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Abstract

We propose a method that simultaneously identifies a dynamic model of a building’s temperature and a transformed version of
the unmeasured disturbance affecting the building. Our method uses ¢;-regularization to encourage the identified disturbance
to be approximately sparse, which is motivated by the piecewise-constant nature of occupancy that determines the disturbance.
We test our method on both simulation data (both open-loop and closed-loop), and data from a real building. Results from
simulation data show that the proposed method can accurately identify the transfer functions in open and closed-loop scenarios,
even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property.
Results from real building data show that algorithm produces sensible results.
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1 Introduction

A dynamic model of a building’s temperature is useful
for model-based fault detection and control of its HVAC
(Heating Ventilation and Air Conditioning) system.
There is a long history of such modeling efforts [13]. Due
to the complexity of thermal dynamics, system identifi-
cation from data is considered advantageous and there
has been much work on it; see [13,12,7] and references
therein. A particular challenge for model identification
is that temperature is affected by large, unknown dis-
turbances, especially the cooling load induced by the
occupants. The occupant-induced load refers to the
heat gain directly due to the occupants’ body heat and
indirectly from lights and other equipments they use.
Most system identification methods ignore these dis-
turbances. Ignoring the disturbance can produce highly
erroneous results [8]. A few works have partially ad-
dressed this problem by using a specialized test building
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to measure the occupant-induced load [12,15].

In this paper we propose a method to estimate a dynamic
model as well as a transformed version of the unknown
disturbances from easily measurable input-output data.
The proposed method, which we call SPDIR (Simultane-
ous Plant and Disturbance Identification through Reg-
ularization), is based on solving an ¢;-regularized least-
squares problem. The ¢; penalty encourages the trans-
formed disturbance to be a sparse signal. Use of the ¢;
norm penalty to encourage sparse solution is a widely
used heuristic; see [14,6]. In our problem the motivation
comes from the fact that the disturbance, which con-
sists mostly of internal load due to occupants, is often
piecewise-constant. For instance, large numbers of peo-
ple enter and leave office buildings at approximately the
same time. We show that this makes the transformed
disturbance an approximately sparse signal. We test our
method on both simulation generated data (both open-
loop and closed-loop), and data from a real building. Re-
sults from simulation-generated data show that the pro-
posed method can accurately identify the transfer func-
tion in the presence of large disturbance and even when
the disturbance does not satisfy the piecewise-constant
property. Results from real building data are similarly
promising, though accuracy is difficult to establish due
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to lack of a ground truth.

To the best of our knowledge, the only prior work on
simultaneously identifying a model of a building’s tem-
perature dynamics and unmeasured disturbance from
data are the recent references [8,4,7,3]. There are many
differences between these references and our work. The
method proposed in [8] estimates the plant parameters
and an output disturbance (a disturbance that is added
to the plant output) that encapsulates the effect of the
input disturbance. In contrast, the proposed method es-
timates the input disturbance. Both [4] and [7] take a
similar approach: the model is estimated by using data
from unoccupied periods (weekends in [7]) and assum-
ing that the disturbance is zero during those periods.
The disturbance is then identified using data from occu-
pied periods. Even when data from unoccupied periods
is available, assuming the disturbance to be zero during
that time will prevent the disturbance from absorbing
model mismatch. Our method uses data collected dur-
ing regular operation of a building and does not need
unoccupied period data. The method in [3] assumes the
disturbance is slowly varying, and uses a Kalman filter
to estimate the disturbance and then searches over plant
parameters to minimize the temperature prediction er-
ror.

In contrast to all four methods, the proposed SPDIR
method here can enforce properties of the system that
are known from the physics of the thermal processes,
such as stability and signs of DC gains for certain input-
output pairs. The methods in [8,4,3] require solving non-
convex optimization problems, while SPDIR solves a
convex problem.

A preliminary version of this work is presented in [17].
Compared to that paper this article makes two contribu-
tions: (1) we provide a proof of the optimization problem
being feasible, convex, and having regular constraints;
(2) we provide evaluation of our method on data from a
real building. Some of the derivations that were omitted
from [17] are also included here.

The rest of this paper is organized as follows. Section 2
formally describes the problem and establishes some
properties that will be useful later. Section 3 describes
the proposed algorithm. We provide evaluation results
in Section 4. Finally, Section 5 concludes this work.

2 Problem Formulation

The indoor zone temperature T, is affected by three
known inputs: (1) the cooling/heating added to the
zone by the HVAC system, @pyac(kW), (2) the out-
side air temperature T,, (°C), (3) the solar irra-
diance 7°°!(kW/m?), and the unknown disturbance
gint (KkW), which is the internal heat gain due to oc-
cupants, lights, and equipments used by the occu-

pants. So u(t) = [guvac(t), Toa(t),n*°(1)]T € R?® and
w(t) = qint(t) € R. The only measurable output is the
zone temperature T, (°C), so y(t) = T, (¢) € R.

The model we wish to identify is a black box model
relating the known inputs and the unknown disturbance,
to the measured output. We will later enforce constraints
on the model’s parameters by relating the model to a
physics-based model.

2.1 Discrete-time model to be identified

We start with the following second-order discrete-time
transfer function model of the system, with a sampling
period t,:

where D(271) = 1—61271 — 6272, for some parameters
01,02 and ayj, B;’s, and ulk],wlk],y[k] are samples of
the continuous-time signals u(t), w(t),y(t). For future
convenience, we rewrite (1) as

1
-1 —1\T -1 -1
v =g [KE )+ @)
where
932’_2 + 942_1 + 05
K(Z_l) = 06272 —+ 072’71 + 98 ) (3)

99Z_2 + 9102_1 + 641

and w(z7') is the Z-transform of the transformed dis-
turbance signal w[k] defined as

wlk] := fow[k] + Srwlk — 1] + Paw[k — 2].  (4)

Performing an inverse Z-transform on (2)-(3), yields a
difference equation, from which we obtain the linear re-
gression form:

ylk] = o[k)T0, k=3,... kmax (5)

where kmax is the number of samples, and 67 :=
[Gg,u’)T], in which 0, = [91,...,911}71 S RH, w =
[@3, co, Wi T ¢ RFmax=2 and

max]

OlK|T = [ylk = 1) ylk — 2], wa ke — 2], ek — 1], s [R],

wslk — 2, ..., uak], uslk — 2],...,u3[k],e{_2},



where e, is the k-th canonical basis vector of RFmax—2
in which the 1 appears in the £*® place. Eq. (5) can be
expressed as

y = 0, (6)

where Y= [y[3]7 s ay[kmax]]T S RFmax=2 and

(3"

P .= € RFmax—=2XEmax+9
lkmax]"

The problem we seek to address is: given time traces of
inputs and outputs, {ulk], y[k]}*m>, determine the un-
known parameter vector 8, € R and the unknown trans-

formed disturbance vector w := [ws,..., W i.e.,
determine 6.

max] )

The matrix ® is not full column-rank, so there will be
an infinite number of solutions to (6). We also note that
® has the form

¢ = [\Il(kmame)xlla I(kmafz)x(kmfz)} - (7

Since the number of samples is typically large, ¥ is a
tall matrix. Due to the dependency of ¥ on (noisy) mea-
surements of inputs and outputs, ¥ is full column-rank
except in case of degenerate data.

2.2 Insights from an RC network ODE model

Since there are infinitely many solutions to (6), we will
now use insights from a physics-based model to impose
additional constraints on . The physics-based model we
use is a resistance-capacitance (RC) network model. An
RC network is a common paradigm for modeling build-
ing thermal dynamics [13]. We will later assume that the
discrete-time transfer function model (1) is obtained by
discretizing a continuous-time RC network model, which
helps us impose constraints on 6.

Figure 1 shows a building (left) and a corresponding
2nd-order resistance-capacitance (RC) network model
(right). The ODE model of the RC-network model shown
in the figure is

. Ty, —T.
Csz = % + Ghvac + AenSOI + Gint
z 8)
. Too — T, T, —1T, (
CwTw: on w+ zRZ w,

where C,, C,, R, R, are the thermal capacitances and
resistances of the zone and wall, respectively, and A, is

Fig. 1. A photograph of Pugh Hall and a schematic of the
“2R2C” model.

the effective area of the building for incident solar radia-
tion. All five parameters are positive. Defining the state
vector as z := [T}, T,y € R?, (8) can be written as

&t =Fz+ Gu+ Huw, y=Jz, (9)

where u, w, and y are defined in Section 2, and F €
R2%2.G € R?>*3, H € R**! and J € R'*2 are ap-
propriate matrices that are functions of the parameters
C,,Cy, R, Ry, Ae. In Laplace domain,

y(s) = ﬁ [(8 — fa2) (gn1ui(s) + g1zus(s)) 10)

+ fi2g22ua(s) + (s — f22)h11w(s)},

where f;;, gij, hij’s are the i, j-th entry of the matrices
F,G, H (respectively) in (9), and

D(s) = s + dys + dy, with (11)
1 1 1 1 1
PO S L N N NN S
R T %R 2T onn,

We now assume that the discrete-time system (1) was
obtained by discretizing the continuous-time system
(10) using Tustin transform. It can be shown through
straightforward calculations that the parameters of the
discrete-time model — the 6;’s — are related to those of
the continuous-time model (10) as follows:

8 — ngti dgtz — 2d1ts + 4
] 0 )
03 09y —2 — fools
04 010| = D_SO —2 faats [911 913} ;
105 011 2 — faots (12)
[06 1 ,
0-1 = |2 J129225
7 * DO )
At




where Dy = dat? + 2d;ts + 4. Similarly,

ts [(2 + 60)7 2¢g, (—2 + 60)]

[Bo, B1, Ba] = . Do , (13)
here €g = — faots = t—s(i + i) (14)
w. €0 = zzs—Cw R, Rz.

2.2.1 Insight I: Sparsity of transformed disturbance

We need a few definitions to talk about approximately
sparse vectors, and infrequently changing vectors.

Definition 1 (1) A vector z € R™ is (¢, f)-sparse if at
most f fraction of entries of x are not in [—e, €.

(2) The change frequency cy(z) of a vectorz € R™ is the
fraction of entries that are distinct from their pre-
vious neighbor: cy(x) = 5 {k > 1|z # zp-1}|,
where |A| denotes the cardinality of the set A. We
say a vector x changes infrequently if cy(z) < 1.

The following result shows that if the disturbance
changes infrequently (which happens if it is piecewise-
constant), then the transformed disturbance is approxi-
mately sparse.

Proposition 1 Suppose the disturbance wlk] is uni-
formly bounded |w(k]| < wp in k, it changes infrequently
with change frequency cy(w), and g < 1 where € is
defined in (14). Then, w(k] is (€, 2cy(w))-sparse, where

4
€= Cthbeo

Proof of Proposition 1 It can be shown from (4) and
(13) that

ts
oo (2wl — wlk —2)

— eo(wlk] + 2wlk — 1] + wlk — 2])).

wlk] =

Since w is bounded, Jwy > 0 s.t. wlk] € [—wyp, wy]. Since
cr(w) < 1 from the hypothesis, for at least 1 — 2¢y(w)
fraction of k’s, w[k] — w[k — 2] = 0, and for those ks,

12
wlk] = ~0 G Do (w[k] + 2w[k — 1] + w[k — 2])
[—4€0t sWp 460t wb] [ _ ]
C.Dy ' C.Dg of
which proves the result. ([l

Since the product RC is large for large buildings, of the
order of few hours [8], it follows from (14) that €q is small
for such buildings. In addition, both ¢y and € can be made
as small as possible by choosing t; sufficiently small.
The assumption in the proposition, that €y is small, is
therefore not a strong one.

2.2.2 Insight II: Constraints on parameters

The constraints described below are straightforward to
derive, but involve - in a few cases - extensive algebra.
We therefore omit the details here; they can be found in
the expanded version [16].

Stability Due to the resistances and capacitances in (8)
being positive, the continuous time model (10) is BIBO
stable. Since Tustin transform preserves stability, all
poles of the transfer function (1) should be inside the
unit circle [11]. This is equivalent to

-0y <1, O6+6; <1, (15)
0 — 01 < 1. (16)

Sign of parameters By using the positivity of the
parameters R, R.,C,,C,, it follows that if t, <

2min{ C;%"Z}iué]iz 7 /7RzCszCw7 min(RzCz7R3sz7Rwa) }7
the following holds:

6; >0,
62 <0,

1€ {1,4,5,6,7,8,10,11}, 17
s <0, 69 <O. ( )
Positive DC-gain An increase in any of the inputs
Quvacs Loa, nSOl represents an increase in the cooling load
for the building. A steady state increase in any of these
inputs must therefore lead to a steady state increase
in the zone temperature T,. In other words, the corre-
sponding DC gains must be positive. Using the previ-
ously established fact that the denominator coefficients
are positive (see (15)) it can be shown that positive DC
gains are equivalent to

03+ 604 +65 >0, (18)
B + 07 + 0 > 0, (19)
Oy + 610 + 611 > 0. (20)

In order to ensure existence of a solution [10], the above
constraints are relaxed from strict inequalities to non-
strict ones.

Redundancy of constraints After being relaxed into
non-strict inequalities, constralnts (715 (20) can be com-

pactly written as g = [g, 92,31, g}1% < 0, where
[—1 0] 0]
0 1 P 0
G1(01,05) == | 0 —1| | |+ -1
02
1 1 —1
-1 1 | | —1]




(1 0 o, -
0 -1 0%
G2(03,604,05) := 0
( 5) 0 0 -1 04
—1 -1 —1| V™
10 0] ¢ -
o —10||%
G3(06, 07, 0g) = 0
3(6 7 8) O 0 _1 07
—1 -1 —1| U™
(1 0 o],
o —10]||%
g4(09,010,011) := 010 >
4(9 10 11) 0 O 1 010
1 -1 -1 WM

whose boundaries are shown in Figure 2. Denote the

2
1 0y —60, =1
0y =
<€ 0 2=0
0 -0 040y =1
-1 0y = —1
B 0 2 3
-1 1
01 0y P p 0y

(a) Boundaries of gi(01,62) < 0 are shown in blue (left), and
a graph of feasible set Gi is shown in orange (left). Boundaries
of g2(63,04,605) < 0 and G> are shown in orange (right), where
p — oo (right).

O+ 0: +60s=0

P
P
<L B 0
= 0
0 0 0
0 0
0. p P 05 0, p P Oy

(b) Boundaries of gz(6s, 67, 0s) < 0 are shown in orange and blue
(left), boundaries of G3 are shown in orange (left). Boundaries
of Ga(f9,010,611) < 0 and G4 are shown in orange (right). Here
p — oo.

Fig. 2. Feasible sets Gi’s are non-empty and convex.

feasible sets for g1, g2, g3, g4 < 0 as

G1 = {(01,02)]g1(01,02) < 0}

Ga = {(03,04,05)|g2(03,04,05) < 0}

Gs = {(0s,07,08)|93(0s, 07,05) <0}

Ga = {(09,010,011)|g4(09, 010, 611) < 0},

respectively. The set G; and boundaries of G;, i = 2,3,4
are shown in Figure 2.

Noticing from Figure 2(a) (left) and Figure 2(b) (left),
the last inequality from g; < 0, i.e., constraint (16),
and the last one from g3 < 0, i.e., (19), are redundant.
Mathematically,

5 4
({(01,05)[g1,r, < 0} = (){(61,02)[51,, <0}
i=1 i=1
4 3
({(66,07.05)|gs.r, < 0} = [{(06,07.05)|g5.r, < 0},
i=1 =1

where g1 g, : R? - R and J3.R, : R3 — R is the i-th en-
try of the function g, where k& = 1, 3 respectively (imag-
ining gy as a column vector). Therefore constraints (16)
and (19) can be removed without changing the feasi-
ble sets. The remaining, linearly independent constraints
can be written as

G0y +9.<0, GY:R'™ RS

where G is a full column-rank block diagonal matrix,

AR R ARy
w _ g 0 1 - -
G = diag [0—1]{0 01][8—01 OJ[O 01]
1 1 -1 -1-1 - —1 -1 —1

T
ge = [0 0-1-1 01><11:| . (21)

For future convenience, we write the constraints in the
equivalent form:

maz_2 ?

Gl + go <0, where Go = |G, Oy
where the inequality is entry-wise.

3 Proposed method

Since we expect w to be piecewise-constant and infre-
quently changing, w should be approximately sparse
(Proposition 1). Let S := [0k, —2x11| kyae—2] S0 that
S0 = w. We therefore seek a solution to y = ®6 so that
S0 is sparse, by posing the following optimization prob-
lem:

A 1
0 = argmin ||y — D03 + A S0l
s.t. G0+ g. <0,

(22)

where A > 0 is a user-defined weighting factor. The £;-
norm penalty is to encourage sparsity of the solution; see
the discussion in Section 1. The problem (22) is an ex-
tension of the so-called “generalized lasso” problem [1]:

- 1
0 = argmin o ly — ®0|[3 + A[[S6[1,



with the extension being the addition of the linear in-
equality constraint. We therefore call problem (22) the
“linearly constrained generalized lasso problem”, or lcg-
lasso for short. The estimated plant parameters ép and

estimated transformed disturbance w can be recovered
from 6 since 67 = [0, &™)

The next result establishes a few properties of the op-
timization problem (22). We call a point 6 physically
meaningful if none of the three SISO transfer functions
in (2) is identically zero.

Proposition 2 The optimization problem (22) is feasi-
ble, convez, and every physically meaningful feasible 0 is
a reqular point of the constraints.

Proof of Proposition 2 The feasible set for the con-
straint G0 + g. < 0 is

G :=G1 x Ga x G3 x Gy,

where X denotes the Cartesian product. Because Gy, ’s are
non-empty and convex, G is also non-empty and convez.
The objective function is convex since it is a sum of two
convex functions. Therefore the optimization problem
(22) is feasible and convex. Notice that the origins in the
sets Go, G3, and G4 are not physically meaningful as de-
fined above, and these are the only non-meaningful points.
Hence, at any physically meaningful feasible point, each
gr. will have no more than two active constraints. It can
be verified by inspection (see Figure 2) that the gradi-
ents of these active constraints are linearly independent.
Therefore, every physically meaningful feasible point is a
regular point of the constraints. O

3.1  Regularization Parameter Selection

The selection of A determines the solution to lcg-
lasso (22). At one extreme, A = 0 will lead to a least
squares solution to (22) that will suffer from overfitting.
A larger A will make the resulting SO sparser. In this
section we show that thqre is a value Apax SO that for all
A > Amax, any solution 6 to (22) satisfies S0 = 0, mean-
ing the disturbance estimate is 0. We then describe a
heuristic to select A by searching in the range [0, Amax]-

3.1.1 Determining Amax

Proposition 3 Every solution 0 to (22) satisfies S0 =
0 = w if and only if X\ > Amaz = ||Y|]oo-

Proof of Proposition 3 Since all inequalities are
affine, and 0 = 0 is feasible, a weaker form of Slater’s
condition is satisfied which means strong duality holds [2,
eq. (5.27)]. Let B := ®0, x := S0, z:= G.0. The

augmented Lagrangian function of (22) is:

1
L£(0,2% 87, G pam) = S lly = BI5 + Alxllx + Y (2 + ge)
+ 1" (x = 50) + 0" (B — 20) + ("(2 — G.0), (23)

where v > 0. The dual function is

,Cow,n) = inf L
(v, 5 1) o nf

= iIelf (T ®+ TS+ (TG0 + ilzlf(CT +~5)z
. !
+inf(Alxlh + #0) + G ly = Bllz +n"8) + 7" ge.

Since a linear function is bounded below only when it is
identically zero, thus

Ty — —ST,, — T
lnf—(T]T‘I)+[,LTS+CTGC)0 _ 0 n ) S M GCC7
0 —00  otherwise
C+v=0,v2>20
otherwise

)

GRS
krnam_2

Z inf (A xx| + prxr)
e Xk

:{0 l1tl|oo < A

nf(Alfxl [ + J75%)

—

—0o otherwise

The corresponding minimizers for ||il|oo < A satisfy:

if ik = =\, Xk = any non-negative number
if lpe] <A, Xk =0
if up = N, Xk = any non-positive number
(24)

Finally the infimum over [3 is
S| 1 1
it (5 lly = Bl +n"8) = 5lvlz = 3lly = nlz.

which is derived by setting % = 0 and substituting the

resulting minimizer B =y — n. Therefore the dual func-
tion can be simplified as

1 2 1 2 T
2 —slly—nlz+v"9. C1

97 1,7, €) = {2'@/“2 by =nl3++7g. €1

> o/w
(25)

where C'1 stands for the following:
Ty = —8Tp—GT¢

Cl: ¢+7=0,v>0 (26)

[lillos < X



The dual variables vy, p, 1, ¢ are dual feasible because (26)
has a trivial solution. The first equation from (26) has
the form:

\I/1T1><(kmm—2) n=— 011><(kmuw72) o (Gg)?lxw
Tk —2 T n—2 Okmas—2)x15
\I/T — (T
n=—p.

which has infinite number of solutions (1, u, ) since YT
and (G*)T both have full row rank. Eliminating n and ¢
from (25) using (26)-(27), the dual problem is

. 1 1
(5, 1) = max = |lyll3 — s lly + ull3 + " gc
Y. 2 2

st =W =(G)"y,7 >0, (28)

[lilloe < A.
For a given A > 0, two scenarios arise when solving (28).

Scenario 1: A < ||y||loo: In this scenario, the k-th entry
of any solution [i to (28) will satisfy || = min(A, |yk|)
and there is at least one entry that satisfies |fix| = .
The corresponding solution X is non-unique according
to (24). Hence X is non-unique.

Scenario 2: A > ||y|leo: In this case the solution to (28)

satisfies i = —y, and therefore, ||fiflcc = |¥llec < A
From (24), we have that x = 0. Since x = S0 = w, the
result is proved. O

The heuristic we propose to choose A is based on the
L-curve method, and uses the result from the previous
proposition. First, plot both the solution norm |[|.S8|;
and residual norm ||y — ®f||2 against A by repeatedly
solving Problem (22) for various A in [0, Apaz], Where
Amaz 18 defined in Proposition 3. An illustration of these
two plots is shown in Figure 3. Second, identify a value Ay
so that the solution norm is smaller than a user-defined
threshold for A > A;, and then identify Ao so that the
residual norm is smaller than a user-defined threshold
for A < Xo. If Aa > Ay, choose A to be A;. If not, pick
another threshold, and continue until this condition is
met. Figure 3 shows an example of having these curves
both lie in picture.

&
— [I8]]1 !
(@]
. II¥Hell, =)
—_—50 5 NN
0] —
p— 0]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
: bl
0 )\1 )\2 Amax

Fig. 3. Illustration of regularization parameter selection

4 Evaluation of Proposed Algorithm

All numerical results presented in this paper were ob-
tained by using the cvx package for solving convex prob-

lems in MATLAB® [5].

We test the proposed method using both simulation and

real building data. Simulation data is generated by sim-
ulating a dynamic model of a building described as a set
of coupled ODEs. To avoid confusion, the model used for
simulating a building will be called “virtual building” in
the sequel.

For the virtual building, a continuous-time RC model (9)
is used to generate training and validation data. The
parameters of the model were taken from [3, Table 1],
which uses a model of the same structure. Four scenarios
are tested:

(1) OL-PW: Open-loop with piecewise-constant dis-
turbance;

(2) OL-NPW: Open-loop with not piecewise-constant
disturbance;

(3) CL-PW: Closed-loop with piecewise-constant dis-
turbance;

(4) CL-NPW: Closed-loop with not piecewise-constant
disturbance;

The algorithm is expected to perform well in the OL-PW
scenario since the disturbance satisfies the piecewise-
constant assumption the method is designed for, and
identification with open-loop data is generally easier
than with closed loop data [9]. The CL-NPW scenario
is the most relevant in practice, but it is likely to be the
most challenging for the method.

In the two open-loop scenarios, the input component
Ghvac 1S somewhat arbitrarily chosen, while in the two
closed-loop scenarios, quvac is decided by a PI-controller
that tries to maintain the zone temperature at a set-
point T7*f. To have exciting input to aid in identifi-
cation, the setpoint T is chosen to be a PRBS se-
quence [9]. To ensure that occupant comfort is not com-
promised, the setpoint is constrained to lie within 22°C
and 27°C. The input components, ambient tempera-
ture from weatherunderground.com, and solar irradi-
ance data from NSRDB: https://nsrdb.nrel.gov/,
both for Gainesville, FL, are used in all four scenarios.
The disturbance signal ¢ is picked somewhat arbitrar-
ily during manual calibration of the RC network model
to Pugh Hall data. The training data are shown in Fig-
ure 4. Notice from the figure that the disturbance ¢y, is
large; sometimes as large as the cooling power provided
by the HVAC system.

For the real building, measurements of gyac and 7, from
a room in a real campus building (Pugh Hall), are used.
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Fig. 4. Training data from virtual building. The data
nSOI,Toa,qint shown here are used in all four scenarios;

Quvac, 1> shown here are for the CL-NPW scenario.

See Figure 5. The location of the room from which mea-
surements are collected is shown in Figure 6. The input
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Fig. 5. Training data from real building.

Fig. 6. Pugh hall photograph (left) and floor plan (right),
with the zone from which building data are collected shown
enclosed in dashed lines. The “x” denotes the location from
where the photograph was taken and the arrow denotes di-

rection of the camera.

components, ambient temperature and solar irradiance

data, collected from the same online source at another
week, are used.

4.1 Algorithm evaluation with simulation data

Parameters Table 1 shows the true values of the plant
parameters, 6, and the corresponding estimation errors
(in percentage) for the OL-PW and CL-NPW scenar-
ios. First, we can see from the table that performance of
the method is similar with both open-loop and closed-
loop data. Second, the two parameters, 01, 02, that de-
termine the characteristic equation are estimated highly
accurately. Third, there is more error in the estimate of
numerators. While some are more accurate than others,
the numerator coefficients corresponding to the input
7*°! has the most error. A possible reason for this high
error is the lack of richness in the *' data. See Figures
4 and 5: n®! has the least excitation among all the in-
put signals. Results for the remaining two scenarios are
similar, but are not shown due to space constraints.

Table 1
Plant parameters and errors in their estimates.
6p—0p oy
0, 0 input
(OL-PW) | (CL-NPW)
61 | 1.98x107° —0.075 0.042
0 | —9.76 x 1071 —0.151 0.085
03 —4.35 x 1073 —9.214 —8.024
04 5.21 x 1077 —59.48 —108.2 Qhvac
05 | 4.40 x 1073 —7.493 —6.36
0s | 1.86x107° —18.64 —48.90

0: | 3.72x107° 38.15 22.35 Toa

0s | 1.86 x 107° —39.89 —68.32
B | —3.05x1072 | —112.6 —232.1
010 | 3.65x1074 —12300 —19320 7!
611 | 3.08x 1072 33.18 —2.881

Frequency response For prediction accuracy, fre-
quency response is more important than individual
parameters. Figure 7 shows the Bode plots of the true
and identified models. Due to space limitations, we only
show the Bode plots for the OL-PW and CL-NPW sce-
narios. For the transfer functions from inputs guyac to
output 7>, the maximum absolute error in the estimated
frequency response is:

|thvacTz (]w) — thvacTz (Jw)|

- = 0.256
|thvacTz (]w) |

max
w

and occurs at w = 1/(10 weeks) for OL-PW scenario.
The maximum errors for the transfer functions from 7,
and 7°° to T, occur at the Nyquist frequency.
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Fig. 7. Algorithm evaluation on simulation data: Bode mag-
nitude plots of the true and identified systems.

Disturbance The estimated transformed disturbance,
w, for all four scenarios are shown in Figure 8. The esti-
mates are quite accurate when the true values are large,
but less accurate otherwise. However, the estimates cap-
ture the trend of the true values, even when the true
disturbance is not piecewise-constant, in which case the
transformed disturbance may be neither approximately
sparse nor infrequently changing.

Zone temperature prediction The plant identified
with data from one week is used to predict temperatures
in another week. The disturbance data is the same be-
tween the training and validation data sets but the in-
put v and output y data sets are distinct. The rms value
of the prediction error of zone temperature is 1.2 °C for
both OL-PW and CL-NPW cases; see Figure 9.

As we can see from the figure, the error is more pro-
nounced in certain days of the week.

4.2 Algorithm evaluation using building data

Evaluation of the method with data from a real building
is challenging since there is no ground truth to compare
with. Therefore we only provide the results in this sec-
tion.
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Fig. 8. Algorithm evaluation on simulation data: comparison
of identified and actual transformed disturbance. Bottom
two plots are zoomed version on Tuesday of the top two plots.
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Fig. 9. Algorithm evaluation on simulation data: predicted
and actual zone temperature (validation dataset).

Frequency response Figure 10 shows the Bode plots
of the identified model for the real building. Notice that
the Bode plots generated using both simulation data and
building data are similar, providing confidence in the
results.

Disturbance The estimated transformed disturbance
w is shown in Figure 11. The entries corresponding to
nighttime are small in magnitude. This is consistent with
what we expect: since the building is unoccupied at night
the disturbance should be small, and so should the trans-
formed disturbance.
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Fig. 11. Algorithm evaluation on building data: identified
transformed disturbance. Night time shaded in gray.

Zone temperature fitting The estimated plant and
the disturbance fits the temperature quite well, with rms
value of 0.3 ° C; see Figure 12.
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Fig. 12. Algorithm evaluation on building data: fitted and
actual zone temperature.

5 Conclusion

The proposed method casts the estimation problem as a
convex optimization problem with constraints that come
from physical insights. Previous methods lacked both
convexity and/or physically meaningful constraints. A
limitation of the proposed method is that the identified
disturbance is a linear transformation of the true distur-
bance with unknown coefficients. This presents a chal-
lenge in verifying the estimates when the method is ap-
plied to data from a real building. Addressing these chal-
lenges is a topic of future work. Although the method
seems to work well with closed loop data, the nature of
variations needed in the closed loop data to ensure good
performance also needs further examination.
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