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ABSTRACT

We propose a method that simultaneously identifies a dynamic model of a building’s temperature in the presence
of large, unmeasured disturbances, and a transformed version of the unmeasured disturbance. Our method uses `1-
regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise
constant nature of occupancy that determines the disturbance. We test our method using both open-loop and closed-
loop simulation data. Results show that the identified model can accurately identify the transfer functions in both
scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise
constant property.

1. INTRODUCTION

A dynamic model of a building’s temperature is necessary for model-based control of building HVAC (Heating Ven-
tilation and Air Conditioning) systems (Prívara et al., 2013). Due to the complexity of thermal dynamics, system
identification from data is considered advantageous and there has been much work on it; see (Penman, 1990; Braun
& Chaturvedia, 2002; Wang & Xu, 2006; Lin, Middelkoop, & Barooah, 2012; Li & Wen, 2014; Harb, Boyanov,
Hernandez, Streblow, & Müller, 2016; Fux, Ashouri, Benz, & Guzzella, 2014; Kim, Cai, Ariyur, & Braun, 2016; Hu
et al., 2016) and references therein. A particular challenge for model identification is that temperature is affected by
large, unknown disturbances, especially the cooling load induced by the occupants. The occupant induced load refers
to the heat gain directly due to the occupants’ body heat and indirectly from lights and other equipment they use. Many
system identification methods ignore these disturbances (Lin et al., 2012; Li & Wen, 2014; Harb et al., 2016), or use
a specialized test building to measure the occupant induced load (Penman, 1990; Wang & Xu, 2006). Ignoring the
disturbance can produce highly erroneous results (Kim et al., 2016).

In this paper we propose a method to estimate a dynamic model as well as a transformed version of the unknown
disturbances from easily measurable input-output data. The proposed method, which we call SPDIR (Simultaneous
Plant and Disturbance Identification through Regularization) is based on solving a `1-regularized least-squares prob-
lem. The `1 penalty encourages the identified transformed disturbance to be sparse (Hastie, Tibshirani, & Friedman,
2009). The motivation for this is that the disturbance, which consists mostly of internal load due to occupants, is often
piecewise-constant. For instance, large numbers of people enter and leave office buildings at approximately the same
time. We show that this makes the transformed disturbances an approximately sparse signal, motivating the use of
`1 regularization. We test our method via simulations, and results indicate that the method can estimate the thermal
dynamic model and transformed disturbance with both open loop and closed loop data, even when the disturbance is
not piecewise constant.

To the best of our knowledge, the only prior work on simultaneously identifying a dynamic model of a building’s
temperature dynamics and unmeasured disturbances from data are the recent references (Kim et al., 2016; Fux et
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al., 2014; Hu et al., 2016; Coffman & Barooah, 2018). There are many differences between these references and
out work. The method proposed in (Kim et al., 2016) estimates the plant parameters and an output disturbance (a
disturbance that is added to the plant output) that encapsulates the effect of an unknown input disturbance. In contrast,
the proposed method estimates an input disturbance. Both (Fux et al., 2014) and (Hu et al., 2016) take a similar
approach: the model is estimated by using data from unoccupied periods (weekends in (Hu et al., 2016)) and assuming
that the disturbance is zero during those periods. Once the model is identified this way, the disturbance is identified
using data from occupied periods. Our method uses data collected during regular operation of a building and does
not need data collected when the building is empty. Even when data from unoccupied periods is available, assuming
the disturbance to be zero during that time is not desirable since doing so will prevent the disturbance from absorbing
model mismatch. In contrast to all three methods, the method proposed here can enforce properties of the system that
are known from the physics of the thermal processes, such as stability and signs of DC gains for certain input-output
pairs. The proposed method consists of solving a convex optimization problem. The methods in (Kim et al., 2016;
Fux et al., 2014) require solving non-convex optimization problems.

The rest of this paper is organized as follows. Section 2 formally describes the problem and establishes some properties
that will useful later. Section 3 describes the proposed algorithm. We provide evaluation results in Section 4. Finally,
Section 5 concludes this work.

2. PROBLEM FORMULATION

The indoor zone temperature Tz is affected by three known inputs: (1) the heat gain added to the zone by the HVAC
system, qhvac(kW), (2) the outside air temperature Toa (◦C), (3) the solar irradiance ηsol(kW/m2), and the unknown

disturbance qint (kW) which is the internal heat gain due to occupants, lights, and equipment used by the occupants. So
u(t) := [qhvac(t),Toa(t),η

sol(t)]T ∈ R
3 and w(t) = qint(t) ∈ R. The only measurable output is the indoor temperature

Tz, so y(t) = Tz(t) ∈ R.

The model we wish to identify is an black box model relating the known inputs and the unknown disturbance, to the
measured output. We will later enforce constraints on the model’s parameters by relating the model to a physics-based,
second-order continuous-time model, making it an “grey-box" model.

2.1 Discrete-Time Model to be Identified
We start with the following second-order discrete-time transfer function model of the system, with a sampling time ts:

y(z−1) =
1

D(z−1)

[ 3

∑
j=1

[
2

∑
i=0

αi jz
−i]u j(z

−1)+ [
2

∑
i=0

βiz
−i]w(z−1)

]

(1)

where D(z−1) = 1− θ1z−1 − θ2z−2, for some parameters θ1,θ2 and αi j,βi’s, and u[k],w[k],y[k] are samples of the
continuous-time signals u(t),w(t),y(t). For future convenience, we rewrite it as

y(z−1) =
1

D(z−1)

[

K(z−1)T u(z−1)+ w̄(z−1)
]

(2)

where

K(z−1) :=





θ3z−2 +θ4z−1 +θ5

θ6z−2 +θ7z−1 +θ8

θ9z−2 +θ10z−1 +θ11



 (3)

and w̄(z−1) is the Z-transform of the transformed disturbance signal w̄[k] defined as

w̄[k] := β0w[k]+β1w[k−1]+β2w[k−2]. (4)

Performing an inverse Z-transform on (2)-(3), yields a difference equation, from which we obtain the linear regression
form:

y[k] = φ [k]T θ , k = 3, . . . ,kmax (5)
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where fi j,gi j,hi j are the i, j-th entry of the matrices F,G,H (respectively) in (8), and

D(s) = s2 +d1s+d2,

with d1 =
1

CzRz

+
1

Cw

(
1
Rz

+
1

Rw

), d2 =
1

CzCwRzRw

.

We now assume that the discrete-time system (1) was obtained by discretizing the continuous-time system (9) by Tustin

transformation. It can be shown through straightforward calculations that the parameters of the discrete-time model –
the θi’s – are related to those of the continuous-time model (9) as follows:

θ1 :=
8−2d2t2

s

D0
, θ2 :=−d2t2

s −2d1ts +4
D0

,





θ3 θ9

θ4 θ10

θ5 θ11



 :=
ts

D0





−2− f22ts
−2 f22ts
2− f22ts





[

g11 g13
]

,





θ6

θ7

θ8



 :=





1
2
1





f12g22t2
s

D0
,

where D0 = d2t2
s +2d1ts +4. Similarly,

[β0,β1,β2] =
ts
[

(2+ ε0), 2ε0, (−2+ ε0)
]

CzD0
, (10)

where ε0 =− f22ts =
ts

Cw

(
1

Rw

+
1
Rz

). (11)

2.2.1 Insight I: Sparsity of transformed disturbance: We need a few definitions to talk about approximately sparse

vectors, and slowly varying vectors.

Definition 1 1. A vector x ∈ R
n is (ε, f )-sparse if at most f fraction of entries of x are not in [−ε,ε].

2. The change frequency c f (x) of a vector x ∈ R
n is the fraction of entries that are distinct from their previous

neighbor: c f (x) =
1

n−1 |{k > 1|xk 6= xk−1}|, where |A| denotes the cardinality of the set A. We say a vector x

changes infrequently if c f (x)� 1.

The following result shows that if the disturbance does not change frequently (which happens if it is piecewise con-
stant), then the transformed disturbance is approximately sparse.

Proposition 1 Suppose the disturbance w[k] is uniformly bounded in k, it changes infrequently, and ε0 � 1 where ε0

is defined in (11). Then, w̄[k] is (ε̄,2c f (w))-sparse, where ε̄ = 4
CzD0

tswuε0 and wu is an upper bound on |w[k]|. �

Proof 1 It can be shown from (4) and (10) that

w̄[k] =
ts

CzD0

(

2(w[k]−w[k−2])− ε0(w[k]+2w[k−1]+w[k−2])
)

Since w is bounded, ∃wl ,wu with |wl | ≤ wu, wu ≥ 0 s.t. w[k] ∈ [wl ,wu]. Since c f (w)� 1 from the hypothesis, for at

least 1−2c f (w) fraction of k’s, w[k]−w[k−2] = 0, and for those k’s,

w̄[k] =−ε0
ts

CzD0

(

w[k]+2w[k−1]+w[k−2]
)

∈ [
−4ε0tswu

CzD0
,

4ε0tswl

CzD0
]⊂ [

−4ε0tswu

CzD0
,

4ε0tswu

CzD0
],

which proves the result.

Since the product RC is large for large buildings, of the order of few hours (Kim et al., 2016), it follows from (11) that
ε0 is small for such buildings. In addition, both ε0 and ε̄ can be made as small as possible by choosing ts sufficiently
small. The assumption in the proposition, that ε0 is small, is therefore not a strong one.
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2.2.2 Insight II:Constraints on parameters: The constraints described below are straightforward to derive, but involve
- in a few cases - extensive algebra. We therefore omit the details here; they can be found in the expanded version
(Zeng, Brooks, & Barooah, 2017).

Stability It can be shown that due to the resistances and capacitances in (7) being positive, the continuous time
model (9) is BIBO stable. Since Tustin transformation preserves stability, all poles of the transfer function (1) should
be inside the unit circle (Ogata, 1995). It can be shown that this is equivalent to

−θ2 < 1, θ2 +θ1 < 1, (12)

θ2 −θ1 < 1. (13)

Sign of parameters By using the positivity of the parameters Rw,Rz,Cw,Cz, it can be shown after some tedious
algebra that if ts < 2min{CwRwRz

Rz+Rw
,
√

RzCzRwCw,
min(RzCz,RzCw,RwCw)

3 }, the following holds:

θi > 0, i ∈ {1,4,5,6,7,8,10,11},
θ2 < 0,θ3 < 0,θ9 < 0

Positive DC-gain An increase in any of the inputs qhvac,Toa,η
sol represents an increase in the cooling load for the

building. A steady state increase in any of these inputs must therefore lead to a steady state increase in the indoor
temperature Tz. In other words, the corresponding DC gains must be positive. Using the previously established fact
that the denominator coefficients are positive (see (12)) it can be shown that positive DC gains are equivalent to

θ3 +θ4 +θ5 > 0,

θ6 +θ7 +θ8 > 0, (14)

θ9 +θ10 +θ11 > 0.

In order to ensure existence of a solution (Luenberger, Ye, et al., 1984), the above constraints are relaxed from a strict
inequality to a non-strict one. Additionally, the redundant inequalities (13) and (14) are removed since they do not
change the feasible region, where the proof is provided in (Zeng et al., 2017).

The remaining, linearly independent constraints can be compactly written as g(θ) ≤ 0 with g : R11 → R
15, in which

the inequality is entry-wise.

3. PROPOSED METHOD

Let S := [0kmax−2×11| Ikmax−2] so that Sθ = w̄. Since we expect w to be piecewise constant and slowly varying, w̄

should be approximately sparse (Proposition 1). We thus seek a solution to y = Φθ so that Sθ is sparse, by posing the
following optimization problem

θ̂ = argmin
θ

1
2
‖y−Φθ‖2

2 +λ‖Sθ‖1

s. t. g(θ)≤ 0
(15)

where λ > 0 is a user-defined weighting factor. The `1 norm penalty is to encourage sparsity. The estimated plant
parameters θ̂p and estimated transformed disturbance ˆ̄w can be recovered from θ̂ since θ T = [θ T

p , w̄
T ].

Regularity of constraints is useful for optimization algorithms to perform well (Andreani, Martinez, Santos, & Svaiter,
2014), and the next result establishes regularity. The proof of the result is straightforward and available in the expanded
version (Zeng et al., 2017), but omitted here due to space constraints.

We call a point θ physically meaningful if none of the three SISO transfer functions in (2) is identically zero.
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Theorem 2 For classic Lasso, ∃λmax = ‖ΨT z‖∞, such that ∀λ ≥ λmax, χ = 0 is a solution to (16).

Proof 2 From optimality condition for (16), we know

−ΨT (z−Ψχ)+λν = 0, (17)

where ν is the sub-gradient of χ as defined as

νi ∈







{+1}, χi > 0
{−1}, χi < 0, i = 1, ..., p

[−1,1] , χi = 0.
(18)

Substituting λ ≥ ‖ΨT z‖∞ and χ = 0 into (17) and solving for ν , we get ν = ΨT z
‖ΨT z‖∞

, which implies (18) also holds as

‖νi‖ ≤ 1,∀i. Therefore we prove χ = 0 is one solution to (16).

According to Theorem 2, χ = 0 is a solution to (16) ∀λ ≥ λmax. Notice that λ in (15) and (16) are identical, that is,
λmax determined from (16) can be directly used in (15). Combined with Theorem 1, we have χ = Sθ = [θ T

p , w̄
T ]T = 0

is a solution to (15) ∀λ ≥ λmax.

We use the following heuristic to choose λ , which is inspired by the L-curve method. First, plot both the solution norm
and residual norm individually against λ by repeatedly solving Problem (15) for λ ∈ [0,λmax]. An illustration of these
two plots is shown in Figure 2. Second, identify a value λ1 so that the solution norm is smaller than a user-defined
threshold for any λ > λ1, and then identify λ2 so that the residual norm is smaller than a user-defined threshold for
any λ < λ2. If λ2 > λ1, choose λ to be λ1. If not, pick another threshold, and continue until this condition is met.

4. EVALUATION OF PROPOSED ALGORITHM

The continuous-time RC model (8) is used to generate training and validation data. The parameters of the model
were chosen by manual calibration of the model to data collected from a large auditorium in a campus building at the
University of Florida (Pugh Hall; shown in Figure 1). Four scenarios are tested:

1. OL-PW: Open-loop with piecewise-constant disturbance;

2. OL-NPW: Open-loop with not piecewise-constant disturbance;

3. CL-PW Closed-loop with piecewise-constant disturbance;

4. CL-NPW: Closed-loop with not piecewise-constant disturbance;

If the disturbance w[k] is piecewise constant, since that is slowly varying, the transformed disturbance w̄[k] will be
approximately sparse. The algorithm is expected to perform well in the OL-PW scenario since it satisfies the piece-
wise constant assumption the method is based on, and identification with open-loop data is generally easier than
with closed loop (Ljung, 1999). The CL-NPW scenario is the most relevant in practice, but it is likely to be the
most challenging for the method. In all four scenarios, the same input data sequence for ambient temperature (from
weatherunderground.com) and solar irradiance data (from NSRDB: https://nsrdb.nrel.gov/), both
for Gainesville, FL, are used. In the two open-loop scenarios, the input component qhvac is somewhat arbitrarily
chosen, while in the two closed-loop scenarios, it is decided by a PI-controller that tries to maintain the zone tem-
perature near a setpoint T ref. To have exciting input to aid in identification, the setpoint T ref is chosen to be a PRBS
sequence (Ljung, 1999). To ensure that occupant comfort is not compromised, the setpoint is constrained to lie within
22◦C and 27◦C. The disturbance signal qint is picked somewhat arbitrarily during manual calibration of the RC network
model to Pugh Hall data. The training data are shown in Figure 3.

Notice from the figure that the disturbance qint is large; sometimes as large as the cooling power provided by the HVAC
system.
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Frequency response For prediction accuracy, frequency response is more important than individual parameters.
Figure 4 and 5 compare the frequency response of the identified plants with their true values for the two open-loop
and closed-loop scenarios, respectively. Notice that just as in case of parameters, the estimates corresponding to the
input ηsol is the poorest. We believe this is due to the lack of sufficient excitation in the data; cf. Figure 3. The input
Toa also has low excitation at higher frequencies, and therefore has poor estimates in higher frequencies.

For the transfer functions from inputs qhvac to output Tz, the maximum absolute error in the estimated frequency
response is:

max
ω

|ĜqhvacTz( jω)−GqhvacTz( jω)|
|GqhvacTz( jω)| = 0.529

and occurs at Nyquist frequency for CL-PW scenario. The maximum errors for the transfers functions from Toa and
ηsol to Tz occur at the Nyquist frequency.

4.2 Disturbance
The estimated transformed disturbance, ˆ̄w, for all four scenarios are shown in Fig. 6. The estimates are quite accurate
when the true values are large, but less accurate otherwise. However, the estimates capture the trend of the true values
quite accurately, even when the true disturbance is not piecewise constant, in which case the transformed disturbance
may be neither approximately sparse nor slowly varying.

Mon Tue Wed Thur Fri Sat Sun

-0.05

0

0.05 PW 7w

Open-loop Closed-loop True

Mon Tue Wed Thur Fri Sat Sun
-0.02

0

0.02

0.04
NPW 7w

8:00 12:00 16:00

-0.002

0

0.002

PW 7w

8:00 12:00 16:00

-0.002

0

0.002

NPW 7w

Figure 6: Comparison of identified and actual transformed
disturbance. Bottom two plots are zoomed version on Tues-
day of the top two plots.
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Figure 7: Predicted and actual zone temperature (valida-
tion dataset). Upper: OL-PW; Lower: CL-NPW.

4.3 Validation through Temperature Prediction
The plant identified with data from one week is used to predict temperatures in another week. The disturbance data is
the same between the calibration and validation data sets but the input u and output y data sets are distinct. The RMS
value of the prediction error of zone temperature is 1.2 ◦C for OL-PW case and 0.1 ◦C for CL-NPW case; see Figure
7. For validation, we use the solar irradiance and ambient temperature from the validation data set; the temperature
setpoint is arbitrarily picked as another PRBS sequence lies within [22,27] ◦C, and the disturbance is piecewise-
constant (see Figure 3). Compared to the large inaccuracies in the estimated plant parameters, predictions of the zone
temperature, shown in Figure 7, are much smaller. As we can see from the figure, the error is more pronounced in
some days of the week, while extremely small in other days.

5. CONCLUSION

The main advantages of the method is posing the estimation problem as a convex optimization problem with constraints
from physical insights about the system and the disturbances, without requiring specially collected data. Previous
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methods lacked both convexity and/or physically meaningful constraints. The main limitation is that the identified
disturbance is a linear transformation of the true disturbance with unknown coefficients. This presents a challenge in
verifying the disturbance estimates when the method is applied to data from a real building. Extracting w from w̄, so
that the estimate can be verified in a test setting, is a topic of future work.
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