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Simultaneous identification of dynamic model and occupant-induced disturbance for
commercial buildings™

Austin R. Coffman*, Prabir Barooah
Mech. and Aero. Engg., Univ. of Florida, Gainesville, FL 32611, USA

Abstract

A model of a building’s thermal dynamics is needed for prediction-based control. The task of identifying a thermal
dynamic model is made challenging by the presence of large unmeasured disturbances, especially the heat gain due to
the occupants. In fact, identification of this “occupant-induced load” is also valuable for predictive control—especially
in commercial buildings. We propose a method to identify both a model (of resistance-capacitance network type) and
the unmeasured disturbances from measured input-output data. The method is based on the insight that the main
contributor to the unmeasured disturbance, the occupant-induced load, is piecewise constant, especially in commercial
buildings. This can be used to construct an augmented dynamic model so that disturbance estimation is converted to
a state estimation problem. An outer-loop optimization identifies the best-fit parameter values. The effectiveness of
the method is evaluated using data from a simulation model (under both open and closed-loop operations) and a real

building.
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1. Introduction

A dynamic model of a building’s zone temperature ,
is useful in several applications, particularly model-based
control of the heating, ventilation, and air conditioning
(HVAC) system for improving indoor air quality and re-
ducing energy use [1], limiting peak demand [2], or provid-
ing ancillary services to the power grid [3]. To be useful |
in online control computations, the model needs to be of
low order. To model a building with a small number of
parameters, the model needs to be identified from data.
That is, the parameters need to be estimated from mea-
surements of inputs (such as ambient temperatures and ,,
control commands) and outputs (indoor temperature).

Among many different classes of models, a commonly
used subclass is the resistance-capacitance (RC) networks,
in which an electrical analogy is used to model heat flow.
Many methods for estimating parameters of an RC net-
work model from data have been proposed in the litera-
ture; see [4, 5, 6, 7] for early work, and [8, 9, 10, 11, 12, 13]
for more recent work. In such a model, the output is the
building’s indoor temperature and the inputs consist of
signals such as rate of cooling/heating provided by the ,,
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HVAC system and dry bulb temperature of the air outside
the building. Another input that affects the temperature
is the “occupant-induced” heat-gain, which consists of the
heat released by the occupants’ bodies and the heat gain
due to appliances used by the occupants. This input is
difficult to measure and is therefore best modeled as an
unmeasured disturbance.

With the notable exception of [10, 11, 13], other pa-
pers cited above either neglect the effect of unmeasured
disturbance altogether [8, 9, 12], use an unoccupied test
building [5, 6], or utilize previous knowledge of the occu-
pancy schedule or specific instrumentation to make knowl-
edge of the occupant-induced load possible [4, 7]. The last
approach is limited to specially instrumented buildings.
Neglecting disturbance altogether is a poor choice: [10]
showed that doing so results in poor model identification.
This is not surprising since the occupant-induced heat-
gain, the main component of the unmeasured disturbance,
is not small. Sometimes it can be comparable to the cool-
ing provided by the HVAC system.

In this paper, we propose a method to simultaneously
estimate (i) the parameters of an RC network model of
a building zone and (ii) the unmeasured disturbance that
acts as an exogenous input, from measurements of input-
output data. We call it the Simultaneous Plant and Dis-
turbance Identification (SPDI) algorithm; it is based on
the assumption that the unmeasured disturbance is dom-
inated by occupant-induced load, and the latter is piece-
wise constant so that its time-derivative is mostly zero.
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This enables us to model the unmeasured disturbance as
a state of an augmented dynamic model, eliminating the
unmeasured disturbance from the model. The insight that
occupant-induced load is approximately piecewise constant,
is based on how commercial buildings are used. People
come into a building in the morning so that the building
goes from mostly empty to mostly full in a short period
of time. The opposite happens in the evening, with some
small variations during the working hours. For a given
set of model parameters, the disturbance can be now esti-
mated using a state estimator. An optimizer identifies the
best-fit parameters. Apart from the R,C parameter val-
ues, the proposed method also identifies the effective area
of the building that determines the total solar heat gain.

Identifying the unknown disturbance is useful in its
own right for predictive control of HVAC systems. Once it
is identified from past data, a model can be trained on that
estimate which can then be used to predict the disturbance
in the future. These predictions can be used by a control ,,
algorithm to make decisions for the HVAC system.

Application of the method to simulation-generated data,
where the ground truth is known, shows that the method
works well. It identifies the model and the disturbance
with high accuracy even when the disturbance is not piece- ,,
wise constant. In that case, the method is able to identify
a smoothed version of the time-varying disturbance. The
method’s performance is insensitive to the use of data col-
lected under normal (i.e., closed-loop) operation, which is
usually a concern [8, 10, 11].

A challenge for the evaluation of building model identi-
fication methods is the lack of ground truth. In [10], eval-
uation of the model identified from real building data was
performed by comparison of the model’s step response to
an experimentally determined step response of the build-
ing. This method is not applicable to evaluating the iden-
tified disturbance.

In this paper we evaluate the accuracy of the identified
occupant-induced load by qualitatively comparing it with
measured CO2 concentration. In the building whose data
the method was tested on, the control system increases
outdoor airflow in response to an increase in measured
CO2 which occurs due to an increase in occupancy. If
the disturbance qq;st is mostly induced by occupants, then
it should be strongly correlated with COg concentration.
A high correlation between the estimated disturbance and
the measured COy concentration is an indication of the
accuracy of the estimate.

The rest of the paper is organized as follows. Sec-
tion 1.1 describes the contribution of this work with re-
spect to prior art. Section 2 states the problem addressed
in this paper precisely, and Section 3 describes the pro-
posed algorithm. Sections 4 and 5 describe evaluation of
the method when applied to simulation generated data
and data collected from a real building, respectively. The
paper ends with a conclusion in Section 6.
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1.1. Contribution over prior art

To the best of our knowledge, the only references that
deal with the problem of identifying both a RC network-
type model and unmeasured disturbance from data are [10,
11, 13].

The method proposed by Kim et al. [10] does not iden-
tify the unmeasured input disturbance. Rather, an out-
put disturbance (a disturbance that is added to the plant
output) is identified that encapsulates the effect of an un-
known input disturbance. The identified output distur-
bance is not a physically meaningful signal, though it could
be potentially useful for predictive control. In contrast,
the input disturbance we identify is a physically mean-
ingful quantity as long as it is dominated by occupant-
induced load. As a result, the accuracy of the identified
disturbance by the proposed method can be qualitatively
assessed by comparing with occupant schedules or mea-
surable surrogates for the occupant-induced load such as
CO3 concentration [14] and WiFi client count [15].

Both [11] and [13] take a similar approach: the model is
estimated by using data from unoccupied periods (week-
ends in [11]) and assuming that the disturbance is zero
during those periods. Once the model is identified this
way, the disturbance is identified using data from occu-
pied periods. This approach has two weaknesses. First,
it requires availability of sufficient training data collected
when the building is unoccupied. Such periods may be
short compared to the length of the data needed for train-
ing. Sometimes one may erroneously believe the building
to be unoccupied. Second, by forcing the disturbance to
be zero during unoccupied periods, the disturbance term is
prevented from absorbing unmodeled dynamics—such as
ground coupling and effect of latent heat exchange—that
may be present even in unoccupied times. In contrast, the
method proposed here does not require data from unoc-
cupied periods. Data from any period can be used. In
fact, the proposed method is used on data collected dur-
ing regular operation of a building (see Section 5), while
the data used in [11] were collected during an excitation
test in which the air flow rates were temporarily set at the
maximum.

The solar heat gain is assumed to be a known input
in [13]. In practice, while solar irradiance can be easily
measured with a sensor, there is significant uncertainty
in the relationship between solar irradiance and solar heat
gain. In the proposed method, we only use solar irradiance
as a known input. The effective area, which determines
the solar heat gain together with solar irradiance, is an
unknown parameter to be estimated.

There are some similarities between our work and that
of [13]. The assumption that internal loads are mostly
constant, and therefore can be modeled as a process with
a zero derivative, is used in both.
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Figure 1: RC-network model structure for building thermal dynam-
ics.

2. Problem statement and insight into proposed
method

Figure 1 shows a schematic representation of the RC
network model used in this paper, which has two capaci-
tances C, C,, and two resistors R, R,,. The capacitance2°
Cy (for “wall”) is associated with the large thermal ca-
pacitance of the building’s external structure while C, (for
“zone”) is associated with the smaller thermal capacitance
of the remaining objects in the building. Together they are
likely to capture both the slow and fast time scales of tem-
perature variation. The resistance R,, and R, capture the
resistance to heat flow between the ambient air and build-
ing thermal mass, and between the building thermal mass
and zone air mass, respectively.

For large buildings with many zones that exhibit sev-
eral distinct timescales of temperature variation, more com-
plex models with more states and parameters may be needed.
In this paper we focus on buildings for which two time
scales are adequate.

The model itself is a coupled ordinary differential equa-
tion with two states, T, (zone, or indoor, temperature) and
T, (wall temperature):

Csz _ (Tw(t)R_ TZ(t)) + qhvac(t) (1)205
+ qdist (t) + Aensol (t)
R (Ta(t) —Tw() | (Ta(t) — Tw(t))
CyTy = I + 7. (2)

where (i) heat gain due to the HVAC system gnyac (kW),
(ii) ambient (i.e., outdoor) temperature Ty, (°C), and (iii)210
solar irradiance 7y (kW /unit area), are measurable in-
puts, the indoor temperature, T, is a measurable output,
and gqjs¢ is the unmeasured disturbance that captures the
occupant-induced internal heat load and any unmodeled
internal dynamics. The term A.ns1(t) is the heat gain
due to solar radiation, where A. is the effective area of the

building. In general, all five parameters R,,, R.,Cy,C,
and A, are unknown for a given building.

The identification problem we address in this paper is
the following: given time traces of the measured inputs
(qvac(t), Ta(t), nso1(t)) and the output (T.(t)), identify the
unknown parameters C,, Cy,, Ry, R, Ae as well as the dis-
turbance qqist (t). Only sensible loads are considered in this
work, the effects of humidity and ground coupling are ig-
nored. The disturbance gqis; plays the role of collecting all
the unmodeled dynamics.

It should be clear that without further information or
constraints, this problem is inherently ill-posed: given the
knowledge of input u and output y, it is not possible to de-
termine the unknowns a and w uniquely from the relation
y = au + w. To make the identification problem well-
posed, we introduce the following additional constraint on
the disturbance, namely, that it is piecewise constant. In
other words, for almost all time ¢,

2 goin(t) = 0. (3)
The motivation for this assumption comes from the hy-
pothesis that the disturbance is mostly occupant induced
load (equivalently, the contribution from unmodeled dy-
namics is small), and the fact that occupant-induced load
varies in an approximately piecewise constant fashion in
commercial buildings, in lockstep with how occupancy count
changes over the day.

With the constraint (3), the signal gq4;st becomes a state
rather than an exogenous input. The augmented model is:

= —1 1 1
T RC: | Rl | T | T
T | = |mey o (mtr) 0| Tw
Qdist 0 0 0 | |4qdist
Ao 1
0 o || T
+ R.Cu 0 0 Msol (4)
0 0 0 Ghvac
T,
T.=[1 0 0] | Ty,
qdist

In the sequel, the state matrix, the input matrix, and the
output matrix in (4) will be referred to as A., B, C,, re-
spectively.

3. Proposed method: SPDI algorithm

If the parameters of the model were known, the prob-
lem of identifying the signal qqis; from input-output data
becomes a state estimation problem. Our approach there-
fore relies on using a state estimator, in particular, a Kalman
filter, for a given set of parameter values, and then search-
ing for an optimal set of parameter values to minimize a
cost function.

To enable use of sampled data, the continuous time
dynamics (4) are discretized with a sampling period of
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ts to obtain a discrete-time linear time invariant (LTT)
system [16]. Additionally, process and measurement noise
are introduced to capture modeling error and sensor noise.
The discrete-time model is therefore of the form

Tp41 = Axy, + Buy, + &,

(5)240

zi = Cxp + ng
where & and ny are white noise sequences that capture the
modeling error and sensor noise, respectively, A = eAets
B = (fgs eAendn)B,, and C = C.. In the sequel, the
process and measurement noise covariance sequences will
be denoted by Q and Ry, i.e., Qx := Cov[, k], Ry =
Cov[ny, ny], where Cou(-,-) denotes covariance.

The Kalman filter uses the discrete-time system matri-
ces (A, B,C), the measurement sequence z;, := T,[k] € R,
and the input sequence wuy, := [T,[k], Nso1[k], Ghvac[K]]T €
R3, along with the covariances Qy, Ry to produce the state
estimate sequence &y, := Elxg|20,. .., 2], where E[] de-"
notes expectation. The residual sequence of the filter is
defined as

(6)

In order to use a Kalman filter to obtain the state estimates
from input and output data, the system model, i.e., the
matrices (A, B, C') must be provided. This is equivalent to
providing the parameter vector p = [C,, Cy, Ry, R., Ac|T €
R5. A measure how good a given choice of p is

Tk ‘= 2k — 2k|k =Zr — (C*%Hk)

255

kmax

F) =" Irel, (7)o
k=1

where ry, is the residual sequence defined in (6) and k44 is
the number of samples in the dataset. While the parame-
ters do not explicitly show in the definition (6), they affect,
the residuals. Hence the objective function f is a function
of p. The best-fit parameter values p*, for a given data set
{ur, 25} is the one that minimizes this cost. That is,

p" = argmin f(p), (8)
where Q is a subset of R® where the parameter vector
p is constrained to lie. The optimal p* is the estimated
parameters for a given initial parameter vector, and the
corresponding state estimates from the Kalman filter also
provides the disturbance estimate §g;s¢-

The objective f(p) is a non-convex function of the pa-
rameter vector p. Therefore, there may not be a unique
minimum p*, and the minimum that any numerical search
algorithm converges to (when it does converge) may de-
pend on the initial guess. The optimization problem (8) is
solved multiple times for distinct initial guesses. The mode,,,
of these local optimal points is taken as the estimate.

The proposed method, which we call the Simultaneous
Plant and Disturbance Identification (SPDI) algorithm, is
summarized below:

SPDI Algorithm

Inputs: u = {uk}Z’;‘iw, z = {zk}zg””, process and mea-
surement noise covariance sequence {Qk,Rk}Z’;T,
search algorithm and stopping criterion, method for
generating an initials guess, and the number of initial

guesses to try, n;g.

(0)

IG Generate initial guess, poe , iteration /.

Begin Optimization solver loop, iteration j

step 1 Based on parameter estimate py), compute

the discrete-time matrices (4, B, C') in (5).

step 2 Perform state estimation using the Kalman
filter to obtain {ik‘k};?;ﬁl', and compute the ob-
jective function value (7).

step 3 Update the next parameter vector to try pgel,

using a search technique.

step 4 Repeat steps 1-3 until stopping criterion is
satisfied.

End Optimization solver loop

Store results: p*(*) = [C.,Cy, Ry, R., A.]T and q;i(ft).

Compute estimate Compute the mode of the optimal
solutions {p*(z) ?;91, and return it as the estimate p.
Let ¢ be an index that achieves the mode. Return the
corresponding load as the estimated load: §qgist =
i
Any optimization algorithm for conducting the search
in step 3 and any method of generating initial guesses can
be used. In this paper we use the MATLAB® fmincon
function with default options to search for the minimum,
which uses an interior point method [17], and Latin hy-
percube sampling to generate an initial guess [18]. All nu-
merical results presented later in this paper were obtained
with n;, = 50, which was picked somewhat arbitrarily.

8.1. Choosing design-variables

A number of choices have to be made by the user in
implementing the algorithm: (i) the process and measure-
ment error covariance sequences {Qg, Ry}, (ii) the region
Q, and (iii) the length of the data sequence, kg

In the results reported in the rest of the paper, the pro-
cess and noise covariances are chosen to be time invariant.
In particular, Q; = @ and Ry = R for all k, where

(9)

Where both as and a; are small positive numbers with
as > 1. This is equivalent to saying that there is very lit-
tle modeling error in the first two states, but the dynamics
of the third state has large uncertainty. The rationale for
this choice is that even in commercial buildings the piece-
wise constant model for the disturbance state is not always
accurate, especially during periods when people come in

Q := diag(ai, a1, az)
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and leave. So the third state has large uncertainty. In this
paper, we choose ap ~ 1073 and a; = 1077 .

The value of R is chosen to be on the same order of
magnitude as ay (1072) but the ratio, 92, is elected to be
greater than one. This is because it is desirable to ascribe
the difference between measurements and predictions to
the state associated with ay (i.e. the disturbance, gqist)-
If the ratio is larger, the Kalman filter ascribes more of the
prediction error 7 to the third state, the gqist, while if the
ratio is smaller, it ascribes the prediction error to measure-
ment noise. In the simulation study presented in Section 4,
the ratio is elected to be 9% = 3 for both closed-loop and
open-loop data. When the building is under closed-loop
control, the HVAC system actively tries to maintain the
zone temperature T, by varying gnyac in response to thesx
error between T, and its desired value, T} (reference sig-
nal). During open-loop operation no such feedback is used.
If the method were to be applied on a different building,
with a potentially different RC network model, the values
as and R may have to be re-calibrated. 325

The choice of the region (2 is somewhat arbitrary, and
requires some a-priori knowledge. A rough estimate of the
range of A. can be obtained from knowledge of building
geometry, which can then be used to set bounds. In this
paper, we apply our method to data from a section of a
large building, which is described in Section 5. The upper
bound on the A, is computed from the roof area of that,,
zone. The values of resistances and capacitances that were
identified for a 100 m? (floor area) x 4.5m (height) zone in
a large commercial building in [10], expressed in K/kWh
and kW/K, respectively, were of O(1). Our simulation
data is generated from a model calibrated to a 540 m?,;
(floor area) x 6.7 m (height) commercial building. Thus,
the following bounds on the parameters are used in this
paper (units are shown in parenthesis):

0.01 < C,, C, (Hl%h),}zw,l%z (%),Ae (m?) <50 (10)
The length of data sequence should be enough so that
(i) the transients due to initial conditions die out and do
not effect the results significantly [4], and (ii) the data
captures the difference between the weekday and weekend
loads. We have found through trial and error that data
for two weeks is adequate for this purpose.

3.2. Kalman filter performance

The question of whether the Kalman filter, for the
true model, produces accurate state estimates or not, is of
paramount importance for the effectiveness of the method.
This question reduces to the question of stabilizability and
detectability, or their less general counterparts, controlla-
bility and observability [19]. If (4, Q'/?) is stabilizable and
(A, C) is detectable, where @ is the covariance of the pro-
cess noise &, then the covariance of the Kalman filter’s
state estimates converges to a positive definite constant
matrix [20]. That provides confidence on the accuracy of
the state estimates.

Since C' = [1, 0, 0], the observability matrix is O =
[CT, (CA)T, (CA%)T]T. The determinant turns out to be

t2(Ruts + R.ts
det(O) = —(C C IR ), (11)

which is non-zero for physically meaningful parameters
(i.e., strictly positive), so O is full rank. Thus, (A4,C) is
observable, and hence detectable. One can show that [19],
the pair (A, Q'/?) is stabilizable if

rank[A =\, QY% =3 YAeC:A>1  (12)
Since for our system the matrix @) is diagonal, with positive
entries on the diagonal, Q'/? is full rank, regardless of
the what A and X are. Therefore the pair (4,Q'?) is
stabilizable.

Since (A, C) is observable and (A, Q'/?) is stabilizable
for any choice of the parameter set, p = (C,, Cy, R., Ry, Ae),
that is physically meaningful (meaning all parameters are
strictly positive), convergence and stability of the filter is
guaranteed; no special care has to be take in choosing the
parameter values.

4. Evaluation with simulation data

We now present results from applying the proposed
method (SPDI Algorithm) to data generated from a sim-
ulation model. The simulation model itself is of form (1)-
(2), so that there is an unambiguous ground truth that
the results of the algorithm can be compared to. That is,
the input gqist for (1) will be compared to the estimated
augmented state in (4). The parameters and the occupant-
induced load are chosen somewhat arbitrarily, but ensuring
that the model prediction is not too far from observations
collected in a building that will be described in Section 5.
We use a sampling period ¢, = 1/12 hours (5 minutes).
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Figure 2: Some of the input data used in simulation evaluation: ng.,
Te for all four scenarios (2013/08/26 to 2013/09/01), and T, with
Tyey for CL-NPW.
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Four scenarios are tested in simulation: (i): Open-loop
simulation with a piecewise constant disturbance (OL-PW),
(ii) Open-loop simulation with non piecewise constant dis-
turbance (OL-NPW), (iii): Closed-loop simulation with a
piecewise constant disturbance (CL-PW), and (iv): Closed-
loop simulation with non piecewise constant disturbance
(CL-NPW). For all four scenarios, the same input data
sequences for ambient temperature, T, collected from

weatherunderground. com and solar irradiance, 7.7,

60 |
40
20 |

—— e v

-

Cz Gw RZ

collected from the National Solar Radiation Database (NSRDB:

nsrdb.nrel.gov), for Gainesville, FL, are used. In both
the closed-loop scenarios, a PI controller is used to con-
trol the HVAC power ¢nvac so that the room tempera-
ture tracks a set-point T.r. The gains for this controller
are elected to be 12 (proportional) and 4 (integral). To
have exciting input to aid in identification, the reference
room temperature trajectory is generated using a pseudo-
random binary sequence (PRBS) [16, 10]. To ensure that
occupant comfort is not compromised, the reference is con-
strained to lie within 22.78 °C and 25°C. 380

The inputs T, and 7y, that are used in all four sce-
narios, are shown in Figure 2(top). The output 7, for the
CL-NPW scenario, along with the temperature set-point
(Tref), is shown in Figure 2 (bottom). A comparison of the
various heat gains affecting the system, for the CL-NPWags
scenario, are shown in Figure 3. Note that the unmea-
sured disturbance qqgist iS comparable to the magnitude
of the cooling provided gpyac. The presence of the large
unmeasured disturbance means it cannot be ignored in es-
timating RC network parameters [10].

All simulation evaluations are done with two weeks of3®
data, as explained in Section 3.1. All the plots in the paper
show only the first week to reduce clutter.

4.1. Parameters
5

The parameters identified by the proposed method are™
shown in Table 1. In all scenarios, the parameters C,,

Figure 4: Simulation evaluation (all scenarios): Box-plot of optimal
solutions of parameters normalized by true values for various initial
guesses (from top: OL-PW, OL-NPW, CL-PW, CL-NPW).

Cy, and A, are identified quite accurately (maximum er-
ror relative to the true value of 1.6 %, 9.7 % and 6.0 % for
C., Cy, and A., respectively), but there are larger errors
in the estimate of R, and R, in some scenarios: 35.7 %
(R.) and 20.0 % (R,,) in the worst cases. This can be ex-
plained from the structure of the model: the contribution
of the term involving R, and partly R,, in (2) may not be
identifiable since this unknown term affects the wall state,
which is furthermore not measured directly. Contrary to
this, the parameter values C,, and A, affect a state equa-
tion that corresponds to the measured signal T, and they
are estimated quite accurately in all four scenarios.

Impact of non-convezity. Recall that the identified param-
eters are modes of the solutions to an optimization problem
solved with n;, (=50) distinct initial guesses. This was
done to guard against getting wildly different estimates
depending on the choice of initial guess to the underlying
optimization problem, which is possible in principle since
it is non-convex. To show the spread of these optima,
box-plots of the optimal solutions are presented in Fig-
ure 4. From these plots it can be observed that all of the
parameters from the open-loop scenario have little spread,
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Table 1: Parameter Estimation results, p.

Parameter | True Value | Estimates | units
OL-PW OL-NPW CL-PW CL-NPW
C, 9.40 9.40 9.35 9.55 9.54 EWh/K
Cuw 20.00 20.00 19.64 20.40 18.06 EWh/K
R, 0.70 0.70 0.76 0.79 1.09 K/kW
R, 0.70 0.70 0.71 0.62 0.56 K/kW
A, 7.00 7.00 7.14 7.42 7.27 m?2
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Figure 5: Simulation evaluation: Bode magnitude and phase plot comparisons for CL-NPW scenario.

however the closed-loop scenarios have considerable spread
(particularly the two resistances). The non-convexity of
the problem affects the closed-loop scenarios greater than
the open-loop scenarios. This is expected as the system
operating in closed-loop can be difficult to identify.

Even though many of the methods proposed in the
literature to estimate R,C parameters require solving a
non-convex optimization problem, the issue of non-unique
solutions have not been treated in a principled manner.

420

4.2. Frequency response

Frequency response of a system refers to the gain and
phase shift between the input and the output for sinusoidal
inputs, as a function of frequency of the sinusoid. For
prediction accuracy of the model, its frequency response*s
is more important than individual parameters. Figure 5
shows the Bode plots, which are graphical representation
of the frequency response, of the true and identified mod-
els. Due to space limitations, we only show the Bode plots
for the CL-NPW scenario since that is the most relevant#?
for practical applications.

Among the frequency responses, from inputs gpyac, Za,
and 74, to output 7T, the maximum absolute error be-
tween the identified and true response, observed over all

frequencies, is found to be associated with the input Tj,.
This maximum error is 0.3071, or ~ 31% of the true value:

max |Gnsosz (]w) - Gnsnsz (j(.d)|

: = 0.3071.
w |G oot (30

(13)

and occurs at the frequency of 1/50.3 hours. That the
maximum error occurs for the input T, is not surprising
as the parameter with the second largest error, R, directly
affects the corresponding transfer function.

4.3. Occupant-induced load

The estimated disturbance, ¢4, for all four scenar-
ios are shown in Figure 6. The estimated disturbance is
quite accurate in almost all scenarios. It is especially sur-
prising that even when the true disturbance is not piece-
wise constant, the estimated disturbance is able to capture
the main trend of the disturbance well. The estimates
are slightly better in the open-loop scenarios than in the
closed-loop scenarios, which is not surprising since system
identification with closed-loop data is more challenging.
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Figure 6: Simulation evaluation: estimated gq;s¢ for all four scenarios
(top to bottom: OL-PW, OL-NPW, CL-PW, CL-NPW).

5. Evaluation with building data

5.1. Building Description

The proposed method has been applied to a zone in
a building in the University of Florida campus. In par-
ticular, data from a large auditorium (~ 540 m?) that is
serviced by a dedicated air handling unit is used. This
zone, which serves as a building for this study, is shown
within the red dashed line in Figure 7. The solar irra-
diance 7, data has already been described in Section 4.
The input gnyac (see top of Figure 8) was computed fromuss
measurements of supply air flow rate mg, and temperature
Ty (measured at the supply duct), and of return tem-
perature Tp..; (measured at the return duct): guyac(t) =
Msq () Cpa(Tsa(t) — Tret(t)), where Cpq is the specific heat
capacity of air. Note that latent heat is ignored; so the cal-0
culation is accurate only when there is little difference in
the supply and return duct humidities. The zone temper-
ature, T, is measured at a thermostat in the zone, whose
location is denoted by the circled T in Figure 7. The data
used here was collected during normal operation where theass
HVAC system is under closed-loop control, no special ex-
citation test was done to aid the estimation algorithm.

FRST FLOOR

Figure 7: Pugh hall floor plan (top) and photograph (bottom), with
the zone that the SPDI algorithm is applied to is shown enclosed
in dashed lines. The “*” denotes the location from where the pho-
tograph of the building was taken (show at the bottom) and the
arrow denotes direction of the camera. The (D is the location of the
temperature sensor that is used for T.

Table 2: Parameter estimates from closed-loop data collected from
Pugh Hall.

Parameter Estimate units
C, 8.70 kWh/K
Cuw 19.70 kWh/K
R, 0.60 K/kW
R, 0.55 K/kW
A, 8.12 m?

5.2. Parameters

The estimated parameters are shown in Table 2. Though
not much can be said about the accuracy of the parameter
estimates due to lack of ground truth, the relative mag-
nitude of the parameters appear reasonable. The purpose
of the wall state is to model the slower time-scale thermal
dynamics while the room state is to model the faster time-
scale, and the estimated parameters are consistent with
this: estimate of Cy, is about 2 times larger than C,. In
addition, the estimate of C, is close to the value used in
simulations, which was arrived at by manual calibration
with data from this building. The two resistance values,
R. and R,,, are estimated to be close to each other.
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Figure 8: Evaluation with building data: Heat gains gpyac, Aensol,
and §g;s¢ estimate for 2013/08/26 to 2013/09/01.
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Figure 9: Evaluation with building data: §g;s¢ vs. measured COq
concentration, for the week of 2013/08/26 to 2013/09/01.

5.3. Occupant-induced load 505

The qqist estimation results are compared against COq
(measured at the return duct) in Figure 9 and the esti-
mated solar heat gain Aensol in Figure 8 (bottom). The es-
timated disturbance correlates strongly with the CO5 con-
centration measurements during the first weekdays (first
five days), with correlation coefficient being 0.83. Re-
markably, during the week days the estimated occupant-,,,
induced load captures the trend of the CO; signal well.
However, the flat COy measurement during the weekend
indicates the building is empty and thus the true occupant-
induced disturbance is likely to be nearly constant or zero,
while the estimated disturbance is not. The difference;,
could be due to unmodeled dynamics (such as latent heat,
ground coupling etc.). It could also be due to the Kalman
filter, which has a tendency to use the third state gg;st
as a “garbage collector”. Recall that a large variance is
assigned to process noise corresponding to the the thirds,,
state, qqist, in the Kalman filter equations. A large vari-
ance is needed for the model to be able to track the time-
variations in the true occupant-induced disturbance that
deviates from the assumed piecewise-constant profile. That
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Figure 10: Evaluation with building data (winter): §g;s¢ vs. mea-
sured CO32 concentration, for the week of 2013/01/14 to 2013/01/20.

inherently limits the model’s ability to accurately estimate
the constant qqist when it is indeed constant, such as dur-
ing weekends.

For additional assessment of the quality of disturbance
estimates, the parameter values in Table 2 were used with
(4) to estimate the internal disturbance, qqist for another
week of data. Since the parameters are known, the prob-
lem reduces to one of state estimation. The load estimates
are shown in Figure 10. The disturbance estimate is again
strongly correlated with the COq signal during the week-
days. The correlation coefficient is now 0.83, the same as
in the summer data, even though this data set is from the
winter.

5.4. Root mean square error

Since no ground truth is available to test the plausi-
bility of the model fitted to building data, the root mean
squared error (RMSE) of the residuals of the fit (ry in (6))

is computed: RMSE = /13"  v2. For the first week
of data, the RMSE is 0.23°C.

6. Conclusion

We present a method to simultaneously estimate (i) the
parameters of a dynamic model of a building’s temperature
including resistance, capacitances and effective solar area,
and (i) unmeasured disturbance (heat gain), from input-
output data. The method is based on the assumption that
the main component of the unmeasured disturbance, the
occupant-induced load, is piecewise constant, especially
in commercial buildings. Extensive simulation tests in-
dicate that the method works well even when the true
occupant-induced load is not piecewise constant, and with
both open-loop and closed-loop data, making it highly ap-
plicable in practice. When applied to data collected from
a real building, the method appears to work well in the
following sense. One, the values of the capacitance’s rep-
resent appropriate magnitudes when it comes to model-
ing the slow and fast time-scales of temperature variation.
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Two, the estimated heat-gain is strongly correlated withseo
measured COy concentration. The true occupant-induced
load should be strongly correlated to the CO2 concentra-
tion.

There are several avenues of future work. The modelses
structure used here is linear, which comes from lumping
the cooling injected by the HVAC system, into one sig-
nal [10]. Extending the method to a model in which the
supply air temperature and supply air flow rate are in-soo
puts, in which case the model becomes bilinear, will make
it more useful for use in model-based control [21]. Finally,
the model structure used here lumps an entire building
into a single zone. Extending the method to multi-zoneses
buildings is another avenue for future work.
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