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Abstract

We propose a method that simultaneously identifies a dynamic model of a building’s temperature and a transformed version of
the unmeasured disturbance affecting the building. Our method uses `1-regularization to encourage the identified disturbance
to be approximately sparse, which is motivated by the piecewise-constant nature of occupancy that determines the disturbance.
We test our method on both simulation data (both open-loop and closed-loop), and data from a real building. Results from
simulation data show that the proposed method can accurately identify the transfer functions in open and closed-loop scenarios,
even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property.
Results from real building data show that algorithm produces sensible results.
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1 Introduction

A dynamic model of a building’s temperature is useful
for model-based fault detection and control of its HVAC
(Heating Ventilation and Air Conditioning) system.
There is a long history of such modeling efforts [13]. Due
to the complexity of thermal dynamics, system identifi-
cation from data is considered advantageous and there
has been much work on it; see [13,12,7] and references
therein. A particular challenge for model identification
is that temperature is affected by large, unknown dis-
turbances, especially the cooling load induced by the
occupants. The occupant-induced load refers to the
heat gain directly due to the occupants’ body heat and
indirectly from lights and other equipments they use.
Most system identification methods ignore these dis-
turbances. Ignoring the disturbance can produce highly
erroneous results [8]. A few works have partially ad-
dressed this problem by using a specialized test building
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to measure the occupant-induced load [12,15].

In this paper we propose amethod to estimate a dynamic
model as well as a transformed version of the unknown
disturbances from easily measurable input-output data.
The proposed method, which we call SPDIR (Simultane-
ous Plant and Disturbance Identification through Reg-
ularization), is based on solving an `1-regularized least-
squares problem. The `1 penalty encourages the trans-
formed disturbance to be a sparse signal. Use of the `1
norm penalty to encourage sparse solution is a widely
used heuristic; see [14,6]. In our problem the motivation
comes from the fact that the disturbance, which con-
sists mostly of internal load due to occupants, is often
piecewise-constant. For instance, large numbers of peo-
ple enter and leave office buildings at approximately the
same time. We show that this makes the transformed
disturbance an approximately sparse signal. We test our
method on both simulation generated data (both open-
loop and closed-loop), and data from a real building. Re-
sults from simulation-generated data show that the pro-
posed method can accurately identify the transfer func-
tion in the presence of large disturbance and even when
the disturbance does not satisfy the piecewise-constant
property. Results from real building data are similarly
promising, though accuracy is difficult to establish due
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to lack of a ground truth.

To the best of our knowledge, the only prior work on
simultaneously identifying a model of a building’s tem-
perature dynamics and unmeasured disturbance from
data are the recent references [8,4,7,3]. There are many
differences between these references and our work. The
method proposed in [8] estimates the plant parameters
and an output disturbance (a disturbance that is added
to the plant output) that encapsulates the effect of the
input disturbance. In contrast, the proposed method es-
timates the input disturbance. Both [4] and [7] take a
similar approach: the model is estimated by using data
from unoccupied periods (weekends in [7]) and assum-
ing that the disturbance is zero during those periods.
The disturbance is then identified using data from occu-
pied periods. Even when data from unoccupied periods
is available, assuming the disturbance to be zero during
that time will prevent the disturbance from absorbing
model mismatch. Our method uses data collected dur-
ing regular operation of a building and does not need
unoccupied period data. The method in [3] assumes the
disturbance is slowly varying, and uses a Kalman filter
to estimate the disturbance and then searches over plant
parameters to minimize the temperature prediction er-
ror.

In contrast to all four methods, the proposed SPDIR
method here can enforce properties of the system that
are known from the physics of the thermal processes,
such as stability and signs of DC gains for certain input-
output pairs. The methods in [8,4,3] require solving non-
convex optimization problems, while SPDIR solves a
convex problem.

A preliminary version of this work is presented in [17].
Compared to that paper this article makes two contribu-
tions: (1) we provide a proof of the optimization problem
being feasible, convex, and having regular constraints;
(2) we provide evaluation of our method on data from a
real building. Some of the derivations that were omitted
from [17] are also included here.

The rest of this paper is organized as follows. Section 2
formally describes the problem and establishes some
properties that will be useful later. Section 3 describes
the proposed algorithm. We provide evaluation results
in Section 4. Finally, Section 5 concludes this work.

2 Problem Formulation

The indoor zone temperature Tz is affected by three
known inputs: (1) the cooling/heating added to the
zone by the HVAC system, qhvac(kW), (2) the out-
side air temperature Toa (◦C), (3) the solar irra-
diance ηsol(kW/m2), and the unknown disturbance
qint (kW), which is the internal heat gain due to oc-
cupants, lights, and equipments used by the occu-

pants. So u(t) := [qhvac(t), Toa(t), η
sol(t)]T ∈ R

3 and
w(t) = qint(t) ∈ R. The only measurable output is the
zone temperature Tz(

◦C), so y(t) = Tz(t) ∈ R.

The model we wish to identify is a black box model
relating the known inputs and the unknown disturbance,
to the measured output.We will later enforce constraints
on the model’s parameters by relating the model to a
physics-based model.

2.1 Discrete-time model to be identified

We start with the following second-order discrete-time
transfer function model of the system, with a sampling
period ts:

y(z−1) =
1

D(z−1)

[

3
∑

j=1

[

2
∑

i=0

αijz
−i]uj(z

−1)

+ [

2
∑

i=0

βiz
−i]w(z−1)

]

,

(1)

whereD(z−1) = 1−θ1z
−1−θ2z

−2, for some parameters
θ1, θ2 and αij , βi’s, and u[k], w[k], y[k] are samples of
the continuous-time signals u(t), w(t), y(t). For future
convenience, we rewrite (1) as

y(z−1) =
1

D(z−1)

[

K(z−1)Tu(z−1) + w̄(z−1)
]

, (2)

where

K(z−1) :=









θ3z
−2 + θ4z

−1 + θ5

θ6z
−2 + θ7z

−1 + θ8

θ9z
−2 + θ10z

−1 + θ11









, (3)

and w̄(z−1) is the Z-transform of the transformed dis-
turbance signal w̄[k] defined as

w̄[k] := β0w[k] + β1w[k − 1] + β2w[k − 2]. (4)

Performing an inverse Z-transform on (2)-(3), yields a
difference equation, from which we obtain the linear re-
gression form:

y[k] = φ[k]T θ, k = 3, . . . , kmax (5)

where kmax is the number of samples, and θT :=
[θTp , w̄

T ], in which θp = [θ1, . . . , θ11]
T ∈ R

11, w̄ =

[w̄3, . . . , w̄kmax
]T ∈ R

kmax−2 and

φ[k]T :=
[

y[k − 1], y[k − 2], u1[k − 2], u1[k − 1], u1[k],

u2[k − 2], . . . , u2[k], u3[k − 2], . . . , u3[k], e
T
k−2

]

,
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where D0 = d2t
2
s + 2d1ts + 4. Similarly,

[β0, β1, β2] =
ts
[

(2 + ε0), 2ε0, (−2 + ε0)
]

CzD0
, (13)

where ε0 = −f22ts =
ts

Cw

(
1

Rw

+
1

Rz

). (14)

2.2.1 Insight I: Sparsity of transformed disturbance

We need a few definitions to talk about approximately
sparse vectors, and infrequently changing vectors.

Definition 1 (1) A vector x ∈ R
n is (ε, f)-sparse if at

most f fraction of entries of x are not in [−ε, ε].
(2) The change frequency cf (x) of a vector x ∈ R

n is the
fraction of entries that are distinct from their pre-
vious neighbor: cf (x) = 1

n−1 |{k > 1|xk 6= xk−1}|,
where |A| denotes the cardinality of the set A. We
say a vector x changes infrequently if cf (x) � 1.

The following result shows that if the disturbance
changes infrequently (which happens if it is piecewise-
constant), then the transformed disturbance is approxi-
mately sparse.

Proposition 1 Suppose the disturbance w[k] is uni-
formly bounded |w[k]| ≤ wb in k, it changes infrequently
with change frequency cf (ω), and ε0 � 1 where ε0 is
defined in (14). Then, w̄[k] is (ε̄, 2cf (w))-sparse, where
ε̄ = 4

CzD0

tswbε0.

Proof of Proposition 1 It can be shown from (4) and
(13) that

w̄[k] =
ts

CzD0

(

2(w[k]− w[k − 2])

− ε0(w[k] + 2w[k − 1] + w[k − 2])
)

.

Since w is bounded, ∃wb ≥ 0 s.t. w[k] ∈ [−wb, wb]. Since
cf (w) � 1 from the hypothesis, for at least 1 − 2cf (w)
fraction of k’s, w[k]− w[k − 2] = 0, and for those k’s,

w̄[k] = −ε0
ts

CzD0

(

w[k] + 2w[k − 1] + w[k − 2]
)

∈ [
−4ε0tswb

CzD0
,
4ε0tswb

CzD0
] = [−ε̄, ε̄],

which proves the result. �

Since the product RC is large for large buildings, of the
order of few hours [8], it follows from (14) that ε0 is small
for such buildings. In addition, both ε0 and ε̄ can bemade
as small as possible by choosing ts sufficiently small.
The assumption in the proposition, that ε0 is small, is
therefore not a strong one.

2.2.2 Insight II: Constraints on parameters

The constraints described below are straightforward to
derive, but involve - in a few cases - extensive algebra.
We therefore omit the details here; they can be found in
the expanded version [16].

Stability Due to the resistances and capacitances in (8)
being positive, the continuous time model (10) is BIBO
stable. Since Tustin transform preserves stability, all
poles of the transfer function (1) should be inside the
unit circle [11]. This is equivalent to

−θ2 < 1, θ2 + θ1 < 1, (15)

θ2 − θ1 < 1. (16)

Sign of parameters By using the positivity of the
parameters Rw, Rz, Cw, Cz, it follows that if ts <

2min{CwRwRz

Rz+Rw

,
√
RzCzRwCw,

min(RzCz,RzCw,RwCw)
3 },

the following holds:

θi > 0, i ∈ {1, 4, 5, 6, 7, 8, 10, 11},
θ2 < 0, θ3 < 0, θ9 < 0.

(17)

Positive DC-gain An increase in any of the inputs
qhvac, Toa, η

sol represents an increase in the cooling load
for the building. A steady state increase in any of these
inputs must therefore lead to a steady state increase
in the zone temperature Tz. In other words, the corre-
sponding DC gains must be positive. Using the previ-
ously established fact that the denominator coefficients
are positive (see (15)) it can be shown that positive DC
gains are equivalent to

θ3 + θ4 + θ5 > 0, (18)

θ6 + θ7 + θ8 > 0, (19)

θ9 + θ10 + θ11 > 0. (20)

In order to ensure existence of a solution [10], the above
constraints are relaxed from strict inequalities to non-
strict ones.

Redundancy of constraints After being relaxed into
non-strict inequalities, constraints (15)-(20) can be com-
pactly written as ḡ = [ḡT1 , ḡ

T
2 , ḡ

T
3 , ḡ

T
4 ]

T ≤ 0, where

ḡ1(θ1, θ2) :=



















−1 0

0 1

0 −1

1 1

−1 1



















[

θ1

θ2

]

+



















0

0

−1

−1

−1


















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with the extension being the addition of the linear in-
equality constraint. We therefore call problem (22) the
“linearly constrained generalized lasso problem”, or lcg-

lasso for short. The estimated plant parameters θ̂p and
estimated transformed disturbance ˆ̄w can be recovered
from θ̂ since θT = [θTp , w̄

T ].

The next result establishes a few properties of the op-
timization problem (22). We call a point θ physically
meaningful if none of the three SISO transfer functions
in (2) is identically zero.

Proposition 2 The optimization problem (22) is feasi-
ble, convex, and every physically meaningful feasible θ is
a regular point of the constraints.

Proof of Proposition 2 The feasible set for the con-
straint Gcθ + gc ≤ 0 is

G := G1 × G2 × G3 × G4,

where × denotes the Cartesian product. Because Gk’s are
non-empty and convex, G is also non-empty and convex.
The objective function is convex since it is a sum of two
convex functions. Therefore the optimization problem
(22) is feasible and convex. Notice that the origins in the
sets G2, G3, and G4 are not physically meaningful as de-
fined above, and these are the only non-meaningful points.
Hence, at any physically meaningful feasible point, each
gk will have no more than two active constraints. It can
be verified by inspection (see Figure 2) that the gradi-
ents of these active constraints are linearly independent.
Therefore, every physically meaningful feasible point is a
regular point of the constraints. �

3.1 Regularization Parameter Selection

The selection of λ determines the solution to lcg-
lasso (22). At one extreme, λ = 0 will lead to a least
squares solution to (22) that will suffer from overfitting.
A larger λ will make the resulting Sθ sparser. In this
section we show that there is a value λmax so that for all
λ > λmax, any solution θ̂ to (22) satisfies Sθ̂ = 0, mean-
ing the disturbance estimate is 0. We then describe a
heuristic to select λ by searching in the range [0, λmax].

3.1.1 Determining λmax

Proposition 3 Every solution θ̂ to (22) satisfies Sθ̂ =
0 = ˆ̄w if and only if λ > λmax := ||y||∞.

Proof of Proposition 3 Since all inequalities are
affine, and θ = 0 is feasible, a weaker form of Slater’s
condition is satisfied which means strong duality holds [2,
eq. (5.27)]. Let β := Φθ, χ := Sθ, z := Gcθ. The

augmented Lagrangian function of (22) is:

L(θ,z, χ, β; γ, ζ, µ, η) = 1

2
‖y − β‖22 + λ‖χ‖1 + γT (z + gc)

+ µT (χ− Sθ) + ηT (β − Φθ) + ζT (z −Gcθ), (23)

where γ ≥ 0. The dual function is

g(γ, ζ, µ, η) = inf
θ,z,χ,β

L

= inf
θ
−(ηTΦ+ µTS + ζTGc)θ + inf

z
(ζT + γT )z

+ inf
χ
(λ||χ||1 + µTχ) + inf

β
(
1

2
‖y − β‖22 + ηTβ) + γT gc.

Since a linear function is bounded below only when it is
identically zero, thus

inf
θ
−(ηTΦ+ µTS + ζTGc)θ =

{

0 ΦT η = −STµ−GT
c ζ

−∞ otherwise
,

inf
z
(ζT + γT )z =

{

0 ζ + γ = 0, γ ≥ 0

−∞ otherwise
,

inf
χ
(λ||χ||1 + µTχ) =

kmax−2
∑

k=1

inf
χk

(λ|χk|+ µkχk)

=

{

0 ||µ||∞ ≤ λ

−∞ otherwise
.

The corresponding minimizers for ||µ||∞ ≤ λ satisfy:







if µk = −λ, χ̂k = any non-negative number

if |µk| < λ, χ̂k = 0

if µk = λ, χ̂k = any non-positive number

.

(24)

Finally the infimum over β is

inf
β
(
1

2
‖y − β‖22 + ηTβ) =

1

2
‖y‖22 −

1

2
‖y − η‖22,

which is derived by setting ∂L
∂β

= 0 and substituting the

resulting minimizer β = y − η. Therefore the dual func-
tion can be simplified as

g(γ, µ, η, ζ) =

{

1
2‖y‖22 − 1

2‖y − η‖22 + γT gc C1

−∞ o/w
,

(25)

where C1 stands for the following:

C1 :







ΦT η = −STµ−GT
c ζ

ζ + γ = 0, γ ≥ 0

||µ||∞ ≤ λ.

(26)
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