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ABSTRACT

The flexibility in power consumption of heating, ventilation, and air-conditioning (HVAC) systems in buildings can

be utilized to provide a battery-like service to the power grid. Recent work has reported that using HVAC systems

in such a manner may lead to a net increase in energy consumption compared to normal operation, similar to a low

round-trip efficiency (RTE) of a battery. In our previous work we showed that the low RTEs reported were due to

the way the experiments/simulations were performed, and that using an HVAC system as a virtual battery repeatedly

leads to an asymptotic RTE of one. In this work we show that when an additional constraint is imposed—that the

mean temperature of the building must remain at its baseline value—the asymptotic RTE can be lower than one. We

numerically investigate dependence on parameters such as building size and time period of charging/discharging.

1. INTRODUCTION

With increasing penetration of intermittent renewable energy sources, there is a growing recognition that the flexibility

in demand of most electric loads can be utilized to provide ancillary services to the grid, such as frequency regula-

tion (Lin et al., 2015; Makarov et al., 2008). In fact, loads can provide Virtual Energy Storage (VES) by varying their

demand over a baseline so that to the grid they appear to be providing the same service as a battery (Cheng et al.,

2017). Such a load, or collection of loads, can be called virtual batteries (VB).

The key constraint is to do so without violating consumers’ quality of service (QoS). Two most important QoS mea-

sures for heating, ventilation, and air-conditioning (HVAC) systems are indoor temperature and total energy consump-

tion. Experimental demonstration has shown that HVAC systems can provide VES service, especially in the fast time

scale of “frequency regulation”, with little or no discernible effect on the indoor temperature (Lin et al., 2015). Contin-

uously varying the power consumption of loads around a baseline may lead to a net increase in the energy consumption

when compared to nominal usage. If so, that will be analogous to the virtual battery having a round-trip efficiency

(RTE) less than unity. Electrochemical batteries also have a less-than-unity round-trip efficiency (Luo et al., 2015),

since not all the energy consumed during charging is returned to the grid during discharging.

In this paper we analyze the RTE of virtual battery comprised of HVAC equipment in commercial buildings. The

inspiration for this paper comes from (Beil et al., 2015) and its follow-on works (Lin et al., 2017; Raman & Barooah,

2018). To the best of our knowledge, the article (Beil et al., 2015) is the first to provide experimental data on the RTE

of commercial buildings providing VES. The experiments were conducted at a ∼ 30, 000 m2 office building located

in the Los Alamos National Laboratory (LANL) campus. In the experiments reported, the fan power was varied in an

approximately square wave fashion with a time period of 30 minutes by changing in unison the thermostat set point

of all the zones in the building. After one cycle of the square wave, the building was brought back to its baseline

thermostat setpoint. It was observed that a considerable amount of additional energy had to be consumed to bring

back the building to its baseline temperature in almost all the tests performed. This loss was expressed as a round-trip

efficiency less than 1. The average RTE reported was less than 0.5. These values are low compared to that for Li-ion

batteries, which vary from 0.75 to 0.97 (Luo et al., 2015). An RTE value much less than 1 indicates that use of HVAC

systems as virtual batteries may not be cost effective.

The paper (Lin et al., 2017) investigated potential causes for the RTE values reported in (Beil et al., 2015) by con-

ducting simulations. They also explored the effect of building parameters, control design, and imprecise knowledge
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of baseline power consumption on the RTE. They were able to replicate several trends observed in the LANL experi-

ments, but there were also significant differences.

In (Raman & Barooah, 2018), it was shown that the RTE values much smaller than unity that were reported in prior

work were an artifact of the experimental/simulation set up. When the HVAC system is repeatedly used as a VES

system the asymptotic RTE is one. The biggest difference between (Beil et al., 2015; Lin et al., 2017) and (Raman &

Barooah, 2018) is that, the former considered only a single cycle of the square wave power variation while the latter

considered multiple cycles. An important phenomenon that was observed in (Raman & Barooah, 2018) was that when

the HVAC system’s power consumption was repeatedly increased and decreased to act as a virtual battery, there was

on average a slight warming of the building, (i.e., the average temperature deviation was above zero) even though the

temperature deviation was within the user specified limits.

In this paper we examine on what happens to the asymptotic RTE, when the average temperature deviation from the

baseline is constrained to be zero. Compared to (Raman & Barooah, 2018), this paper makes two contributions. First,

we show that when the average steady state temperature of the building is constrained to be the same as the baseline

value, an additional energy consumption may be needed which reduces the asymptotic RTE to strictly below 1. Second,

we examine how this RTE varies with various parameters such as building size and time period of power deviation.

The trends observed are valuable in choosing design parameters, such as whether a smaller or larger building is better

suited to provide VES service.

2. DEFINITIONS AND OTHER PRELIMINARIES

For the sake of completeness we first present some of the definitions, mathematical models, and results from (Raman

& Barooah, 2018). Consider an HVAC system whose power demand is artificially varied from its baseline demand

to provide virtual energy storage. The power consumption of the virtual battery, P̃ , is defined as the deviation of

the electrical power consumption of the HVAC system from the baseline power consumption: P̃ (t) := PHVAC(t) −

P
(b)
HVAC(t), where P

(b)
HVAC is the baseline power consumption of the HVAC system, defined as the power the HVAC system

needs to consume to maintain a baseline indoor temperature T (b).

We now define the state of charge (SoC) of a virtual battery. Just as the SoC of a real battery must be kept between 0

and 1, the temperature of a building must be kept between a minimum value, denoted by TL (low), and a maximum

value, denoted by TH (high), to ensure QoS. We therefore define the SoC of an HVAC-based virtual battery as follows.

Definition 1 (SoC of a VES system). (Raman & Barooah, 2018) The state of charge (SoC) of an HVAC-based VES

system with indoor temperature T is the ratio
TH − T

TH − TL

where [TL, TH ] is the allowable range of indoor temperature.

Definition 2 (Complete charge-discharge). (Raman & Barooah, 2018) We say a virtual battery has undergone a

complete charge-discharge during a time interval [ti, tf ] if SoC(ti) = SoC(tf ). The time interval [ti, tf ] is called

a complete charge-discharge period.

The qualifier “complete” just means that the SoC comes back to where it started from, and has nothing to do with the

SoC reaching 1 or 0.

Definition 3 (RTE). (Raman & Barooah, 2018) Suppose a virtual battery undergoes a complete charge-discharge

over a time interval [0, tcd]. Let tc be the length of time during which the virtual battery is charging and td be the

length of time during which the virtual battery is discharging so that tc + td = tcd. The round-trip efficiency (RTE) of

the virtual battery, denoted by ηRT, during this period is

ηRT ,
Ed

Ec

=
−
∫

td
P̃ (t)dt

∫

tc
P̃ (t)dt

=
−
∫

td
(PHVAC(t)− P

(b)
HVAC(t))dt

∫

tc
(PHVAC(t)− P

(b)
HVAC(t))dt

(1)

where Ed is the energy released by the virtual battery to the grid during discharging, Ec is the energy consumed by

the virtual battery from the grid during charging, and
∫

tc
(resp.,

∫

td
) denotes integration performed over the charging

times (resp., discharging times).
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For a given baseline zone temperature T (b), Toa, qx, and Tsa the corresponding baseline air flow rate m
(b)
a is given by:

0 =
1

R
(Toa − T (b)) + qx +m(b)

a Cpa(Tsa − T (b)). (4)

The baseline power consumption, P
(b)
HVAC, is obtained by plugging in T (b) and m

(b)
a into the expression for PHVAC in (3).

3.2 VES System Dynamics and Power Consumption

Let m̃a(t) := ma(t)−m
(b)
a , be the air flow rate deviation (from baseline) commanded by the VES controller. Let the

resulting deviation in the zone temperature be:

T̃ (t) := T (t)− T (b). (5)

The power consumed by the virtual battery is: P̃ (t) := PHVAC(ma(t), T (t))− P
(b)
HVAC(m

(b)
a , T (b)), where PHVAC(·, ·) is

given by (3). By expanding the above equation for P̃ , we obtain:

P̃ = am̃a + bT̃ + cm̃aT̃ + dm̃2
a, (6)

where a := 2α1fm
(b)
a + α2f +

Cpa[roaToa + (1− roa)T
(b) − Tsa]

COP
, (7)

b :=
Cpam

(b)
a (1− roa)

COP
, c :=

Cpa(1− roa)

COP
, d := α1f . (8)

Differentiating (5), and using (2) and (4) we obtain:

˙̃
T = −αT̃ − βm̃a − γT̃ m̃a, where α :=

RCpam
(b)
a + 1

RC
, β :=

Cpa(T
(b) − Tsa)

C
, γ :=

Cpa

C
. (9)

The dynamics of the temperature deviation (and therefore of the SoC of the virtual battery) are thus a differential

algebraic equation (DAE):
˙̃
T = f(T̃ , m̃a), P̃ = g(T̃ , m̃a), where the first (differential) equation is given by (9) and

the second (algebraic) equation is given by (6).

3.3 Numerical Computations

The parameters used for simulations are listed in Table 1. The values for R, C, m
(b)
a , α1f , and α2f are based on an

auditorium (∼ 6m high, floor area of ∼ 465m2) in Pugh Hall located in the University of Florida campus. The R and

C values were chosen guided by (Lin, 2014). Using the values listed in Table 1 the baseline power consumption of the

HVAC system turned out to be P
(b)
HVAC = 9725.6 W. We used first-order Euler’s method with time step of 0.1 seconds

for simulations.

Table 1: Simulation parameters

Parameter Value Parameter Value Parameter Value

T (b) 295.4 K TL 294.3 K TH 296.5 K

m
(b)
a 2.27 kg/s C 3.4× 107 J/K R 1.3× 10−3 K/W

COP 3.5 α1f 662 W/(kg/s)2 α2f -576 W/(kg/s)

Tsa 285.9 K Toa 299.8 K

4. RTE WITH ZERO-MEAN SQUARE-WAVE POWER CONSUMPTION

In this section we present some important results from (Raman & Barooah, 2018) for the sake of completeness. In

order to enable comparison with prior works (Beil et al., 2015; Lin et al., 2017) we restrict the power consumption of

the virtual battery to a square-wave signal. Since (Beil et al., 2015) reported differences in observed RTE depending

on whether the power consumption is first increased and then decreased from the baseline (“up/down” cycle), or vice

versa (“down/up” cycle), we also treat them separately.
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5. RTE WITH NONZERO-MEAN SQUARE-WAVE POWER CONSUMPTION

In the previous section, the power deviation signal P̃ (t) was zero-mean. However, the resulting zone temperature

deviation from baseline may not be zero-mean. One may argue that to perform a fair comparison, the mean temperature

deviation at steady state must be kept at zero somehow. Such a change may necessitate additional power consumption,

which may change the asymptotic RTE away from unity. Figure 4 shows numerical evidence of such a phenomenon:

P̃ (t) is a zero-mean square wave with amplitude ∆P = 2917.7 W (30% of the baseline power consumption P
(b)
HVAC =

9725.6 W). When the temperature deviation T̃ (t) reaches periodic steady state, its average value over one cycle is

∼ 0.11 K. If ∆P were to be 20% and 40% of the baseline, the average temperature deviation turns out to be 0.05 K

and 0.21 K respectively.
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Figure 4: Zero-mean power deviation leads to a

nonzero-mean temperature deviation at steady state (plot

shown on the bottom right corner). The values used

were: ∆P = 0.3P
(b)
HVAC = 2917.7 W, roa = 0.5, and

2tp = 3600 seconds.
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Figure 5: Nonzero-mean power deviation used to en-

sure that the temperature deviation at steady state is zero-

mean (plot shown on the bottom right corner). The value

of ∆P used was 168.6 W, for P
(b)
HVAC = 9725.6 W and

∆P = 0.3P
(b)
HVAC = 2917.7 W, computed from (15). Also

roa = 0.5 and 2tp = 3600 seconds.

5.1 Nonzero-Mean Power Deviation to Ensure Zero-Mean Temperature Deviation

Suppose with a zero-mean square-wave power variation P̃ over the baseline, the mean of T̃ at periodic steady state is

positive, meaning the building is on average warmer than the baseline temperature. In order to ensure that the mean

of T̃ is 0, an additional constant ∆P > 0 will have to be added to P̃ , to provide additional cooling, as shown in

Figure 6. Adding a constant ∆P to the power deviation command can be interpreted as the building operating at a

new, shifted baseline. Suppose we start with an up/down cycle, there are two possibilities that can occur in principle:

T̃ (n2tp) > 0 or T̃ (n2tp) < 0. It follows from Definitions 2 and 3 that the RTE at the end of n cycles of the power

deviation command is:

ηRT(n) =



























n(∆P −∆P )tp

(∆P +∆P )(ntp + trecov(n))
starting with up/down and T̃ (n2tp) > 0,

(∆P −∆P )(ntp + trecov(n))

n(∆P +∆P )tp
starting with up/down and T̃ (n2tp) < 0,

(12)

where trecov(n) is the additional time needed to bring the temperature to zero at the end of n periods. Figure 6 shows

an example of P̃ starting with an up/down cycle and T̃ (n2tp) being greater than zero. It follows that:

η∞RT = lim
n→∞

ηRT(n) =
∆P −∆P

∆P +∆P
< 1. (13)
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T̃o =
−(µ8 + µ11)− (µ9 + µ12)∆P

(µ7 + µ10)
, (16)

where µ1 , em1tp , µ2 , −(n1∆P + s1)
[1− em1tp

m1

]

, µ3 , −n1

[1− em1tp

m1

]

, µ4 , em2tp ,

µ5 , (n2∆P − s2)
[1− em2tp

m2

]

, µ6 , −n2

[1− em2tp

m2

]

, µ7 ,
em1tp − 1

m1
,

µ8 , −
(n1∆P + s1)tp

m1
+

(n1∆P + s1)(e
m1tp − 1)

(m1)2
, µ9 ,

n1(−m1tp + em1tp − 1)

(m1)2
,

µ10 ,
µ1(e

m2tp − 1)

m2
, µ11 ,

(n2∆P − s2)tp
m2

+
(−n2∆P + s2)(e

m2tp − 1)

(m2)2
+

µ2(e
m2tp − 1)

m2
,

µ12 ,
n2(−m2tp + em2tp − 1)

(m2)2
+

µ3(e
m2tp − 1)

m2
,

and the parameters appearing in the formulas of µ’s are given by:

m1 , −α− β
[−c

2d
+

ac− 2db

2d
√
a2 + 4d∆P

]

−
γ(−a+

√
a2 + 4d∆P )

2d
, n1 ,

−β
√
a2 + 4d∆P

, s1 , q1 − n1∆P,

(17)

q1 ,
−β(−a+

√
a2 + 4d∆P )

2d
, m2 , −α− β

[−c

2d
+

ac− 2db

2d
√
a2 − 4d∆P

]

−
γ(−a+

√
a2 − 4d∆P )

2d
, (18)

n2 ,
−β

√
a2 − 4d∆P

, s2 , q2 + n2∆P, q2 ,
−β(−a+

√
a2 − 4d∆P )

2d
. (19)

5.2.1 Derivation of the formulas (15) and (16): We only provide the outline, since the details involve messy algebra

that does not offer any insight. Since we are limiting ourselves to times after steady state is reached, we can shift

the origin of time so that charging occurs when t ∈ [0, tp] and discharging occurs when t ∈ [tp, 2tp]. This makes

the results valid irrespective of whether the power deviation started with an up/down cycle or down/up cycle, since

transients play no role. Let T̃o be the maximum value of the temperature deviation T̃ after the building reaches steady

state; see Figure 6. Clearly, the maximum temperature will be achieved at the end of a discharging (power-down)

half-cycle. That is, T̃ (0) = T̃ (2tp) = T̃o. Since our hypothesis is that the mean temperature deviation is zero and the

temperature is in (periodic) steady state, we must have the following:

∫ 2tp

0

T̃ (t)dt = 0 and T̃ (0) = T̃ (2tp) = T̃o. (20)

The two equations mentioned above can be solved to determine the two unknowns T̃o and ∆P . To determine expres-

sions for the left hand side of these equations, we need expressions for the temperature deviation T̃ (t) as a function

of the two unknowns. As discussed in Section 3.2, to determine T̃ (t) one has to solve a nonlinear DAE. To determine

the required expressions, therefore, we need to perform some simplifications. First, based on numerical evidence, we

eliminate one of the roots for (6), which gives:

m̃a =
−(cT̃ + a) +

√

(cT̃ + a)2 − 4d(bT̃ − P̃ )

2d
, (21)

so the DAE reduces to the nonlinear ode:
˙̃
T (t) = −αT̃ − βm̃a − γT̃ m̃a, where m̃a is the expression from (21). In

order to obtain an analytical solution, we linearize the ODE around two operating points: (T̃ ∗, P̃ ∗) = (0,∆P ) and

(T̃ ∗, P̃ ∗) = (0,−∆P ). The linearized ODEs, respectively, are:

˙̃
T = m1T̃ + n1P̃ + s1, (22)

˙̃
T = m2T̃ + n2P̃ + s2, (23)
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where the constants mi, ni, and si are defined in (17) through (19). The linear ODE (22) is an approximation of the

nonlinear differential algebraic system during the charging half period, while the linear ODE (23) is an approximation

during the discharging half period. Since linear, time-invariant ODEs have explicit solutions (the so-called variation

of constants formula), we can write down the expression for T̃ (t) during t ∈ [0, tp], starting with the initial condition

T̃ (0) = T̃o, from (22). Similarly, we can write down the expression for T̃ (t) during t ∈ [tp, 2tp], with the initial

condition T̃ (tp) determined in the previous step, from (23). The variables T̃o and ∆P appear as unknown constants in

these expressions. Armed with these expressions, we can determine the left sides of the two equations in (20), which

are then solved to determine the two unknowns T̃o and ∆P . This results in the expressions (15) and (16).

5.3 Effect of Various Parameters on η
∞

RT
(in eq. (13))

In this section we examine how η∞RT in (13) depends on various parameters. For every set of parameter values picked,

the method described in Section 5.2 was used to compute ∆P . The corresponding η∞RT was then computed from (13).

Nominal values for the various parameters used in this section are: roa = 0.5, ∆P = 20%P
(b)
HVAC, 2tp = 3600 seconds,

and the values listed in section 3.3.

5.3.1 Building size: We vary the floor area of the building while keeping its height fixed. The baseline air flow rate

and the R, C values are assumed to depend on the size of the building in the following manner:

m(b)
a =

Af

A∗

f

m(b),∗
a , C =

Af

A∗

f

C∗, R =
A∗

ef

Aef

R∗, (24)

where Af is the floor area, Aef is the external surface area of the building (i.e., total surface area minus floor area),

and ∗ denotes the nominal values (parameters mentioned in section 3.3). We also increase the exogenous heat gain qx
with increase in building size so that the equilibrium condition in (4) is maintained. We examine two cases. Case (i):

the amplitude ∆P of the power deviation is held constant (1945.1 W) as building size changes. Case (ii): ∆P changes

with building size according to ∆P = 20%P
(b)
HVAC, where P

(b)
HVAC is computed by using m

(b)
a from (24) in (3). Figure 8

shows how η∞RT varies with building size. The figure also shows the product of resistance and capacitance, RC, which

is a measure of thermal inertia. We see that for case (i), the RTE increases as building size increases. When building

size increases, since ∆P remains the same, the temperature deviation (and therefore its average value) reduces as the

building has a higher thermal inertia. Therefore a smaller ∆P is needed, leading to increase in η∞RT . For case (ii), the

RTE decreases with building size but with a decaying rate of change. The increase in ∆P with building size leads to

a larger temperature deviation. However, the thermal inertia also increases with building size as seen in the previous

case, which has an opposing effect on the temperature deviation. The parameter values determine which one of these

effects is dominant, and that determines the trend for η∞RT .
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Figure 8: η∞RT (left axis) and RC (right axis) vs. building

size; for roa = 0.5. Case (i): Same ∆P (1945.1 W)

irrespective of building size. Case (ii): ∆P increasing

with building size.
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Figure 9: η∞RT vs. time period (2tp); for roa = 0.5 and

∆P = 0.2P
(b)
HVAC = 1945.1 W.
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5.3.2 Time period of the power deviation: Figure 9 shows η∞RT computed for various values of the time period 2tp:

the RTE decreases slightly as time period increases. To understand this trend, consider the special case of 100%

outside air (i.e., roa = 1) and a zero-mean square-wave power deviation. Under these conditions the temperature

dynamics (the differential algebraic equation discussed in Section 3.2) reduces to two linear time invariant systems

(one during charging and the other during discharging) that are asymptotically stable. It can be shown using simple

algebra that the steady state temperature deviation during discharging is further away from the baseline temperature

than that during charging, and the former is positive, while the latter is negative. The interested readers are referred to

the proof of Proposition 1(c) in (Raman & Barooah, 2018) for a detailed discussion regarding the previous statement.

This indicates that if tp is very large, the building is warmer than baseline on average. On the other extreme, if tp is

extremely small, temperature deviation will also be extremely small due to the finite response time of the temperature

dynamics. Therefore, as time period increases from 0 to ∞, the average temperature deviation increases from 0 to a

positive constant. Recall that ∆P is added to provide additional cooling to bring the average temperature deviation

back to 0. The previous discussion tells us that a larger ∆P is required to do so as time period increases, which leads

to a decrease in RTE.

6. CONCLUSION

In this paper, we extended our previous analysis of the RTE of virtual batteries: HVAC systems used to provide a

battery-like service to the grid by increasing/decreasing their power demand over a baseline. We showed that impos-

ing an additional constraint, that the mean temperature of the building must remain at its baseline value, can cause

asymptotic RTE to be less than 1. Without this constraint the asymptotic RTE is 1. For the range of parameters we

examined, the asymptotic RTE is in the range 0.85− 1, still comparable to that of Li-ion batteries.

Nonlinearity plays a critical role in the analysis. If the models of power and temperature dynamics were both linear, it

can be shown using basic linear system theory that a zero-mean deviation of power consumption (from baseline) will

lead to a zero-mean deviation of the indoor temperature at steady state. As a result, there is no need for additional

cooling (or heating) to keep the temperature deviation zero mean, so the asymptotic RTE is 1.

There are several avenues for further exploration, such as analysis for HVAC systems that provide heating rather than

cooling and examination of the role of humidity.
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