idea of the on-demand candidate generation [60].

Our experiment indicates that SketchFix performs particularly

well in the defect classes that require manipulations of expressions

and variable types. Recent empirical studies on repair models [28,

18

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

Table 3: SketchFix Repair Result for Each Subject

Fix Type Sk. Sp. cSk. Exe Cor T(m)

1 CH1 C Mrop 1.7k 301.2k 209 2.8k 2.9k 208.5

2 CH8 C Mexp 607 8.7k 83 663 663 32.9

3 CH9 C Mcon 744 6.9k 678 100 100 5.6

4 CH11 C Mexp 249 2.4k 25 26 31 7.2

5 CH13 P Mpar 813 79.8k 115 914 - -

6 CH20 C Mexp 137 2.9k 127 206 206 14.9

7 CH24 C Mexp 17 378 1 4 4 0.5

8 CH26 P
Mi f , 77 1.6k 21 105 - -
Mr tn

9 C14 C Mexp 2.6k 46.1k 144 4 36 40.7

10 C62 C Mrop 490 4.9k 58 72 92 8.8

11 C70 P Mpar 1.2k 18.9k 108 28 - -

12 C73 P Mrop 476 5.2k 59 40 - -

13 C126 C Mcon 462 5.6k 32 8 64 7.3

14 L6 C Mexp 255 3.0k 1 51 424 2.9

15 L51 P
Mi f , 222 2.4k 43 28 - -
Mr tn

16 L55 C Mcon 108 1.6k 76 62 71 86.2

17 L59 C Mexp 188 1.8k 48 5 5 0.1

18 M5 C Mexp 1 72 1 1 1 0.1

19 M33 C Mpar 1.1k 17.8k 446 221 631 20.2

20 M50 C Mcon 655 6.0k 43 22 92 0.9

21 M59 C Mexp 259 4.0k 36 7 7 0.4

22 M70 C Mpar 139 2.8k 60 8 8 0.1

23 M73 P
Mi f , 383 6.2k 76 59 - -
Mr tn

24 M82 C Mrop 500 6.0k 68 36 803 12.1

25 M85 C Mrop 407 5.2k 78 590 590 23.1

26 T4 P Mpar 555 23.4k 40 274 - -

Fix represents whether it is a correct fix (C) or a plausible fix (P). Type

denotes the schema types that yield the repair. Sk. shows the number of

generated sketches. Sp. presents the total search space of candidates. cSk.

is the number of compiled sketches when SketchFix generates first repair.

Exe represents the number of candidates SketchFix explores when it

generates the first repair passing all tests. Cor represents that number

when SketchFix generates the first correct repair based on the manual

inspection. T(m) reports the performance time to synthesize a correct fix.

34, 61] show the abundance of such defects. Yet SketchFix is not

designed to handle statement-level mutation or exception handling.

4.2.2 Search Space Extension. In this section, we extend the

search space of repair candidates to consider more suspicious state-

ments and transformation schemas.

Suspicious Locations. By default, we consider top 50 suspicious

statements as we notice that SketchFix cannot fix many defects

with an increase of bound whereas the cost of the program repair

increases significantly. If we increase bound to 100, SketchFix cor-

rectly fixes 2 more defects: Chart26 and Lang10. HDRepair [25]

fixes defects with given faulty methods. With the same condition,

SketchFix correctly fixes 6 more defects: Closure1, Closure11, Clo-

sure70, Closure73, Lang51 and Time19. This result also indicates

that concise fault localization techniques can greatly improve the

efficacy of program repair techniques.

Multiple Transformation Schemas. As a trade-off between the

cost of experiments and the repair efficacy, SketchFix applies no

more than two transformation schemas at a suspicious location.

The number of generated sketches and corresponding candidates

grow quickly with more transformation schemas. SketchFix fixes 4

more bugs with 3 schemas at a given location (Closure130, Lang58,

Math53 and Time4).

Repair at Multiple Locations. We introduce an incremental ap-

proach to fix defects at multiple locations based on the reduction

of the failing test cases [12]. If there exists multiple failing test

cases, we localize the defect with one failing test case and all pass-

ing test cases, let SketchFix generate sketches and evaluate if

any synthesized solution can eliminate one or more failing test

cases. If a synthesized version reduces the number of the failing

test cases, SketchFix applies this repair and keeps on considering

other failing test cases. This incremental repair technique is based

on the assumption that at least one failing test case can be fixed

by synthesizing a sketch and failing test cases are independent

with each other such that the fix of one test case will not affect

others. Although the validity of this assumption remains unsettled,

SketchFix correctly fixes another 3 defects (Chart14, Math4, and

Math22) based on this assumption.

4.2.3 Threats to Validity. Although Defects4J contains hun-

dreds of defects from multiple open-source projects, this defect

benchmarkmay unavoidably yield the bias of the evaluation datasets

[39] with respect to the defect types and the abundance of the de-

fect classes [34, 39]. We compare our result with other four repair

techniques that have been evaluated with the same benchmark

and explain the favored defect classes for each technique. Based

on the human-written patches from the version history, we assess

the correctness of the generated repairs. However, this assessment

may still be biased.

4.3 Search Space Reduction
In this section, we answer the second research question on the

efficacy of our on-demand candidate generation.

SketchFix is able to generate repairs for the subjects shown

in Table 3. With the default setting, these repairs include correct

fixes that pass the manual inspection and the plausible ones that

pass all tests but are regarded as semantically-different from the

developer-written patches. The column Fix denotes whether the

repair is correct (C) or plausible (P). The column Type represents the

transformation schema types that are used to fix the bugs. If more

than one schema combination can generate repairs that satisfy all

test assertions, we report the first schema combination. The column

Sk. shows the total number of sketches generated by SketchFix

considering all selected locations, and the column Sp. lists the total

search space of the candidates that the sketches represent. For

instance, if SketchFix introduces a non- deterministic condition

clause for a primitive type, assume that there are 10 expression

candidates at both left and right hand side, the search space of

candidates for this sketch is 600 (6 × 10 × 10) as two expressions

are combined with a relative operator which has 6 options (==, ! =

, >, <,�,�). The column cSk. presents the number of compiled

sketches when SketchFix generates the first repairs that pass all

tests. The column Exe. shows the number of candidates that have

19

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

been executed against the test suite when SketchFix generates the

first repairs satisfying all tests. And the column Cor. represents

the number when SketchFix finds the first correct repairs. The

column T(m) illustrates the total performance time in minutes when

SketchFix finds the first correct fix, including the time for the

compilation and the test execution.

With the on-demand candidate generation, every sketch will be

compiled once which may represent thousands of candidates. Up to

the time that SketchFix finds the first repair, it compiles 1.6% (avg.

#compiled sketches/#space). If SketchFix wants to exhaustively

search the entire space of repair candidates, it only compiles 7% (avg.

#sketches/#space) of all candidates. SketchFix utilizes runtime

information to further prune the candidates that actually need

to be verified by the test execution. For example, SketchFix will

not generate candidates for the condition body if the condition is

evaluated to be false. The experiment shows that SketchFix only

executes 3% of candidates (avg. #Gen/#Space) when it finds the first

repairs that pass all tests.

On average, SketchFix spends 9 minutes generating sketches

with fault localization and 23 minutes generating the first repairs

that satisfy all test assertions. To compare our performance with

other repair techniques, we refer to the performance time reported

in the literatures [7, 33, 35, 58] as we are not able to reproduce

all experiments of other techniques due to the various experiment

platforms. Astor and Nopol spend 30-40 minutes on average for

each repair on a powerful machine. HDRepair spends an average

of 20 minutes generating patches with given methods. Without

reporting the performance time for document analysis, ACS’s patch

generation time (max. 28minutes, median 5.5minutes) is not fairly

comparable with our repair technique. Without pre-processing his-

torical data or document analysis, our practical repair technique

compares well with other repair techniques on performance. We

omit the comparison on the number of executed candidates across

different repair techniques, because different techniques use differ-

ent templates and the choice of templates determines the search

space of the candidates.

4.4 The Quality of Generated Repairs
Weanswer the last research question in this section by investigating

if our AST node-level transformation helps generate high-quality

patches. Shown as Figure 6, we illustrate the quality of the repairs

generated by SketchFix using an example.

Based on the AST node-level transformation schema, SketchFix

transforms a method invocation to its overloading method, and cor-

rectly repairs the defect by replacing the variable maxUlps (integer)

to epsilon (double). This fine-grained transformation is in line with

the notion that the repairs which introduce smaller perturbations

to the original programs are more likely to be correct from the

perspective of the developers. With the same notion, SketchFix fa-

vors expression manipulations for the overloading method (Mpar)

rather than the if-condition insertion (Mi f) as the insertion of a new

if-condition will introduce more atomic holes than the expression

manipulation. SketchFix generates sketches shown as Figure 6 (B)

and synthesizes this sketch as expected.

The repair techniques Astor, ACS, and HDRepair fail to gener-

ate repairs for this bug. Nopol fixes this defect by adding a new if

block. Although both solutions might be semantically equivalent,

(A) A human-written patch for the defect Math33

public class Precision {

public static int compareTo(double x,double y,double eps)..

public static int compareTo(double x,double y,int maxUlps)..

}

/* SimplexTableau.java */

private final int maxUlps;

private final double epsilon;

protected void dropPhase1Objective() {

- if (Precision.compareTo(entry, 0d, maxUlps)>0){...

+ if (Precision.compareTo(entry, 0d, epsilon)>0){...

}

(B) A sketch generated by SketchFix and a synthesized solution

/* SimplexTableau.java as sketch */

protected void dropPhase1Objective() {

if (Precision.compareTo(entry, 0d, (Double) SketchFix.EXP(

Double.class, new Object[]{..,epsilon,maxUlps,..}))>0){..

}

// Synthesized solution: SketchFix.EXP: epsilon

(C) A plausible repair generated by Nopol

protected void dropPhase1Objective() {

if (Precision.compareTo(entry, 0d, maxUlps) > 0) {

+ if (numSlackVariables<constraints.size()) {...}}

Figure 6: Patches Generated by SketchFix and Nopol for

the defect Math33

we believe that the repair generated from the fine-grained trans-

formation introduces a smaller perturbation to the original faulty

program and is conceptually easier to comprehend.

Apart from the fine-grained transformation, our candidate rank-

ing strategy based on the locality also helps generating high-quality

patches. Figure 5 (A) shows an expression manipulation that re-

places the variable valuewith v, which is the maximum value of the

variable value and the field lowerBound. Both v and lowerBound sat-

isfy all test assertions, yet SketchFix favors the variable v because it

is defined at the previous statement of the hole whereas lowerBound

is a field in the class. With the insight that the variables defined

closer to the holes are more likely to be used, our practical candi-

date ranking strategy is in line with other repair techniques that

aim to improve patch quality, such as anti-patterns [53], program

distance [5] and syntactic similarity [24].

5 RELATEDWORK

This section compares SketchFix with other approaches on pro-

gram repair and program synthesis.

Generate-and-Validate Repair. Generate-and-Validate repair

techniques apply a set of transformations to generate a set of can-

didates and validate each candidate against the given test suite. To

efficiently explore the immense search space of repair candidates

in large-scale applications, these automated program repair tools

leverage genetic algorithms [56], random search [43], semantic

20

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

search [21] and adaptive search [55] to find a repair that let all test

cases pass. Kali [44] applies code removal and Debroy et al. [6]

employ a set of mutation operators (e.g., arithmetic operators “+”

and “×”) to fix faults. Astor [35] is a program repair library that

includes the re-implementations for GenProg [56], Kali [44], and

mutation-based repair [6] to fix Java code.

To prioritize repairs, PAR manually learns repair patterns from

the human-written patches [22]. Other G&V techniques automati-

cally mine repair models from historical data [25, 30]. CodePhage

[46] eliminates defects by transferring correct code across applica-

tions. Genesis [28] also automatically infers repair models based

on the human-written patches. Some recent works leverage docu-

ment analysis [27, 58], anti-patterns [53], test generation [57], and

location selection with test pruning [38] to enhance repair.

SketchFix differs from these G&V approaches in that it tightly

integrates the generation and validation phase of the repair candi-

dates and only generates on-demand ones during the test execution.

This integration substantially reduces the search space of the repair

candidates and effectively prunes large amount of re-compilation

and re-execution of the potential repairs. Moreover, a number of

approaches that aim to improve the patch quality [53, 57] are com-

plementary to ours. In particular, we can use mined repair mod-

els [25, 28, 30] and document analysis [58] to prioritize candidates

and support more transformation schemas at a fine granularity.

Constraint-Solving Repair. Program repair techniques such as

Nopol [7] and Angelix [37] dynamically collect path conditions

and infer constraints based on the passing and failing test execu-

tions [36, 40]. These constraints are further translated to SAT for

SAT/SMT solvers to synthesize a repair that satisfies all inferred

specifications. SPR [29] infers a target value for the faulty condition

based on the test suite. MintHint uses the symbolic execution and

statistical correlation analysis for the patch ranking. S3 [24] extends

the semantics-based family like SemFix [40] and Angelix [37] to

incorporate a set of ranking criteria such as the variation of the

execution traces similar to Qlose [5].

By inferring constraints based on the execution and translat-

ing these constraints to SAT, these repair techniques may yield

incomplete translation [24, 37] or impractical problem of creating

models for all relevant libraries [36, 40]. In general, they exclusively

reason about boolean or integer types in conditions or the right

side of assignment. They may suffer from the limitations of the

symbolic execution engines to extract constraints. E.g., Angelix

cannot execute libraries such as python, lighttpd and fbc due to the

limitation of KLEE. SketchFix is substantially different from these

translation-based techniques as its sketch backend [13] explores

the actual program behaviors in presence of libraries and does not

translate to SAT/SMT. SketchFix thus works well in manipulat-

ing expressions and handles a whole range of variable types and

transformation locations, e.g., SketchFix fixes a bug by replacing

a variable in a cast expression at the AST node-level. In addition,

SketchFix is not confined to the structure of the subjects as long

as the subjects can be executed. Therefore, it can be applied to the

projects like Closure compilerwhose test cases are organized using

scripts rather than standard JUnit test cases. This non-conventional

structure has obstructed some repair techniques like Astor.

Automated program repair based on the formal specifications

has had numerous success. AutoFix-E [54] is able to repair complex

data structure for Eiffel program, but it relies on human-written

contracts to generate fixes. Gopinath et al. [11] use pre- and post-

conditions written in Alloy specification language to identify de-

fects and repair the program, and were the first to conjecture the

reduction of program repair to program sketching [12] from the

best of our knowledge. Singh et al. [47] use specification to generate

feedback for students’ faulty python program. Kneuss et al. [23]

generate test inputs automatically from the specifications to fix

faulty Scala programs using deductive program synthesis. Yet for-

mal specifications are usually not available for projects written in

imperative languages.

Domain-Specific Repair. ClearView [42] eliminates security

vulnerability with inferred invariants. Demsky et al. [8] use Daikon

to infer invariants for data-structure repair. Vejovis [19] infers

possible string replacement for DOM-related faults in JavaScript

code through string constraint solver. Similar to Vejovis, PHPRe-

pair [45] uses string constraint-solving to fix PHP programs that

generateHTML. These approaches share similar spirit with constraint-

solving repair and thus may encounter similar limitations.

Program Synthesis. Program synthesis has shown its promise

on synthesizing code in small well-defined domains such as bit-

vector logic [18] and data structures [48]. In particular, sketch-based

synthesis [50] asks programmers to write a program skeleton con-

taining holes, and uses counter-example-guided inductive synthesis

to complete the holes. However, these approaches require to trans-

form constraints to SAT formulas, which might be impractical in

large-scale projects with external libraries. EdSketch [13] is a prac-

tical execution-driven sketching engine that synthesizes sketches

with backtracking search, yet it requires users to provide partial

programs as the inputs. Recent work [60] enhanced EdSketch to

support method sequence generation for API completion. Different

from EdSketch and other program synthesis techniques [10, 41, 51],

we translate existing faulty programs to sketches with the purpose

of repairing the original faulty programs.

6 CONCLUSION

This paper introduced an on-demand repair technique, SketchFix,

which tightly integrates the traditionally separate phases of gener-

ation and validation of candidate programs that represent potential

fixes to consider for the given faulty program. Utilizing runtime

information, this integration effectively prunes a large portion of

the search space for the candidate fixes. The technique reduces pro-

gram repair to program synthesis by transforming faulty programs

to sketches at the AST node-level granularity. SketchFix employs

an execution-driven sketching engine to complete the sketches

using a backtracking search. The experimental results show that

SketchFix works well in manipulating expressions, and the fine-

grained transformation schemas it employs allow it to generate

high-quality patches.

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foundation

(NSF Grant Nos. CCF-1319688, CCF-1704790, and CCF-1718903).

We thank Mukul Prasad and Yuqun Zhang for discussions and

comments.

21

Towards Practical Program Repair with On-Demand Candidate Generation ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of

spectrum-based fault localization. In Testing - Practice and Research Techniques,
5th International Academic and Industrial Conference, TAIC PART 2007.

[2] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. 2017. Repairing event race errors by controlling
nondeterminism. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 289–299.

[3] ASM Java bytecode manipulation and analysis framework 2017. (2017). http:
//asm.ow2.org/ Accessed: 07-30-2017.

[4] Closure Compiler 2017. https://github.com/google/closure-compiler. (2017). Ac-
cessed: 2018-02-10.

[5] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification - 28th Inter-
national Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II. 383–401.

[6] Vidroha Debroy and W. Eric Wong. 2010. Using Mutation to Automatically Sug-
gest Fixes for Faulty Programs. In 3rd IEEE International Conference on Software
Testing, Verification and Validation, ICST 2010. 65–74.

[7] Favio Demarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic repair of buggy if conditions and missing preconditions with SMT. In
6th International Workshop on Constraints in Software Testing, Verification, and
Analysis, CSTVA 2014.

[8] Brian Demsky, Michael D. Ernst, Philip J. Guo, StephenMcCamant, Jeff H. Perkins,
and Martin C. Rinard. 2006. Inference and enforcement of data structure consis-
tency specifications. In International Symposium on Software Testing and Analysis,
ISSTA 2006. 233–244.

[9] Edit Distance 2017. (2017). https://en.wikipedia.org/wiki/Edit_distance Accessed:
07-30-2017.

[10] Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: dynamic and interactive synthesis of code snippets. In 36th
International Conference on Software Engineering, ICSE 2014. 653–663.

[11] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-Based Program Repair Using SAT. In Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS
2011. 173–188.

[12] Jinru Hua and Sarfraz Khurshid. 2016. A Sketching-Based Approach for Debug-
ging Using Test Cases. In Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016. 463–478.

[13] Jinru Hua and Sarfraz Khurshid. 2017. EdSketch: execution-driven sketching for
Java. In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017. 162–171.

[14] Java programming language agents 2017. (2017). https://docs.oracle.com/javase/
7/docs/api/java/lang/instrument/package-summary.html Accessed: 07-30-2017.

[15] JavaParser Transformation Tool 2017. http://javaparser.org. (2017). Accessed:
2017-07-30.

[16] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. 2015.
JSketch: sketching for Java. In 23th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE 2015. 934–937.

[17] JFreeChart Project 2017. (2017). http://www.jfree.org/jfreechart/ Accessed:
07-30-2017.

[18] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In 32th International Conference on
Software Engineering, ICSE 2010. 215–224.

[19] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. 2014. Vejovis: sug-
gesting fixes for JavaScript faults. In 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. 837–847.

[20] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of ex-
isting faults to enable controlled testing studies for Java programs. In International
Symposium on Software Testing and Analysis, ISSTA 2014. 437–440.

[21] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
Programs with Semantic Code Search. In 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015. 295–306.

[22] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In 35th International
Conference on Software Engineering, ICSE 2013. 802–811.

[23] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive Program
Repair. In Computer Aided Verification - 25th International Conference, CAV.

[24] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax- and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. 593–604.

[25] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1.
213–224.

[26] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges
in automatic software repair. Software Quality Journal 21, 3 (2013), 421–443.

[27] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2Fix: Automatically
Generating Bug Fixes from Bug Reports. In Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg,
March 18-22, 2013. 282–291.

[28] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017. 727–739.

[29] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In Proceedings of the 23th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE 2015. 166–178.

[30] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016. 298–312.

[31] Fan Long andMartin C. Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016.
702–713.

[32] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Hal-
fond. 2017. Automated repair of layout cross browser issues using search-based
techniques. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017. 249–260.

[33] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936–1964.

[34] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176–205.

[35] Matias Martinez and Martin Monperrus. 2016. ASTOR: a program repair library
for Java (demo). In International Symposium on Software Testing and Analysis,
ISSTA 2016. 441–444.

[36] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Look-
ing for Simple Program Repairs. In 37th International Conference on Software
Engineering, ICSE 2015. 448–458.

[37] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In 38th International
Conference on Software Engineering, ICSE 2016.

[38] Benjamin Mehne, Hiroaki Yoshida, Mukul Prasad, Koushik Sen, Divya Gopinath,
and Sarfraz Khurshid. 2018. Accelerating Search-based Program Repair. In 11th
IEEE Conference on Software Testing, Validation and Verification (ICST). To appear.

[39] Martin Monperrus. 2014. A critical review of "automatic patch generation learned
from human-written patches": essay on the problem statement and the evalua-
tion of automatic software repair. In 36th International Conference on Software
Engineering, ICSE 2014. 234–242.

[40] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In 35th International
Conference on Software Engineering, ICSE 2013. 772–781.

[41] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. 2014. Test-
driven synthesis. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2014. 43.

[42] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin C.
Rinard. 2009. Automatically patching errors in deployed software. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009. 87–102.

[43] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In 36th International
Conference on Software Engineering, ICSE ’14. 254–265.

[44] Zichao Qi, Fan Long, Sara Achour, and Martin C. Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In International Symposium on Software Testing and Analysis, ISSTA 2015.
24–36.

[45] Hesam Samimi, Max Schäfer, Shay Artzi, Todd D. Millstein, Frank Tip, and
Laurie J. Hendren. 2012. Automated repair of HTML generation errors in PHP
applications using string constraint solving. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 277–287.

[46] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015.
Automatic error elimination by horizontal code transfer across multiple appli-
cations. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015. 43–54.

[47] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2013. 15–26.

22

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jinru Hua, Mengshi Zhang, Kaiyuan Wang and Sarfraz Khurshid

[48] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing data structure
manipulations from storyboards. In 19th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2011. 289–299.

[49] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
cure worse than the disease? overfitting in automated program repair. In 23th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE 2015. 532–543.

[50] Armando Solar-Lezama. 2013. Program sketching. STTT 15, 5-6 (2013), 475–495.
[51] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From program ver-

ification to program synthesis. In 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010. 313–326.

[52] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. In International Symposium on Software Testing and Analysis, ISSTA 2013.
314–324.

[53] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016. 727–738.

[54] Yi Wei, Yu Pei, Carlo A. Furia, Lucas Serpa Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. 2010. Automated fixing of programs with contracts.
In International Symposium on Software Testing and Analysis, ISSTA 2010. 61–72.

[55] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging pro-
gram equivalence for adaptive program repair: Models and first results. In 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2013.

356–366.
[56] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically finding patches using genetic programming. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. 364–374.

[57] Qi Xin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches through
test case generation. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,
2017. 226–236.

[58] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. 416–426.

[59] Jifeng Xuan and Martin Monperrus. 2014. Learning to Combine Multiple Rank-
ing Metrics for Fault Localization. In IEEE International Conference on Software
Maintenance and Evolution, ICSME 2014. 191–200.

[60] Zijiang Yang, Jinru Hua, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Test-
Execution-Driven Sketching for Complex APIs. In 11th IEEE Conference on Soft-
ware Testing, Validation and Verification (ICST). To appear.

[61] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Ger-
many, September 4-8, 2017. 740–751.

23

