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Abstract

A model of a building’s thermal dynamics is needed for prediction-based control. The task of identifying a thermal
dynamic model is made challenging by the presence of large unmeasured disturbances, especially the heat gain due to
the occupants. In fact, identification of this “occupant-induced load” is also valuable for predictive control—especially
in commercial buildings. We propose a method to identify both a model (of resistance-capacitance network type) and
the unmeasured disturbances from measured input-output data. The method is based on the insight that the main
contributor to the unmeasured disturbance, the occupant-induced load, is piecewise constant, especially in commercial
buildings. This can be used to construct an augmented dynamic model so that disturbance estimation is converted to
a state estimation problem. An outer-loop optimization identifies the best-fit parameter values. The effectiveness of
the method is evaluated using data from a simulation model (under both open and closed-loop operations) and a real
building.

Keywords: system identification, HVAC control, disturbance modeling, building thermal dynamics, data driven
modeling

1. Introduction

A dynamic model of a building’s zone temperature
is useful in several applications, particularly model-based
control of the heating, ventilation, and air conditioning
(HVAC) system for improving indoor air quality and re-5

ducing energy use [1], limiting peak demand [2], or provid-
ing ancillary services to the power grid [3]. To be useful
in online control computations, the model needs to be of
low order. To model a building with a small number of
parameters, the model needs to be identified from data.10

That is, the parameters need to be estimated from mea-
surements of inputs (such as ambient temperatures and
control commands) and outputs (indoor temperature).

Among many different classes of models, a commonly
used subclass is the resistance-capacitance (RC) networks,15

in which an electrical analogy is used to model heat flow.
Many methods for estimating parameters of an RC net-
work model from data have been proposed in the litera-
ture; see [4, 5, 6, 7] for early work, and [8, 9, 10, 11, 12, 13]
for more recent work. In such a model, the output is the20

building’s indoor temperature and the inputs consist of
signals such as rate of cooling/heating provided by the
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HVAC system and dry bulb temperature of the air outside
the building. Another input that affects the temperature
is the “occupant-induced” heat-gain, which consists of the25

heat released by the occupants’ bodies and the heat gain
due to appliances used by the occupants. This input is
difficult to measure and is therefore best modeled as an
unmeasured disturbance.

With the notable exception of [10, 11, 13], other pa-30

pers cited above either neglect the effect of unmeasured
disturbance altogether [8, 9, 12], use an unoccupied test
building [5, 6], or utilize previous knowledge of the occu-
pancy schedule or specific instrumentation to make knowl-
edge of the occupant-induced load possible [4, 7]. The last35

approach is limited to specially instrumented buildings.
Neglecting disturbance altogether is a poor choice: [10]
showed that doing so results in poor model identification.
This is not surprising since the occupant-induced heat-
gain, the main component of the unmeasured disturbance,40

is not small. Sometimes it can be comparable to the cool-
ing provided by the HVAC system.

In this paper, we propose a method to simultaneously
estimate (i) the parameters of an RC network model of
a building zone and (ii) the unmeasured disturbance that45

acts as an exogenous input, from measurements of input-
output data. We call it the Simultaneous Plant and Dis-
turbance Identification (SPDI) algorithm; it is based on
the assumption that the unmeasured disturbance is dom-
inated by occupant-induced load, and the latter is piece-50

wise constant so that its time-derivative is mostly zero.
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This enables us to model the unmeasured disturbance as
a state of an augmented dynamic model, eliminating the
unmeasured disturbance from the model. The insight that
occupant-induced load is approximately piecewise constant55

is based on how commercial buildings are used. People
come into a building in the morning so that the building
goes from mostly empty to mostly full in a short period
of time. The opposite happens in the evening, with some
small variations during the working hours. For a given60

set of model parameters, the disturbance can be now esti-
mated using a state estimator. An optimizer identifies the
best-fit parameters. Apart from the R,C parameter val-
ues, the proposed method also identifies the effective area
of the building that determines the total solar heat gain.65

Identifying the unknown disturbance is useful in its
own right for predictive control of HVAC systems. Once it
is identified from past data, a model can be trained on that
estimate which can then be used to predict the disturbance
in the future. These predictions can be used by a control70

algorithm to make decisions for the HVAC system.
Application of the method to simulation-generated data,

where the ground truth is known, shows that the method
works well. It identifies the model and the disturbance
with high accuracy even when the disturbance is not piece-75

wise constant. In that case, the method is able to identify
a smoothed version of the time-varying disturbance. The
method’s performance is insensitive to the use of data col-
lected under normal (i.e., closed-loop) operation, which is
usually a concern [8, 10, 11].80

A challenge for the evaluation of building model identi-
fication methods is the lack of ground truth. In [10], eval-
uation of the model identified from real building data was
performed by comparison of the model’s step response to
an experimentally determined step response of the build-85

ing. This method is not applicable to evaluating the iden-
tified disturbance.

In this paper we evaluate the accuracy of the identified
occupant-induced load by qualitatively comparing it with
measured CO2 concentration. In the building whose data90

the method was tested on, the control system increases
outdoor airflow in response to an increase in measured
CO2 which occurs due to an increase in occupancy. If
the disturbance qdist is mostly induced by occupants, then
it should be strongly correlated with CO2 concentration.95

A high correlation between the estimated disturbance and
the measured CO2 concentration is an indication of the
accuracy of the estimate.

The rest of the paper is organized as follows. Sec-
tion 1.1 describes the contribution of this work with re-100

spect to prior art. Section 2 states the problem addressed
in this paper precisely, and Section 3 describes the pro-
posed algorithm. Sections 4 and 5 describe evaluation of
the method when applied to simulation generated data
and data collected from a real building, respectively. The105

paper ends with a conclusion in Section 6.

1.1. Contribution over prior art

To the best of our knowledge, the only references that
deal with the problem of identifying both a RC network-
type model and unmeasured disturbance from data are [10,110

11, 13].
The method proposed by Kim et al. [10] does not iden-

tify the unmeasured input disturbance. Rather, an out-
put disturbance (a disturbance that is added to the plant
output) is identified that encapsulates the effect of an un-115

known input disturbance. The identified output distur-
bance is not a physically meaningful signal, though it could
be potentially useful for predictive control. In contrast,
the input disturbance we identify is a physically mean-
ingful quantity as long as it is dominated by occupant-120

induced load. As a result, the accuracy of the identified
disturbance by the proposed method can be qualitatively
assessed by comparing with occupant schedules or mea-
surable surrogates for the occupant-induced load such as
CO2 concentration [14] and WiFi client count [15].125

Both [11] and [13] take a similar approach: the model is
estimated by using data from unoccupied periods (week-
ends in [11]) and assuming that the disturbance is zero
during those periods. Once the model is identified this
way, the disturbance is identified using data from occu-130

pied periods. This approach has two weaknesses. First,
it requires availability of sufficient training data collected
when the building is unoccupied. Such periods may be
short compared to the length of the data needed for train-
ing. Sometimes one may erroneously believe the building135

to be unoccupied. Second, by forcing the disturbance to
be zero during unoccupied periods, the disturbance term is
prevented from absorbing unmodeled dynamics—such as
ground coupling and effect of latent heat exchange—that
may be present even in unoccupied times. In contrast, the140

method proposed here does not require data from unoc-
cupied periods. Data from any period can be used. In
fact, the proposed method is used on data collected dur-
ing regular operation of a building (see Section 5), while
the data used in [11] were collected during an excitation145

test in which the air flow rates were temporarily set at the
maximum.

The solar heat gain is assumed to be a known input
in [13]. In practice, while solar irradiance can be easily
measured with a sensor, there is significant uncertainty150

in the relationship between solar irradiance and solar heat
gain. In the proposed method, we only use solar irradiance
as a known input. The effective area, which determines
the solar heat gain together with solar irradiance, is an
unknown parameter to be estimated.155

There are some similarities between our work and that
of [13]. The assumption that internal loads are mostly
constant, and therefore can be modeled as a process with
a zero derivative, is used in both.
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ts to obtain a discrete-time linear time invariant (LTI)
system [16]. Additionally, process and measurement noise
are introduced to capture modeling error and sensor noise.
The discrete-time model is therefore of the form

xk+1 = Axk +Buk + ξk

zk = Cxk + nk

(5)

where ξk and nk are white noise sequences that capture the215

modeling error and sensor noise, respectively, A = eActs ,
B = (

∫ ts
0

eAcηdη)Bc, and C = Cc. In the sequel, the
process and measurement noise covariance sequences will
be denoted by Qk and Rk, i.e., Qk := Cov[ξk, ξk], Rk :=
Cov[nk, nk], where Cov(·, ·) denotes covariance.220

The Kalman filter uses the discrete-time system matri-
ces (A,B,C), the measurement sequence zk := Tz[k] ∈ R,
and the input sequence uk := [Ta[k], ηsol[k], qhvac[k]]

T ∈
R

3, along with the covariances Qk, Rk to produce the state
estimate sequence x̂k|k := E[xk|z0, . . . , zk], where E[·] de-
notes expectation. The residual sequence of the filter is
defined as

rk := zk − ẑk|k = zk − (Cx̂k|k) (6)

In order to use a Kalman filter to obtain the state estimates
from input and output data, the system model, i.e., the
matrices (A,B,C) must be provided. This is equivalent to
providing the parameter vector p = [Cz, Cw, Rw, Rz, Ae]

T ∈
R

5. A measure how good a given choice of p is

f(p) =

kmax
∑

k=1

|rk|, (7)

where rk is the residual sequence defined in (6) and kmax is
the number of samples in the dataset. While the parame-
ters do not explicitly show in the definition (6), they affect
the residuals. Hence the objective function f is a function
of p. The best-fit parameter values p∗, for a given data set
{uk, zk}

kmax

k=1 , is the one that minimizes this cost. That is,

p∗ = argmin
p∈Ω

f(p), (8)

where Ω is a subset of R
5 where the parameter vector

p is constrained to lie. The optimal p∗ is the estimated
parameters for a given initial parameter vector, and the
corresponding state estimates from the Kalman filter also
provides the disturbance estimate q̂dist.225

The objective f(p) is a non-convex function of the pa-
rameter vector p. Therefore, there may not be a unique
minimum p∗, and the minimum that any numerical search
algorithm converges to (when it does converge) may de-
pend on the initial guess. The optimization problem (8) is230

solved multiple times for distinct initial guesses. The mode
of these local optimal points is taken as the estimate.

The proposed method, which we call the Simultaneous
Plant and Disturbance Identification (SPDI) algorithm, is
summarized below:235

SPDI Algorithm

Inputs: u = {uk}
kmax

k=1 , z = {zk}
kmax

k=1 , process and mea-

surement noise covariance sequence {Qk, Rk}
kmax

k=1 ,
search algorithm and stopping criterion, method for
generating an initials guess, and the number of initial240

guesses to try, nig.

IG Generate initial guess, p
(`)
0 , iteration `.

Begin Optimization solver loop, iteration j

step 1 Based on parameter estimate p
(`)
j , compute

the discrete-time matrices (A,B,C) in (5).245

step 2 Perform state estimation using the Kalman
filter to obtain {x̂k|k}

kmax

k=1 , and compute the ob-
jective function value (7).

step 3 Update the next parameter vector to try p
(`)
j+1,

using a search technique.250

step 4 Repeat steps 1-3 until stopping criterion is
satisfied.

End Optimization solver loop

Store results: p∗(`) = [Cz, Cw, Rw, Rz, Ae]
T and q

∗(`)
dist .

Compute estimate Compute the mode of the optimal255

solutions {p∗(`)}
nig

`=1, and return it as the estimate p̂.
Let i be an index that achieves the mode. Return the
corresponding load as the estimated load: q̂dist :=

q
∗(i)
dist .

Any optimization algorithm for conducting the search260

in step 3 and any method of generating initial guesses can
be used. In this paper we use the MATLAB c© fmincon

function with default options to search for the minimum,
which uses an interior point method [17], and Latin hy-
percube sampling to generate an initial guess [18]. All nu-265

merical results presented later in this paper were obtained
with nig = 50, which was picked somewhat arbitrarily.

3.1. Choosing design-variables

A number of choices have to be made by the user in
implementing the algorithm: (i) the process and measure-270

ment error covariance sequences {Qk, Rk}, (ii) the region
Ω, and (iii) the length of the data sequence, kmax.

In the results reported in the rest of the paper, the pro-
cess and noise covariances are chosen to be time invariant.
In particular, Qk = Q and Rk = R for all k, where

Q := diag(α1, α1, α2) (9)

Where both α2 and α1 are small positive numbers with
α2 � α1. This is equivalent to saying that there is very lit-
tle modeling error in the first two states, but the dynamics275

of the third state has large uncertainty. The rationale for
this choice is that even in commercial buildings the piece-
wise constant model for the disturbance state is not always
accurate, especially during periods when people come in
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and leave. So the third state has large uncertainty. In this280

paper, we choose α2 ≈ 10−3 and α1 = 10−7 .
The value of R is chosen to be on the same order of

magnitude as α2 (10−3) but the ratio, α2

R , is elected to be
greater than one. This is because it is desirable to ascribe
the difference between measurements and predictions to285

the state associated with α2 (i.e. the disturbance, qdist).
If the ratio is larger, the Kalman filter ascribes more of the
prediction error rk to the third state, the qdist, while if the
ratio is smaller, it ascribes the prediction error to measure-
ment noise. In the simulation study presented in Section 4,290

the ratio is elected to be α2

R = 3 for both closed-loop and
open-loop data. When the building is under closed-loop
control, the HVAC system actively tries to maintain the
zone temperature Tz by varying qhvac in response to the
error between Tz and its desired value, Tref (reference sig-295

nal). During open-loop operation no such feedback is used.
If the method were to be applied on a different building,
with a potentially different RC network model, the values
α2 and R may have to be re-calibrated.

The choice of the region Ω is somewhat arbitrary, and
requires some a-priori knowledge. A rough estimate of the
range of Ae can be obtained from knowledge of building
geometry, which can then be used to set bounds. In this
paper, we apply our method to data from a section of a
large building, which is described in Section 5. The upper
bound on the Ae is computed from the roof area of that
zone. The values of resistances and capacitances that were
identified for a 100 m2 (floor area) × 4.5m (height) zone in
a large commercial building in [10], expressed in K/kWh
and kW/K, respectively, were of O(1). Our simulation
data is generated from a model calibrated to a 540 m2

(floor area) × 6.7 m (height) commercial building. Thus,
the following bounds on the parameters are used in this
paper (units are shown in parenthesis):

0.01 ≤ Cw, Cz (
K

kWh
), Rw, Rz (

kW

K
), Ae (m2) ≤ 50 (10)

The length of data sequence should be enough so that300

(i) the transients due to initial conditions die out and do
not effect the results significantly [4], and (ii) the data
captures the difference between the weekday and weekend
loads. We have found through trial and error that data
for two weeks is adequate for this purpose.305

3.2. Kalman filter performance

The question of whether the Kalman filter, for the
true model, produces accurate state estimates or not, is of
paramount importance for the effectiveness of the method.
This question reduces to the question of stabilizability and310

detectability, or their less general counterparts, controlla-
bility and observability [19]. If (A,Q1/2) is stabilizable and
(A,C) is detectable, where Q is the covariance of the pro-
cess noise ξk, then the covariance of the Kalman filter’s
state estimates converges to a positive definite constant315

matrix [20]. That provides confidence on the accuracy of
the state estimates.

Since C = [1, 0, 0], the observability matrix is O =
[CT , (CA)T , (CA2)T ]T . The determinant turns out to be

det(O) =
t2s(Rwts +Rzts)

CwCzR2
wRz

, (11)

which is non-zero for physically meaningful parameters
(i.e., strictly positive), so O is full rank. Thus, (A,C) is
observable, and hence detectable. One can show that [19],
the pair (A,Q1/2) is stabilizable if

rank[A− λI, Q1/2] = 3 ∀λ ∈ C : λ ≥ 1 (12)

Since for our system the matrixQ is diagonal, with positive
entries on the diagonal, Q1/2 is full rank, regardless of
the what A and λ are. Therefore the pair (A,Q1/2) is320

stabilizable.
Since (A,C) is observable and (A,Q1/2) is stabilizable

for any choice of the parameter set, p = (Cz, Cw, Rz, Rw, Ae),
that is physically meaningful (meaning all parameters are
strictly positive), convergence and stability of the filter is325

guaranteed; no special care has to be take in choosing the
parameter values.

4. Evaluation with simulation data

We now present results from applying the proposed
method (SPDI Algorithm) to data generated from a sim-330

ulation model. The simulation model itself is of form (1)-
(2), so that there is an unambiguous ground truth that
the results of the algorithm can be compared to. That is,
the input qdist for (1) will be compared to the estimated
augmented state in (4). The parameters and the occupant-335

induced load are chosen somewhat arbitrarily, but ensuring
that the model prediction is not too far from observations
collected in a building that will be described in Section 5.
We use a sampling period ts = 1/12 hours (5 minutes).
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Figure 2: Some of the input data used in simulation evaluation: ηsol,
Ta for all four scenarios (2013/08/26 to 2013/09/01), and Tz with
Tref for CL-NPW.
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Figure 3: Heat gains qhvac, Aeηsol, and qdist for the CL-NPW sce-
nario in simulation evaluation. The heat gain qhvac is a measured
signal and is an input to the estimation method, while the other two
are not known to the algorithm (though ηsol is).

Four scenarios are tested in simulation: (i): Open-loop340

simulation with a piecewise constant disturbance (OL-PW),
(ii) Open-loop simulation with non piecewise constant dis-
turbance (OL-NPW), (iii): Closed-loop simulation with a
piecewise constant disturbance (CL-PW), and (iv): Closed-
loop simulation with non piecewise constant disturbance345

(CL-NPW). For all four scenarios, the same input data
sequences for ambient temperature, Ta, collected from

weatherunderground.com and solar irradiance, ηsol,
collected from the National Solar Radiation Database (NSRDB:
nsrdb.nrel.gov), for Gainesville, FL, are used. In both350

the closed-loop scenarios, a PI controller is used to con-
trol the HVAC power qhvac so that the room tempera-
ture tracks a set-point Tref . The gains for this controller
are elected to be 12 (proportional) and 4 (integral). To
have exciting input to aid in identification, the reference355

room temperature trajectory is generated using a pseudo-
random binary sequence (PRBS) [16, 10]. To ensure that
occupant comfort is not compromised, the reference is con-
strained to lie within 22.78 ◦C and 25◦C.

The inputs Ta and ηsol, that are used in all four sce-360

narios, are shown in Figure 2(top). The output Tz for the
CL-NPW scenario, along with the temperature set-point
(Tref ), is shown in Figure 2 (bottom). A comparison of the
various heat gains affecting the system, for the CL-NPW
scenario, are shown in Figure 3. Note that the unmea-365

sured disturbance qdist is comparable to the magnitude
of the cooling provided qhvac. The presence of the large
unmeasured disturbance means it cannot be ignored in es-
timating RC network parameters [10].

All simulation evaluations are done with two weeks of370

data, as explained in Section 3.1. All the plots in the paper
show only the first week to reduce clutter.

4.1. Parameters

The parameters identified by the proposed method are
shown in Table 1. In all scenarios, the parameters Cz,375
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Figure 4: Simulation evaluation (all scenarios): Box-plot of optimal
solutions of parameters normalized by true values for various initial
guesses (from top: OL-PW, OL-NPW, CL-PW, CL-NPW).

Cw, and Ae are identified quite accurately (maximum er-
ror relative to the true value of 1.6 %, 9.7 % and 6.0 % for
Cz, Cw and Ae, respectively), but there are larger errors
in the estimate of Rz and Rw in some scenarios: 35.7 %
(Rz) and 20.0 % (Rw) in the worst cases. This can be ex-380

plained from the structure of the model: the contribution
of the term involving Rz and partly Rw in (2) may not be
identifiable since this unknown term affects the wall state,
which is furthermore not measured directly. Contrary to
this, the parameter values Cz, and Ae affect a state equa-385

tion that corresponds to the measured signal Tz, and they
are estimated quite accurately in all four scenarios.

Impact of non-convexity. Recall that the identified param-
eters are modes of the solutions to an optimization problem
solved with nig (=50) distinct initial guesses. This was390

done to guard against getting wildly different estimates
depending on the choice of initial guess to the underlying
optimization problem, which is possible in principle since
it is non-convex. To show the spread of these optima,
box-plots of the optimal solutions are presented in Fig-395

ure 4. From these plots it can be observed that all of the
parameters from the open-loop scenario have little spread,
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Table 1: Parameter Estimation results, p̂.

Parameter True Value Estimates units

OL-PW OL-NPW CL-PW CL-NPW

Cz 9.40 9.40 9.35 9.55 9.54 kWh/K
Cw 20.00 20.00 19.64 20.40 18.06 kWh/K
Rz 0.70 0.70 0.76 0.79 1.09 K/kW
Rw 0.70 0.70 0.71 0.62 0.56 K/kW
Ae 7.00 7.00 7.14 7.42 7.27 m2
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Figure 5: Simulation evaluation: Bode magnitude and phase plot comparisons for CL-NPW scenario.

however the closed-loop scenarios have considerable spread
(particularly the two resistances). The non-convexity of
the problem affects the closed-loop scenarios greater than400

the open-loop scenarios. This is expected as the system
operating in closed-loop can be difficult to identify.

Even though many of the methods proposed in the
literature to estimate R,C parameters require solving a
non-convex optimization problem, the issue of non-unique405

solutions have not been treated in a principled manner.

4.2. Frequency response

Frequency response of a system refers to the gain and
phase shift between the input and the output for sinusoidal
inputs, as a function of frequency of the sinusoid. For410

prediction accuracy of the model, its frequency response
is more important than individual parameters. Figure 5
shows the Bode plots, which are graphical representation
of the frequency response, of the true and identified mod-
els. Due to space limitations, we only show the Bode plots415

for the CL-NPW scenario since that is the most relevant
for practical applications.

Among the frequency responses, from inputs qhvac, Ta,
and ηsol to output Tz, the maximum absolute error be-
tween the identified and true response, observed over all

frequencies, is found to be associated with the input Ta.
This maximum error is 0.3071, or ≈ 31% of the true value:

max
ω

|ĜηsolTz
(jω)−GηsolTz

(jω)|

|GηsolTz
(jω)|

= 0.3071. (13)

and occurs at the frequency of 1/50.3 hours. That the
maximum error occurs for the input Ta is not surprising
as the parameter with the second largest error, Rz, directly420

affects the corresponding transfer function.

4.3. Occupant-induced load

The estimated disturbance, q̂dist, for all four scenar-
ios are shown in Figure 6. The estimated disturbance is
quite accurate in almost all scenarios. It is especially sur-425

prising that even when the true disturbance is not piece-
wise constant, the estimated disturbance is able to capture
the main trend of the disturbance well. The estimates
are slightly better in the open-loop scenarios than in the
closed-loop scenarios, which is not surprising since system430

identification with closed-loop data is more challenging.
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Figure 8: Evaluation with building data: Heat gains qhvac, Âeηsol,
and q̂dist estimate for 2013/08/26 to 2013/09/01.
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Figure 9: Evaluation with building data: q̂dist vs. measured CO2

concentration, for the week of 2013/08/26 to 2013/09/01.

5.3. Occupant-induced load

The qdist estimation results are compared against CO2

(measured at the return duct) in Figure 9 and the esti-
mated solar heat gain Âeηsol in Figure 8 (bottom). The es-470

timated disturbance correlates strongly with the CO2 con-
centration measurements during the first weekdays (first
five days), with correlation coefficient being 0.83. Re-
markably, during the week days the estimated occupant-
induced load captures the trend of the CO2 signal well.475

However, the flat CO2 measurement during the weekend
indicates the building is empty and thus the true occupant-
induced disturbance is likely to be nearly constant or zero,
while the estimated disturbance is not. The difference
could be due to unmodeled dynamics (such as latent heat,480

ground coupling etc.). It could also be due to the Kalman
filter, which has a tendency to use the third state qdist
as a “garbage collector”. Recall that a large variance is
assigned to process noise corresponding to the the third
state, qdist, in the Kalman filter equations. A large vari-485

ance is needed for the model to be able to track the time-
variations in the true occupant-induced disturbance that
deviates from the assumed piecewise-constant profile. That

Mon Tues Wed Thur Fri Sat Sun
Time (Days)

0

5

10

15

20

25

k
W

400

600

800

1000

1200

1400

P
P

M

Figure 10: Evaluation with building data (winter): q̂dist vs. mea-
sured CO2 concentration, for the week of 2013/01/14 to 2013/01/20.

inherently limits the model’s ability to accurately estimate
the constant qdist when it is indeed constant, such as dur-490

ing weekends.
For additional assessment of the quality of disturbance

estimates, the parameter values in Table 2 were used with
(4) to estimate the internal disturbance, qdist for another
week of data. Since the parameters are known, the prob-495

lem reduces to one of state estimation. The load estimates
are shown in Figure 10. The disturbance estimate is again
strongly correlated with the CO2 signal during the week-
days. The correlation coefficient is now 0.83, the same as
in the summer data, even though this data set is from the500

winter.

5.4. Root mean square error

Since no ground truth is available to test the plausi-
bility of the model fitted to building data, the root mean
squared error (RMSE) of the residuals of the fit (rk in (6))505

is computed: RMSE =
√

1
n

∑n
i=1 r

2
k. For the first week

of data, the RMSE is 0.23◦C.

6. Conclusion

We present a method to simultaneously estimate (i) the
parameters of a dynamic model of a building’s temperature510

including resistance, capacitances and effective solar area,
and (ii) unmeasured disturbance (heat gain), from input-
output data. The method is based on the assumption that
the main component of the unmeasured disturbance, the
occupant-induced load, is piecewise constant, especially515

in commercial buildings. Extensive simulation tests in-
dicate that the method works well even when the true
occupant-induced load is not piecewise constant, and with
both open-loop and closed-loop data, making it highly ap-
plicable in practice. When applied to data collected from520

a real building, the method appears to work well in the
following sense. One, the values of the capacitance’s rep-
resent appropriate magnitudes when it comes to model-
ing the slow and fast time-scales of temperature variation.
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Two, the estimated heat-gain is strongly correlated with525

measured CO2 concentration. The true occupant-induced
load should be strongly correlated to the CO2 concentra-
tion.

There are several avenues of future work. The model
structure used here is linear, which comes from lumping530

the cooling injected by the HVAC system, into one sig-
nal [10]. Extending the method to a model in which the
supply air temperature and supply air flow rate are in-
puts, in which case the model becomes bilinear, will make
it more useful for use in model-based control [21]. Finally,535

the model structure used here lumps an entire building
into a single zone. Extending the method to multi-zone
buildings is another avenue for future work.
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