This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

CNN Driven Sparse Multi-Level B-spline Image Registration

Pingge Jiang

James A. Shackleford

Department of Electrical and Computer Engineering
Drexel University
{pingge, shack}@drexel.edu

Abstract

Traditional single-grid and pyramidal B-spline param-
eterizations used in deformable image registration require
users to specify control point spacing configurations capa-
ble of accurately capturing both global and complex local
deformations. In many cases, such grid configurations are
non-obvious and largely selected based on user experience.
Recent regularization methods imposing sparsity upon the
B-spline coefficients throughout simultaneous multi-grid
optimization, however, have provided a promising means
of determining suitable configurations automatically. Un-
fortunately, imposing sparsity on over-parameterized B-
spline models is computationally expensive and introduces
additional difficulties such as undesirable local minima in
the B-spline coefficient optimization process. To overcome
these difficulties in determining B-spline grid configura-
tions, this paper investigates the use of convolutional neu-
ral networks (CNNs) to learn and infer expressive sparse
multi-grid configurations prior to B-spline coefficient opti-
mization. Experimental results show that multi-grid con-
figurations produced in this fashion using our CNN based
approach provide registration quality comparable to L -
norm constrained over-parameterizations in terms of exact-
ness, while exhibiting significantly reduced computational
requirements.

1. Introduction

Deformable image registration is a task that attempts to
precisely reproduce the spatial transform which maps two
images collected at different points in time or across dif-
ferent modalities into a common coordinate system. The
computation of such spatial transforms is inherently ill-
posed; however, the value of recovering such transforms to
the medical community alone, as they relate to quantify-
ing anatomical motion, has motivated extensive formaliza-
tion of the problem over the past two decades. This pursuit
has led to the investigation of deformation models such as
thin-plate splines [2], B-splines [18], optical flow [26], and

contour driven methods [11]. The ill-posed nature of the
problem has driven the development of representative ob-
jective functions for parameter optimization [24, 6, 29, 28],
and the complexity of the problem has led to improvements
in accuracy and computational efficiency [20, 14, 21] in the
interest of improving viability for routine clinical use.

Due to their robustness and suitability for performing
multi-modal registration, B-spline based models have been
widely investigated [17, 16, 9, 28, 25, 20, 5]. In all cases,
the selection of a B-spline control grid configuration ca-
pable of expressing the desired underlying transformation
is an integral aspect of these methods, which ultimately
relies upon the degree and nature of the underlying im-
age deformation attempting to be recovered. Consequently,
a control grid configuration capable of parameterizing the
transform is generally selected manually by the operator af-
ter inspection of the two images undergoing registration.
Fine grids with closely separated control points are ideal
for enabling the expression of complex local deformations
whereas coarse grids with further separation are more suit-
able for recovering larger, gradual deformations. The use
of a single fine grid providing an adequately high degree
of freedom to express the underlying transform would be
ideal, however the deviation of current similarity metrics
from the true, and unknown, underlying objective function
coupled with the over parameterization provided by such a
grid of fine spatial resolution results in a highly non-convex
B-spline coefficient optimization process that is suscepti-
ble to being caught in false local minima, resulting in poor
transform recovery.

Pyramidal B-spline registration [10, 19, 27, 30, 15] is a
commonly employed approach to addressing this issue. In
such a scheme, the process begins with performing param-
eter optimization using a coarse grid. Once the stopping
criteria is met the coarse grid is discarded, a finer grid is
employed, the parameters obtained from the coarser grid
optimization are fit to the new finer grid, and the optimiza-
tion process continues. This process is continued over sev-
eral levels of increasing grid resolution until the operator is
satisfied. The motivation driving the use of such pyramidal
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grid methods is the assumption that all grids exhibit gradi-
ents that drive the optimization towards the proximity of the
desired objective function minima under the finest control
grid configuration, and although additional false local min-
ima are introduced with each increase in grid resolution, the
optimization process is unlikely to arrive at such solutions
due to being driven away from them through the prior op-
timization of the coarser grids in the pyramid. In such a
fashion, large sweeping deformations are recovered early in
the pyramid and complex local deformations are recovered
in the later, finer levels of the pyramid. However, as each
layer in the pyramid is optimized independently, image re-
gions exhibiting large sweeping motions that are adequately
captured at the coarser levels become over parameterized
at later levels in the pyramid. For such regions, which are
generally larger regions of relatively uniform intensity, this
increase in parameterization can result in the optimizer pro-
ducing physically unrealistic solutions due to the decreased
spatial extent of the B-spline basis local support, which im-
poses first order continuity in the resulting transform. While
this decoupling of adjacent regions is desirable for image
regions exhibiting complex local deformations, it is equally
undesirable for regions lacking in such complexity. As a
result, the pyramidal B-spline grid configuration designed
by the operator is vitally important in producing transforms
adequately representative of the deformation that occurred
between the two images involved in the registration process.

The over parameterization of the underlying transform
provided by any given B-spline control grid is evidenced
by inspecting the sparsity of the B-spline basis coefficient
values produced by the optimizer for a successful registra-
tion. Figure 1 shows coefficient values for both fine and
coarse control grids after arriving at physically meaningful
registrations via optimization. Demonstrably, many of these
coefficients are found to be superfluous, taking on values
at or near zero. Consequently, Shi et al. [23, 22] have in-
vestigated the simultaneous optimization of multi-level B-
spline grids, coupling them through the L;-norm sparsity
constraint. Inspection of the resulting B-spline grids re-
veals large sweeping deformations being parameterized by
the coarser level grids and local complex deformations be-
ing expressed by the finer grids. Furthermore, noise is sup-
pressed in the resulting transforms due to the imposition
of sparsity. Pragmatically, however, the simultaneous op-
timization of multiple grids is a slow and memory intensive
process, which is further encumbered by the evaluation of
the Li-norm.

In this paper, we introduce a convolutional neural net-
work (CNN) architecture capable of learning and later in-
ferring the sparsity of multi-level B-spline grid configura-
tions based on features present in the input image set prior to
parameter optimization. The simultaneous optimization of
multiple grids under the L;-norm can be viewed as a means
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Figure 1: Coefficient values for both (a) fine and (b) coarse
control grids after optimization. Many coefficients are at or
near zero, demonstrating sparsity.

of simultaneously determining zero value control points
while solving for optimal B-spline basis coefficients. The
approach detailed in this paper divides this process into two
distinct steps. Control points ill-suited for parameterization
of the deformation transform under recovery are learned by
a CNN using training data generated from L;-norm con-
strained multi-level B-spline grid registrations. Once such a
CNN is trained to recognize the support required to express
the deformation across all regions of the image, control
point coefficients deemed superfluous by the CNN are con-
strained to zero while remaining coefficients are optimized
to arrive at the transform best describing the image defor-
mation. Experimental results show approximately a 90%
reduction in optimization parameters while overall registra-
tion quality is improved.

2. Related work

The use of multiple grids of varying spatial resolution
has been throughly investigated due to the sensitivity of
the optimization process to local minima while attempt-
ing to accurately recover complex local deformations. An-
dronache et al. [1] introduce a non-rigid registration algo-
rithm that classifies sub-image consistency using the Moran
information consistency test, the results of which are used
to drive a hierarchical subdivision procedure. A different
similarity metric is then used for each resulting level in or-
der to provide robust and computationally efficient match-
ing between corresponding image regions. Buerger ez al. [3]
propose a method that adaptively sub-divides image regions
based on the presence of image features and motion com-
plexity. Image regions exhibiting similarity within these cri-
teria are coupled into single registration components. Work
by Jiang [8] introduces an octree representation for groups
of aligned B-spline control grids providing subdivided sup-
port regions when ordered from coarse to fine. Heuristic
features from image pairs undergoing registration are used
to construct a pruned octree representing an effectively non-
uniform grid deemed best suited for recovering the image
deformation. Shi et al. [23, 22] introduce a multi-level B-
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Figure 2: Complete workflow. The training process consists of using pyramidal B-splines regularized by the L;-norm to
generate ground truth training data. Preprocessing is employed to generate input channels corresponding to grid regions
within the pyramid. The preprocessing for testing data is performed similarly with the resulting grid configurations produced
by the network being subjected to a non-regularized optimization process.

spline parameterization where multiple grids of increasing
spatial resolution are optimized simultaneously. The solu-
tion is regularized by the addition of bending energy and
parameter sparsity penalties to the common sum of squared
differences (SSD) similarity metric. The use of the sparsity
metric, in this case, forgoes the need for feature driven grid
level assignment of image sub-regions as it is determined
automatically through the optimization process.

Most recently, CNN architectures have begun to inspire
new approaches to image registration. Miao et al. [13] use
a regression model that recursively estimates rigid transfor-
mation parameters for image regions. Instead of optimizing
parametric transformation model parameters based on a cost
function, the proposed method uses CNN regressors to ex-
tract image features, which are used to predict transforma-
tion parameters for image correspondence. Liao et al. [12]
repose the registration problem as a series of actions that
can be performed by an entity they deem the agent. This
agent consists of two CNNs, the first of which possesses a
large field of view (FOV) with a focus on obtaining global
anatomical understanding and a coarse global alignment.
The second CNN has a more limited FOV and is tasked
with performing finer local alignment.

In this paper, we propose a CNN driven multi-grid B-
spline method that focuses on learning the most suitable
parameterization for describing the deformable transform
between two images prior to the parameter optimization
process. To this end, the proposed CNN is trained using
deformable registrations normalized by the L;-norm in a
fashion similar to that performed by Shi er al. [22]. Once
trained, we demonstrate that multi-grid configurations pos-
sessing far fewer parameters are generated by the CNN
given an input image pair without sacrificing registration
quality while dramatically reducing the time and memory

required by the subsequent optimization process.

3. L;-norm Regularized Registration

Here we briefly describe the L;-norm regularized regis-
tration process introduced by Shi et al. [22], which is em-
ployed to generate data referenced throughout the remain-
der of this paper as both training data and as a basis for
results comparison. Given a three dimensional thoracic CT
image F' and a corresponding CT image M acquired at dif-
ferent respiratory phases, the non-rigid B-spline registration
aims to recover the deformation field ¢’ that most accurately
maps voxels in M into the coordinate system of F'. This is
accomplished by optimizing a cost function C' such that:

%  arg min C (F M, 13) 1)
5

where P represents B-spline coefficients to be optimized
and U is the resulting vector field, parameterized by P,
mapping M into F. The total cost function C' consists of
three additive terms in order to recover a globally acceptable
deformation field: a similarity term measuring the voxel-
wise sum of squared difference (SSD) between F' and M,
denoted as Eg; a bending energy penalty enforcing second-
order smoothness in v, denoted as Er; and the L{-norm
penalty enforcing coupled multi-grid sparsity. The com-
plete cost function C' can be expressed as [23]:

C = Es(F.M,P) + Az Y Er(P)+ As HPH

where A\ and \g weigh the smoothness and sparsity penal-
ties, respectively. As illustrated by Figure 3, the inclusion
of the L;-norm penalty serves to provide coupling between
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the various grid layers while enforcing a degree of noise
suppression in the resulting deformation vector field. As a
consequence of this coupling, subsets of P providing sup-
port over a given subregion of the image will be largely con-
strained to a single grid level having the greatest suitability
for expressing the deformation field in that subregion. In
the case of the uniform cubic B-spline basis, every voxel in
the N-dimensional image volume is supported by the ten-
sor product of the four neighboring control points in each of
the IV grid dimensions. The deformation field ¥ is param-
eterized by B-spline basis coefficients P, which provides
a sparse representation of ¢ while additionally introducing
first order continuity. The dense, voxel-wise deformation
field of ¥/ at each level L may be interpolated using the B-
spline basis and the set P such that:

3,3,3

Z By (u) By, (v) B (w) Pig1, jym, k+n
(1,m,n)=0
3)

in the z-direction, and similarity for y and z directions.
Here, (i,7j, k) denote the coordinates of a given voxel in
F, (u,v,w) are the local coordinates of the voxel within
its housing support region normalized within [0, 1] used for
evaluating the B-spline basis function, and B is the uniform
cubic B-spline basis function. For a multi-level scheme con-
sisting of M grids, the final deformation field is the summa-
tion of local deformation fields from each grid level:

vy, (x) =

Ux = UL, “4)

coarse

Figure 3: Multi-level 2D B-spline grid. The L;-norm spar-
sity constraint couples the various levels, resulting in levels
best suited for parameterizing a given local set of deforma-
tion vectors having non-zero control points (black) while
control points providing support in less suitable levels are
driven to zero (white) through the optimization process.

4. Learning Grid Configurations with CNNs
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Figure 4: CNN architecture for each B-spline control grid
level. The CNN for level 1 accepts 3 input channels of di-
mensions 64 x 64 x 16. The CNN for level 2 accepts 3 input
channels of of 32 x 32 x 8. The CNN for level 3 accepts 3
input channels of 16 x 16 x 4. Fewer layers are used for finer
grids due to the decreased field of view within the smaller
input patches.

For a given pair of image volumes to undergo deformable
registration, the proposed method, as illustrated in Figure 2,
aims to accurately predict the zero valued coefficients in an
over parameterized multi-level uniform cubic B-spline grid
configuration. To this end, a CNN architecture is trained us-
ing the B-spline control point coefficients and grid config-
urations produced by L;-norm regularized registrations. In
this particular study, we use 4D CT thoracic image volume
sets capturing the respiration cycle. Each 4D CT dataset
consists of ten 3D CT volumes, where each 3D volume cap-
tures the thorax at equally spaced phases throughout one full
respiration cycle. We perform L;-norm regularized regis-
tration between image volumes at the extrema of the res-
piration cycle: initial full-exhale to full-inhale and again
between full-inhale to final full-exhale; thereby using only
three of the full ten phases available to produce two regis-
trations. The resulting sparse B-spline control grids con-
sist largely of zero valued control point coefficients, which
we will call “locked control points,” as well as a minor-
ity of non-zero valued coefficients, which we will call “free
control points.” These “free” and “locked” designations for
control points form the class labels for the CNN training
data. Preprocessing is performed on the associated image
volumes to produce feature channels that will serve as in-
puts to the CNN input layer. One CNN is trained per B-
spline control grid layer. For example, the CNN architec-
ture for the three layer grids experimentally validated in this
paper is illustrated in Figure 4. Once trained, unregistered
image pairs undergo preprocessing, are fed into each CNN,
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a multi-level grid with classified control points is produced,
and the deformation field ¥* between the two images is pro-
duced by optimizing “free” control point coefficients while
“locked” coefficients are held at zero.

4.1. Preprocessing & CNN Inputs

Input channels to the proposed CNN architecture con-
sist of the unaltered fixed image F' as well as two other
input channels derived from the fixed and the moving im-
ages in combination. These two additional inputs are gen-
erated in order to expose meaningful information indicat-
ing the severity and nature of the deformation between F'
and M to the convolution layers of the CNN. Specifically,
three input channels are provided to the input layer of the
CNN: the unaltered fixed image F', an estimation of optical
flow magnitude, and a difference image. The estimation of
optical flow magnitude is generated by running the Lucas-
Kanada method using F' and M for a single iteration. The
difference image is simply the result of subtracting the fixed
image from the moving image, F' — M.

4.2. Generation of Training Data

Multi-layer B-spline control grids with control points la-
beled as either “free” or “locked” are generated by perform-
ing B-spline registration using the SSD similarly metric pe-
nalized by bending energy (Ar = 0.001) and the L;-norm
(As = 0.04). Three grid levels of increasing control point
resolution are used with each possessing an even support re-
gion subdivision of the previous coarser level. Specifically,
Level 1 consists of 35 x 35 x 35 control points, Level 2
consists of 67 X 67 x 67 control points, and Level 3 consists
of 131 x 131 x 131 control points. For the 512 x 512 x 128
voxel input images undergoing registration in this study, this
translates to support regions of 16 x 16 x 4, 8 x 8 x 2, and
4 x 4 x 1 voxels for Levels 1, 2, and 3, respectively.

Control point coefficient values P minimizing (2) are
estimated via quasi-Newtonian optimization (L-BFGS-B).
The efficiency of the cost function gradient 9C'/ OP calcula-
tion is markedly accelerated by employing the map-reduce
framework proposed by Jiang [7], which eliminates unnec-
essary redundant loads of intermediate voxel-wise 0C'/0U
calculations by generating so called “Z-values”:

Moz oC
ngn,l,m,n = B (U) B, (U) B, (w)
(eoy=0 ov(z, y, 2)

®)
which weight and sum each voxel-wise C'/9 value within
a local support region by all 64 possible piecewise B-spline
basis function weighting combinations; thereby resulting
in 64 “Z-values” per local support region. The computa-
tion of the cost function gradient 0C'/ AP for any given

control point is subsequently achieved by mapping the 64

Figure 5: Visualization of control point labels produced by a
typical L;-norm regularized registration. (a) Coronal view
of the 512 x 512 x 128 voxel fixed CT image. (b-d) Con-
trol grid slices visualizing “free” control points in white
and “locked” control points in black for the (b) Level 1:
35 x 35 x 35 control point grid, (c) Level 2: 67 x 67 x 67
control point grid, and (d) Level 3: 131 x 131 x 131 control
point grid.

“Z-values” corresponding to the control point and reducing
them via summation to a single value.

Once the registration process has completed, control
points possessing zero valued B-spline coefficients are con-
sidered “locked” and all other control points are considered
“free.” Figure 5 visualizes a typical example of “locked”
and “free’ control points produced by the registration pro-
cess. CNN training patches are next extracted from the three
preprocessed input channels, namely the unaltered fixed im-
age F, the estimation of the optical flow magnitude, and the
difference image F' — M. One training patch for each in-
put channel is extracted per labeled control point produced
by the Li-norm regularized registration process. As illus-
trated in Figure 6, each extracted training patch is centered
about a control point, has dimensions corresponding to the
extent of the control point’s local support in the voxel co-
ordinate system, and is labeled either “free” or “locked” in
correspondence with the control point at its center.

5. Experimental Results

The experiments detailed in this section were performed
on a machine equipped with dual HyperThreaded 3.2 GHz
Intel Xeon OctoCore E5-2630v3 processors, 512 GB DDR4
RAM, and dual NVIDIA GeForce GTX 980 GPUs. Tensor-
flow was used as the backend for the neural network archi-
tecture.

Here we investigate the performance of the proposed al-
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Figure 6: Training patch extraction. A uniform cubic B-
spline grid superimposed upon a coronal CT image slice.
Basis functions shown in periphery to demonstrate local
support. The local support region for the control point in
yellow is illustrated by the surrounding yellow box. This
sub-image within the box is extracted as a training patch.

gorithm for a three level B-spline grid where Level 1 con-
sists of 35 x 35 x 35 control points, Level 2 consists of
67 x 67 x 67, and Level 3 consists of 131 x 131 x 131
control points. The image volume data used in the training
and validation consists of 4D thoracic datasets, each captur-
ing a single full respiration phase. This data was obtained
from two different sources. The first source is the DIR-Lab
4D CT lung dataset [4], which we will refer to as “Set 01.”
This is supplemented by anonymized thoracic 4D CT im-
age sets provided by clinical collaborators, which we will
refer to as “Set 02.” Set 01 provides 10 pairs of inhale and
exhale image volumes from 5 different patients having ax-
ial slice dimensions of 512 x 512 voxels with the number
of axial slices varying between 120 and 136 due to acquisi-
tion inconsistencies. Set 02 provides 12 pairs of inhale and
exhale images from 6 different patients having axial slice
dimensions of 512 x 512 voxels with the number of axial
slices varying from 128 to 152, again, due to acquisition
inconsistency. Image volumes were resampled uniformly
to 512 x 512 x 128 voxels with an intervoxel spacing of
1.16mm x 1.16mm x 2.5mm. The total data available
across the two sets provides 943,250 control point centric
patches in grid Level 1; 6,616,786 patches in grid Level 2;
and 49,458,002 patches in grid Level 3.

Control point centric image patches extracted from four
pairs of images from Set 01 and four pairs of images from
Set 02 are used as CNN training data. Due to the high de-
gree of sparsity exhibited by control points optimized un-
der the L;i-norm, the number of available training patches
corresponding to the “locked” class is much greater than
the number of training patches in the “free” class—this ex-
treme imbalance can be seen in Figure 5. Consequently, the
number of training patches corresponding to the “locked”

class are reduced to meet that of the “free” class. A ran-
dom sampling of training patches from the “locked” class
was therefore used to balance the number of positive and
negative examples in an unbiased fashion. In total, the
number of used training patches for grid Level 1 CNN is
64,564 (32,282 positive and 32,282 negative); 233,250 for
grid Level 2 (again, evenly balanced); and 679,256 for grid
Level 3 (evenly balanced). Patches from other images are
used for testing only without random sampling.

The L;-norm registration used to obtain control point
grid class labels was ran for 20 L-BFGS-B optimization
iterations. The vector fields produced by this same regis-
tration is also later used as a basis for comparing our algo-
rithm’s performance. Neural network models are trained for
20 epoches with a batch size of 200. The Adam optimizer
is used to optimize the categorical cross entropy function.

5.1. Optimization Parameter Reduction

As a baseline, the L;-norm regularized three-level grid
configuration requires the optimization of 128,625 B-spline
basis coefficients in grid Level 1; 902,289 in Level 2; and
6,744,273 in Level 3—totaling in 7,775,187 optimization
parameters. This optimization burden is greatly reduced
by CNN control point classification. Because all test im-
ages result a different number control points in the “free”
class, average control points per layer are reported. The
average number of B-spline basis coefficients requiring op-
timization is reduced to 15,173 for grid Level 1; 60,081 for
Level 2; and 355,390 for Level 3—totaling in 430,644 co-
efficients on average. Averages for both datasets across all
three grid levels are provided in Table 1.

Dataset | Before CNN | After CNN | Reduction
L1 Set 01 128,625 17,246 86%
Set 02 128,625 13,618 89%
L2 Set 01 902,289 59,506 93%
Set 02 902,289 60,512 93%
L3 Set 01 6,744,273 397,404 94%
Set 02 6,744,273 323,880 95%

Table 1: Average number of B-spline parameters requiring
optimization with and without CNN control point classifi-
cation.

5.2. Prediction Quality

Figure 7(b-d, h-j, n-p) shows control point class predic-
tion maps for three different randomly selected patients.
Taking the control point labels produced by the L;-norm
regularized registration as the ground truth and the “free”
class label to be positive, pixels shown in gray are true pos-
itives, those shown in purple are false positives, and those
in cyan are false negatives. As illustrated, although predic-
tions at finer grid levels produce an increased number of
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Figure 7: Illustration of CNN control point classification accuracy. (a) overlayed fixed and moving images prior to registra-
tion, (b) prediction map for grid Level 1 consisting of 35 x 35 x 35 control points, (c) map for grid Level 2 with 67 x 67 x 67
control points, and (d) map for grid Level 3 with 131 x 131 x 131 control points. Prediction maps are gray when both the
L;-norm and CNN agree the coefficient is “free,” cyan when the L;-norm votes “free” and the CNN votes “locked,” blue
when both L1 norm and CNN agre that a coefficient is “locked,” and purple when the L;-norm votes “locked” and the CNN
votes “free”. (e) is the difference between the fixed image and the transformed moving image for the CNN driven registration
process, and (f) is the same difference image for the L;-norm driven process. (g-1) and (m-r) show the same data for two

additional randomly selected datasets among those tested.

false positives, the majority of true positives are success-
fully classified by the CNN.

avg | Dataset | SN | SP AC | AUC
L1 Set01 | 091 | 0.94 | 0.94 | 0.94
Set02 | 0.94 | 0.97 | 0.97 | 0.96
L2 Set01 | 0.91 | 0.97 | 0.97 | 0.95
Set02 | 092 | 097 | 0.97 | 0.95
L3 Set01 | 0.89 | 0.95 | 0.95 | 0.93
Set02 | 0.90 | 0.96 | 0.96 | 0.94

Table 2: CNN classification performance quantified in
terms of sensitivity (SN), specificity (SP), accuracy (AC),
and area under curve (AUC) for each of the three grid levels
tested.

Using the total number of true positive, true negative,
false positive, and false negative control point classification
instances, the classification performance of the CNN is ex-
pressed within Table 2 in terms of sensitivity:

TP

N=—""__
SN = TP FN

(6)

specificity:
TN
P=—— 7
S FP+TN ™
and accuracy:
TP+TN
AC*TP+FN+FP+TN ®

The average sensitivity, specificity, accuracy, and area
under the receiver operating characteristic curve (AUC) are
shown in Table 2 for each of the three grid levels employed
in our thoracic 4D CT validation study. Prediction results
are generally above 90% with an average accuracy of 95%
or better for each grid level. Sources of error may include
defects in the ground truth data. For example, ground truth
deformation fields may potentially be improved on a case
by case basis by extending the stopping condition beyond
20 iterations or by fine tuning the cost function parameters
A and A\g.

5.3. Registration Results

Due to the decreased number of registration parameters
requiring optimization under the proposed CNN driven al-
gorithm coupled with the expressiveness of “free” class pa-
rameters, the SSD similarity metric decreased more rapidly
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Figure 8: Comparison of registration quality between L;-
norm regularized multi-grid registration and the proposed
CNN-based method. Results shown for nine randomly se-
lected thoracic registrations: (a-f) full exhale to full inhale
and (g-i) full inhale to full exhale.

in a fewer number of iterations when compared to the L;-
norm regularized baseline method. Nine randomly selected
thoracic image registration results are shown in Figure 8
to illustrate the change in the SSD similarly metric with
each L-BFGS-B optimization iteration. Each registration
is performed using both L;-norm regularized registration
(shown in blue) and the proposed CNN driven registration
(shown in red). The convergence rate of the proposed CNN
method is faster for all nine cases. Additionally, higher
quality registrations are achieved within these fewer iter-
ations as shown in Figure 7(e, k, and q). In two cases,
Figure 8(e and f), the L;-norm regularized registration be-
came prematurely trapped in local minima, whereas the
CNN-based sparse B-spline managed to continue refining
the quality of the deformation field.

6. Conclusion

In this paper we introduce a convolutional neural net-
work driven multi-grid B-spline registration method. CNNs
are used to to construct multi-level B-spline grids with pre-
determined sparsity prior to registration. This architecture
not only addresses issues associated with the sequential, in-
dependent optimization of increasingly fine grid levels as
performed by traditional hierarchical B-spline based meth-
ods, but also exhibits improved optimization efficiency and
avoidance of local minima.
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