


grid methods is the assumption that all grids exhibit gradi-

ents that drive the optimization towards the proximity of the

desired objective function minima under the finest control

grid configuration, and although additional false local min-

ima are introduced with each increase in grid resolution, the

optimization process is unlikely to arrive at such solutions

due to being driven away from them through the prior op-

timization of the coarser grids in the pyramid. In such a

fashion, large sweeping deformations are recovered early in

the pyramid and complex local deformations are recovered

in the later, finer levels of the pyramid. However, as each

layer in the pyramid is optimized independently, image re-

gions exhibiting large sweeping motions that are adequately

captured at the coarser levels become over parameterized

at later levels in the pyramid. For such regions, which are

generally larger regions of relatively uniform intensity, this

increase in parameterization can result in the optimizer pro-

ducing physically unrealistic solutions due to the decreased

spatial extent of the B-spline basis local support, which im-

poses first order continuity in the resulting transform. While

this decoupling of adjacent regions is desirable for image

regions exhibiting complex local deformations, it is equally

undesirable for regions lacking in such complexity. As a

result, the pyramidal B-spline grid configuration designed

by the operator is vitally important in producing transforms

adequately representative of the deformation that occurred

between the two images involved in the registration process.

The over parameterization of the underlying transform

provided by any given B-spline control grid is evidenced

by inspecting the sparsity of the B-spline basis coefficient

values produced by the optimizer for a successful registra-

tion. Figure 1 shows coefficient values for both fine and

coarse control grids after arriving at physically meaningful

registrations via optimization. Demonstrably, many of these

coefficients are found to be superfluous, taking on values

at or near zero. Consequently, Shi et al. [23, 22] have in-

vestigated the simultaneous optimization of multi-level B-

spline grids, coupling them through the L1-norm sparsity

constraint. Inspection of the resulting B-spline grids re-

veals large sweeping deformations being parameterized by

the coarser level grids and local complex deformations be-

ing expressed by the finer grids. Furthermore, noise is sup-

pressed in the resulting transforms due to the imposition

of sparsity. Pragmatically, however, the simultaneous op-

timization of multiple grids is a slow and memory intensive

process, which is further encumbered by the evaluation of

the L1-norm.

In this paper, we introduce a convolutional neural net-

work (CNN) architecture capable of learning and later in-

ferring the sparsity of multi-level B-spline grid configura-

tions based on features present in the input image set prior to

parameter optimization. The simultaneous optimization of

multiple grids under the L1-norm can be viewed as a means
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Figure 1: Coefficient values for both (a) fine and (b) coarse

control grids after optimization. Many coefficients are at or

near zero, demonstrating sparsity.

of simultaneously determining zero value control points

while solving for optimal B-spline basis coefficients. The

approach detailed in this paper divides this process into two

distinct steps. Control points ill-suited for parameterization

of the deformation transform under recovery are learned by

a CNN using training data generated from L1-norm con-

strained multi-level B-spline grid registrations. Once such a

CNN is trained to recognize the support required to express

the deformation across all regions of the image, control

point coefficients deemed superfluous by the CNN are con-

strained to zero while remaining coefficients are optimized

to arrive at the transform best describing the image defor-

mation. Experimental results show approximately a 90%

reduction in optimization parameters while overall registra-

tion quality is improved.

2. Related work

The use of multiple grids of varying spatial resolution

has been throughly investigated due to the sensitivity of

the optimization process to local minima while attempt-

ing to accurately recover complex local deformations. An-

dronache et al. [1] introduce a non-rigid registration algo-

rithm that classifies sub-image consistency using the Moran

information consistency test, the results of which are used

to drive a hierarchical subdivision procedure. A different

similarity metric is then used for each resulting level in or-

der to provide robust and computationally efficient match-

ing between corresponding image regions. Buerger et al. [3]

propose a method that adaptively sub-divides image regions

based on the presence of image features and motion com-

plexity. Image regions exhibiting similarity within these cri-

teria are coupled into single registration components. Work

by Jiang [8] introduces an octree representation for groups

of aligned B-spline control grids providing subdivided sup-

port regions when ordered from coarse to fine. Heuristic

features from image pairs undergoing registration are used

to construct a pruned octree representing an effectively non-

uniform grid deemed best suited for recovering the image

deformation. Shi et al. [23, 22] introduce a multi-level B-
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Figure 2: Complete workflow. The training process consists of using pyramidal B-splines regularized by the L1-norm to

generate ground truth training data. Preprocessing is employed to generate input channels corresponding to grid regions

within the pyramid. The preprocessing for testing data is performed similarly with the resulting grid configurations produced

by the network being subjected to a non-regularized optimization process.

spline parameterization where multiple grids of increasing

spatial resolution are optimized simultaneously. The solu-

tion is regularized by the addition of bending energy and

parameter sparsity penalties to the common sum of squared

differences (SSD) similarity metric. The use of the sparsity

metric, in this case, forgoes the need for feature driven grid

level assignment of image sub-regions as it is determined

automatically through the optimization process.

Most recently, CNN architectures have begun to inspire

new approaches to image registration. Miao et al. [13] use

a regression model that recursively estimates rigid transfor-

mation parameters for image regions. Instead of optimizing

parametric transformation model parameters based on a cost

function, the proposed method uses CNN regressors to ex-

tract image features, which are used to predict transforma-

tion parameters for image correspondence. Liao et al. [12]

repose the registration problem as a series of actions that

can be performed by an entity they deem the agent. This

agent consists of two CNNs, the first of which possesses a

large field of view (FOV) with a focus on obtaining global

anatomical understanding and a coarse global alignment.

The second CNN has a more limited FOV and is tasked

with performing finer local alignment.

In this paper, we propose a CNN driven multi-grid B-

spline method that focuses on learning the most suitable

parameterization for describing the deformable transform

between two images prior to the parameter optimization

process. To this end, the proposed CNN is trained using

deformable registrations normalized by the L1-norm in a

fashion similar to that performed by Shi et al. [22]. Once

trained, we demonstrate that multi-grid configurations pos-

sessing far fewer parameters are generated by the CNN

given an input image pair without sacrificing registration

quality while dramatically reducing the time and memory

required by the subsequent optimization process.

3. L1-norm Regularized Registration

Here we briefly describe the L1-norm regularized regis-

tration process introduced by Shi et al. [22], which is em-

ployed to generate data referenced throughout the remain-

der of this paper as both training data and as a basis for

results comparison. Given a three dimensional thoracic CT

image F and a corresponding CT image M acquired at dif-

ferent respiratory phases, the non-rigid B-spline registration

aims to recover the deformation field v⃗ that most accurately

maps voxels in M into the coordinate system of F . This is

accomplished by optimizing a cost function C such that:

v⃗∗ ← argmin
P⃗

C
(

F,M, P⃗
)

(1)

where P⃗ represents B-spline coefficients to be optimized

and v⃗∗ is the resulting vector field, parameterized by P⃗ ,

mapping M into F . The total cost function C consists of

three additive terms in order to recover a globally acceptable

deformation field: a similarity term measuring the voxel-

wise sum of squared difference (SSD) between F and M ,

denoted as ES ; a bending energy penalty enforcing second-

order smoothness in v⃗∗, denoted as ER; and the L1-norm

penalty enforcing coupled multi-grid sparsity. The com-

plete cost function C can be expressed as [23]:

C = ES(F,M, P⃗ ) + λR

∑

ER(P⃗ ) + λS

∥

∥

∥
P⃗
∥

∥

∥

1
(2)

where λR and λS weigh the smoothness and sparsity penal-

ties, respectively. As illustrated by Figure 3, the inclusion

of the L1-norm penalty serves to provide coupling between
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the various grid layers while enforcing a degree of noise

suppression in the resulting deformation vector field. As a

consequence of this coupling, subsets of P⃗ providing sup-

port over a given subregion of the image will be largely con-

strained to a single grid level having the greatest suitability

for expressing the deformation field in that subregion. In

the case of the uniform cubic B-spline basis, every voxel in

the N -dimensional image volume is supported by the ten-

sor product of the four neighboring control points in each of

the N grid dimensions. The deformation field v⃗ is param-

eterized by B-spline basis coefficients P⃗ , which provides

a sparse representation of v⃗ while additionally introducing

first order continuity. The dense, voxel-wise deformation

field of v⃗ at each level L may be interpolated using the B-

spline basis and the set P⃗ such that:

vL (x) =

3,3,3
∑

(l,m,n)=0

Bl (u)Bm (v)Bn (w)Pi+l, j+m, k+n

(3)

in the x-direction, and similarity for y and z directions.

Here, (i, j, k) denote the coordinates of a given voxel in

F , (u, v, w) are the local coordinates of the voxel within

its housing support region normalized within [0, 1] used for

evaluating the B-spline basis function, and B is the uniform

cubic B-spline basis function. For a multi-level scheme con-

sisting of M grids, the final deformation field is the summa-

tion of local deformation fields from each grid level:

v⃗∗ =
M
∑

L=1

v⃗L (4)

fine

coarse

Figure 3: Multi-level 2D B-spline grid. The L1-norm spar-

sity constraint couples the various levels, resulting in levels

best suited for parameterizing a given local set of deforma-

tion vectors having non-zero control points (black) while

control points providing support in less suitable levels are

driven to zero (white) through the optimization process.

4. Learning Grid Configurations with CNNs
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Figure 4: CNN architecture for each B-spline control grid

level. The CNN for level 1 accepts 3 input channels of di-

mensions 64×64×16. The CNN for level 2 accepts 3 input

channels of of 32× 32× 8. The CNN for level 3 accepts 3

input channels of 16×16×4. Fewer layers are used for finer

grids due to the decreased field of view within the smaller

input patches.

For a given pair of image volumes to undergo deformable

registration, the proposed method, as illustrated in Figure 2,

aims to accurately predict the zero valued coefficients in an

over parameterized multi-level uniform cubic B-spline grid

configuration. To this end, a CNN architecture is trained us-

ing the B-spline control point coefficients and grid config-

urations produced by L1-norm regularized registrations. In

this particular study, we use 4D CT thoracic image volume

sets capturing the respiration cycle. Each 4D CT dataset

consists of ten 3D CT volumes, where each 3D volume cap-

tures the thorax at equally spaced phases throughout one full

respiration cycle. We perform L1-norm regularized regis-

tration between image volumes at the extrema of the res-

piration cycle: initial full-exhale to full-inhale and again

between full-inhale to final full-exhale; thereby using only

three of the full ten phases available to produce two regis-

trations. The resulting sparse B-spline control grids con-

sist largely of zero valued control point coefficients, which

we will call “locked control points,” as well as a minor-

ity of non-zero valued coefficients, which we will call “free

control points.” These “free” and “locked” designations for

control points form the class labels for the CNN training

data. Preprocessing is performed on the associated image

volumes to produce feature channels that will serve as in-

puts to the CNN input layer. One CNN is trained per B-

spline control grid layer. For example, the CNN architec-

ture for the three layer grids experimentally validated in this

paper is illustrated in Figure 4. Once trained, unregistered

image pairs undergo preprocessing, are fed into each CNN,
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a multi-level grid with classified control points is produced,

and the deformation field v⃗∗ between the two images is pro-

duced by optimizing “free” control point coefficients while

“locked” coefficients are held at zero.

4.1. Preprocessing & CNN Inputs

Input channels to the proposed CNN architecture con-

sist of the unaltered fixed image F as well as two other

input channels derived from the fixed and the moving im-

ages in combination. These two additional inputs are gen-

erated in order to expose meaningful information indicat-

ing the severity and nature of the deformation between F
and M to the convolution layers of the CNN. Specifically,

three input channels are provided to the input layer of the

CNN: the unaltered fixed image F , an estimation of optical

flow magnitude, and a difference image. The estimation of

optical flow magnitude is generated by running the Lucas-

Kanada method using F and M for a single iteration. The

difference image is simply the result of subtracting the fixed

image from the moving image, F −M .

4.2. Generation of Training Data

Multi-layer B-spline control grids with control points la-

beled as either “free” or “locked” are generated by perform-

ing B-spline registration using the SSD similarly metric pe-

nalized by bending energy (λR = 0.001) and the L1-norm

(λS = 0.04). Three grid levels of increasing control point

resolution are used with each possessing an even support re-

gion subdivision of the previous coarser level. Specifically,

Level 1 consists of 35 × 35 × 35 control points, Level 2

consists of 67×67×67 control points, and Level 3 consists

of 131×131×131 control points. For the 512×512×128
voxel input images undergoing registration in this study, this

translates to support regions of 16× 16× 4, 8× 8× 2, and

4× 4× 1 voxels for Levels 1, 2, and 3, respectively.

Control point coefficient values P⃗∗ minimizing (2) are

estimated via quasi-Newtonian optimization (L-BFGS-B).

The efficiency of the cost function gradient ∂C/∂P⃗ calcula-

tion is markedly accelerated by employing the map-reduce

framework proposed by Jiang [7], which eliminates unnec-

essary redundant loads of intermediate voxel-wise ∂C/∂v⃗
calculations by generating so called “Z-values”:

Zrgn,l,m,n =

Nz,x,y
∑

(z,x,y)=0

∂C

∂v (x, y, z)
Bl (u)Bm (v)Bn (w)

(5)

which weight and sum each voxel-wise ∂C/∂v⃗ value within

a local support region by all 64 possible piecewise B-spline

basis function weighting combinations; thereby resulting

in 64 “Z-values” per local support region. The computa-

tion of the cost function gradient ∂C/∂P⃗ for any given

control point is subsequently achieved by mapping the 64

(a) (b)

(c) (d)

Figure 5: Visualization of control point labels produced by a

typical L1-norm regularized registration. (a) Coronal view

of the 512 × 512 × 128 voxel fixed CT image. (b-d) Con-

trol grid slices visualizing “free” control points in white

and “locked” control points in black for the (b) Level 1:

35× 35× 35 control point grid, (c) Level 2: 67× 67× 67
control point grid, and (d) Level 3: 131×131×131 control

point grid.

“Z-values” corresponding to the control point and reducing

them via summation to a single value.

Once the registration process has completed, control

points possessing zero valued B-spline coefficients are con-

sidered “locked” and all other control points are considered

“free.” Figure 5 visualizes a typical example of “locked”

and “free’ control points produced by the registration pro-

cess. CNN training patches are next extracted from the three

preprocessed input channels, namely the unaltered fixed im-

age F , the estimation of the optical flow magnitude, and the

difference image F −M . One training patch for each in-

put channel is extracted per labeled control point produced

by the L1-norm regularized registration process. As illus-

trated in Figure 6, each extracted training patch is centered

about a control point, has dimensions corresponding to the

extent of the control point’s local support in the voxel co-

ordinate system, and is labeled either “free” or “locked” in

correspondence with the control point at its center.

5. Experimental Results

The experiments detailed in this section were performed

on a machine equipped with dual HyperThreaded 3.2 GHz

Intel Xeon OctoCore E5-2630v3 processors, 512 GB DDR4

RAM, and dual NVIDIA GeForce GTX 980 GPUs. Tensor-

flow was used as the backend for the neural network archi-

tecture.

Here we investigate the performance of the proposed al-
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Figure 6: Training patch extraction. A uniform cubic B-

spline grid superimposed upon a coronal CT image slice.

Basis functions shown in periphery to demonstrate local

support. The local support region for the control point in

yellow is illustrated by the surrounding yellow box. This

sub-image within the box is extracted as a training patch.

gorithm for a three level B-spline grid where Level 1 con-

sists of 35 × 35 × 35 control points, Level 2 consists of

67 × 67 × 67, and Level 3 consists of 131 × 131 × 131
control points. The image volume data used in the training

and validation consists of 4D thoracic datasets, each captur-

ing a single full respiration phase. This data was obtained

from two different sources. The first source is the DIR-Lab

4D CT lung dataset [4], which we will refer to as “Set 01.”

This is supplemented by anonymized thoracic 4D CT im-

age sets provided by clinical collaborators, which we will

refer to as “Set 02.” Set 01 provides 10 pairs of inhale and

exhale image volumes from 5 different patients having ax-

ial slice dimensions of 512 × 512 voxels with the number

of axial slices varying between 120 and 136 due to acquisi-

tion inconsistencies. Set 02 provides 12 pairs of inhale and

exhale images from 6 different patients having axial slice

dimensions of 512 × 512 voxels with the number of axial

slices varying from 128 to 152, again, due to acquisition

inconsistency. Image volumes were resampled uniformly

to 512 × 512 × 128 voxels with an intervoxel spacing of

1.16mm × 1.16mm × 2.5mm. The total data available

across the two sets provides 943,250 control point centric

patches in grid Level 1; 6,616,786 patches in grid Level 2;

and 49,458,002 patches in grid Level 3.

Control point centric image patches extracted from four

pairs of images from Set 01 and four pairs of images from

Set 02 are used as CNN training data. Due to the high de-

gree of sparsity exhibited by control points optimized un-

der the L1-norm, the number of available training patches

corresponding to the “locked” class is much greater than

the number of training patches in the “free” class—this ex-

treme imbalance can be seen in Figure 5. Consequently, the

number of training patches corresponding to the “locked”

class are reduced to meet that of the “free” class. A ran-

dom sampling of training patches from the “locked” class

was therefore used to balance the number of positive and

negative examples in an unbiased fashion. In total, the

number of used training patches for grid Level 1 CNN is

64,564 (32,282 positive and 32,282 negative); 233,250 for

grid Level 2 (again, evenly balanced); and 679,256 for grid

Level 3 (evenly balanced). Patches from other images are

used for testing only without random sampling.

The L1-norm registration used to obtain control point

grid class labels was ran for 20 L-BFGS-B optimization

iterations. The vector fields produced by this same regis-

tration is also later used as a basis for comparing our algo-

rithm’s performance. Neural network models are trained for

20 epoches with a batch size of 200. The Adam optimizer

is used to optimize the categorical cross entropy function.

5.1. Optimization Parameter Reduction

As a baseline, the L1-norm regularized three-level grid

configuration requires the optimization of 128,625 B-spline

basis coefficients in grid Level 1; 902,289 in Level 2; and

6,744,273 in Level 3—totaling in 7,775,187 optimization

parameters. This optimization burden is greatly reduced

by CNN control point classification. Because all test im-

ages result a different number control points in the “free”

class, average control points per layer are reported. The

average number of B-spline basis coefficients requiring op-

timization is reduced to 15,173 for grid Level 1; 60,081 for

Level 2; and 355,390 for Level 3—totaling in 430,644 co-

efficients on average. Averages for both datasets across all

three grid levels are provided in Table 1.

Dataset Before CNN After CNN Reduction

L1
Set 01 128,625 17,246 86%

Set 02 128,625 13,618 89%

L2
Set 01 902,289 59,506 93%

Set 02 902,289 60,512 93%

L3
Set 01 6,744,273 397,404 94%

Set 02 6,744,273 323,880 95%

Table 1: Average number of B-spline parameters requiring

optimization with and without CNN control point classifi-

cation.

5.2. Prediction Quality

Figure 7(b-d, h-j, n-p) shows control point class predic-

tion maps for three different randomly selected patients.

Taking the control point labels produced by the L1-norm

regularized registration as the ground truth and the “free”

class label to be positive, pixels shown in gray are true pos-

itives, those shown in purple are false positives, and those

in cyan are false negatives. As illustrated, although predic-

tions at finer grid levels produce an increased number of
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 7: Illustration of CNN control point classification accuracy. (a) overlayed fixed and moving images prior to registra-

tion, (b) prediction map for grid Level 1 consisting of 35×35×35 control points, (c) map for grid Level 2 with 67×67×67
control points, and (d) map for grid Level 3 with 131 × 131 × 131 control points. Prediction maps are gray when both the

L1-norm and CNN agree the coefficient is “free,” cyan when the L1-norm votes “free” and the CNN votes “locked,” blue

when both L1 norm and CNN agre that a coefficient is “locked,” and purple when the L1-norm votes “locked” and the CNN

votes “free”. (e) is the difference between the fixed image and the transformed moving image for the CNN driven registration

process, and (f) is the same difference image for the L1-norm driven process. (g-l) and (m-r) show the same data for two

additional randomly selected datasets among those tested.

false positives, the majority of true positives are success-

fully classified by the CNN.

avg Dataset SN SP AC AUC

L1
Set 01 0.91 0.94 0.94 0.94

Set 02 0.94 0.97 0.97 0.96

L2
Set 01 0.91 0.97 0.97 0.95

Set 02 0.92 0.97 0.97 0.95

L3
Set 01 0.89 0.95 0.95 0.93

Set 02 0.90 0.96 0.96 0.94

Table 2: CNN classification performance quantified in

terms of sensitivity (SN), specificity (SP), accuracy (AC),

and area under curve (AUC) for each of the three grid levels

tested.

Using the total number of true positive, true negative,

false positive, and false negative control point classification

instances, the classification performance of the CNN is ex-

pressed within Table 2 in terms of sensitivity:

SN =
TP

TP + FN
(6)

specificity:

SP =
TN

FP + TN
(7)

and accuracy:

AC =
TP + TN

TP + FN + FP + TN
(8)

The average sensitivity, specificity, accuracy, and area

under the receiver operating characteristic curve (AUC) are

shown in Table 2 for each of the three grid levels employed

in our thoracic 4D CT validation study. Prediction results

are generally above 90% with an average accuracy of 95%

or better for each grid level. Sources of error may include

defects in the ground truth data. For example, ground truth

deformation fields may potentially be improved on a case

by case basis by extending the stopping condition beyond

20 iterations or by fine tuning the cost function parameters

λR and λS .

5.3. Registration Results

Due to the decreased number of registration parameters

requiring optimization under the proposed CNN driven al-

gorithm coupled with the expressiveness of “free” class pa-

rameters, the SSD similarity metric decreased more rapidly
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Figure 8: Comparison of registration quality between L1-

norm regularized multi-grid registration and the proposed

CNN-based method. Results shown for nine randomly se-

lected thoracic registrations: (a-f) full exhale to full inhale

and (g-i) full inhale to full exhale.

in a fewer number of iterations when compared to the L1-

norm regularized baseline method. Nine randomly selected

thoracic image registration results are shown in Figure 8

to illustrate the change in the SSD similarly metric with

each L-BFGS-B optimization iteration. Each registration

is performed using both L1-norm regularized registration

(shown in blue) and the proposed CNN driven registration

(shown in red). The convergence rate of the proposed CNN

method is faster for all nine cases. Additionally, higher

quality registrations are achieved within these fewer iter-

ations as shown in Figure 7(e, k, and q). In two cases,

Figure 8(e and f), the L1-norm regularized registration be-

came prematurely trapped in local minima, whereas the

CNN-based sparse B-spline managed to continue refining

the quality of the deformation field.

6. Conclusion

In this paper we introduce a convolutional neural net-

work driven multi-grid B-spline registration method. CNNs

are used to to construct multi-level B-spline grids with pre-

determined sparsity prior to registration. This architecture

not only addresses issues associated with the sequential, in-

dependent optimization of increasingly fine grid levels as

performed by traditional hierarchical B-spline based meth-

ods, but also exhibits improved optimization efficiency and

avoidance of local minima.
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