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ABSTRACT
Low power IoT suffers from performance degradation due to severe
cross-technology interference (CTI) such as WiFi. In this demo,
we present a novel ZigBee system that effectively maintains high
reliability even under saturated WiFi traffic. This is achieved by
placing a ZigBee packet on the guard band of ongoing, ambientWiFi
traffic. Guard band is designed to be kept clear of interference from
other WiFi, thereby safeguarding the ZigBee within. Our system
effectively captures WiFi (802.11b) guard band on the fly, using
physical layer information accessible on commodity ZigBee RF.
We demonstrate real-time guard band detection and robust ZigBee
communication, showcasing a practical pathway to operating low
power IoT under excessive CTI.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; •Net-
works → Wireless personal area networks;
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1 INTRODUCTION
The rapid growth of the wireless body has led to severe cross-
technology interference (CTI) in the 2.4GHz ISM band [4]. To tackle
this, recent studies [2, 3] explore the traffic pattern and exploit
the channel idle time for communication reliability. Among them,
WISE [3] leverages long idle time following the WiFi burst traffic,
due to exponential backoff. TIIM [2] uses machine learning based on
idle time prediction. These techniques commonly adopt statistical
models, inherently suffering from uncertainties (thus performance
unreliability) of CTI dynamics that inevitably occur in practice,
including varying traffic and user.

In this demo, we present a unique design that enables highly
robust ZigBee operation naturally immune from underlying CTI
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Figure 1: Our system places ZigBee transmission (red) in the
guard band of ongoing ambientWiFi (blue). This essentially
safeguards ZigBee from the WiFi interference, as WiFi de-
vices in proximity back off as per CSMA.

dynamics. As depicted in Figure 1, by placing 2MHz ZigBee signal
within the 3-5MHz WiFi guard band, ZigBee packets are essentially
safeguarded from other WiFi in proximity. Unlike state-of-the-art
designs, our technique deterministically identifies the idle channel
(i.e., the guard band) by observing the duration and the channel of
the WiFi traffic – thus achieving high reliability under CTI uncer-
tainty.

The system exploits physical layer information (i.e., I/Q) accessi-
ble in recent commodity ZigBee radio chips, to directly interpret
WiFi (802.11b) packet header. The guard band duration obtained
from the packet header strictly determines the available ZigBee
packet length that can be protected by the guard band. The sys-
tem is carefully designed to minimize computational overhead and
energy consumption under the small budget of low-end ZigBee
devices.
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Figure 2: (left) Safeguarded ZigBee on channel 11 sits in the
guard band ofWiFi channel 2. (right) The guard band is cap-
tured by the three, light-weight steps.

2 SYSTEM DESIGN
Here we discuss the three core technical elements of our system:
WiFi bit decoding, detection, and guard band identification, fol-
lowed by the safeguarded transmission.
WiFi Bit Decoding. The key technique of our design is interpret-
ing 802.11b WiFi signal with 22MHz bandwidth using ZigBee re-
ceiver limited to 2MHz. As shown in Figure 2, WiFi bit decoding is
the first step to achieve the safeguarded ZigBee. The WiFi signal
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Figure 3: WiFi bits ‘1’ and ‘0’ are projected to phase differ-
ences ‘π ’ and ‘0’ at the ZigBee receiver, respectively.

flows into the ZigBee RF front-end and passes through the 2MHz
low pass filter (LPF), leaving only low frequency components. Phys-
ical layer samples (i.e., I/Q) are collected at 1MHz sampling rate
at ZigBee channel 12, which is the leftmost channel overlapping
with the WiFi channel that yields the guard band of interest. Fig-
ure 3 illustrates that the phase difference directly indicates WiFi
bits. Specifically, ‘π ’ and ‘0’ phase differences indicate WiFi bits ‘1’
and ‘0’, respectively. From this, our system is able to interpret WiFi
signal.
WiFi Detection.WiFi packet detection is based on the aforemen-
tioned WiFi decoding technique. That is, WiFi packets are captured
by comparing the decoded input bit with the unique pattern of
the WiFi preamble bits. To accomplish this in an efficient manner,
our design matches 38-bit subset of the WiFi preamble, where the
subset is carefully chosen so that it not only enables extremely light-
weight computation of O(1) [1], but also achieves high reliability
of under 3.6 × 10−10% false positive and 4.3% false negative rates,
respectively.
Guard Band Identification. The frequency (i.e., ZigBee channel)
and duration of the guard band are retrieved from the channel and
length of the WiFi packet. Among them, the WiFi channel is found
by observing the leftmost and rightmost ZigBee channels overlap-
ping with the WiFi channel. WiFi packet length is directly decoded
from the WiFi packet header. From this, our design properly sets
the length and the channel of the ZigBee packet.

3 DEMONSTRATION
This section discusses the demonstration plan showing the safe-
guarded ZigBee communication under saturated interference envi-
ronment. The demonstration video is available at https://youtu.be/
B8guFNCw2Ns. Figure 4b shows the implementation of our system
using three commercial off-the-shelf devices: (i) ZigBee RF front-
end (AT86RF215), (ii) Microcontroller (SAM4SD32C), and (iii) FPGA
(Cyclone V). The I/Q samples provided from the RF front-end are
sent to the microcontroller, where the FPGA serves as the interface
converter between the two. That is, the FPGA is not involved in
any computation – the entire steps in Section 2 are performed only
within the microcontroller, showing the feasibility of the design on
low-end IoT devices.

Figure 4a shows the demonstration setup. ZigBee sender (TX)
and receiver (RX) pair are installed on the table, where the sender
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Figure 4: (a) ZigBee communication reliability under heavy
WiFi traffic (PC playing YouTube video) is demonstrated. (b)
Our system consists of three off-the-shelf components. (c)
Spectrogram and PRR are shown for visual demonstration
of the system’s real-time operation and performance.

runs our design and the receiver is a legacy ZigBee. We also place a
laptop nearby playing high-quality video clip on YouTube, generat-
ing heavy WiFi interference. The TX node detects ambient 802.11b
packets in the air and transmits the packet over WiFi guard bands.
As shown in Figure 4c, two monitors display the real-time opera-
tion of our design, through spectrogram and packet reception ratio
(PRR) of the ZigBee packets. A USRP (set under the table) is used
to show the spectrogram, which reflects the radio activities around
the guard band and the corresponding WiFi channel. This visually
demonstrates that our system indeed successfully locates the Zig-
Bee packet within the WiFi guard band. The PRR validates that the
system safeguards ZigBee communication and ensures reliability.
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