A General-purpose Distributed Programming System using
Data-parallel Streams

Tsung-Wei Huang Chun-Xun Lin
ECE Dept, UIUC, IL ECE Dept, UIUC, IL
twh760812@gmail.com clin99@illinois.edu
ABSTRACT

In this paper we present DtCraft, a distributed execution engine
that enables a new powerful programming model to streamline
cluster computing. Applications are described in a set of data-
parallel streams, leaving difficult execution details and concurrency
controls handled by our system kernel transparently. Compared
with existing systems, DtCraft is unique in (1) an efficient stream-
oriented programming paradigm using modern C++17, (2) an in-
context resource controller and task executor based on Linux con-
tainer technology, and (3) ease of development from prototyping
machines to production cloud environments. These capabilities
power industry applications and create new research directions in
machine learning, stream processing, and distributed multimedia
systems.

KEYWORDS
Distributed System, Stream Processing, Machine Learning

ACM Reference Format:

Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong.
2018. A General-purpose Distributed Programming System using Data-
parallel Streams. In 2018 ACM Multimedia Conference (MM ’18), October
22-26, 2018, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3240508.3243654

1 INTRODUCTION

Recent years have seen tremendous success of cluster comput-
ing engines such as Hadoop MapReduce, DryadLINQ, and Apache
Spark [1-3]. These frameworks offer high-level abstraction over
system details and allow users without experience in distributed
computing to quickly utilize the cluster resources to run big-data
analytics. Despite promising advances, many industry experts and
researchers have found these tools not an easy fit to their domains,
in particular, real-time stream computing, distributed multimedia
applications, and large-scale optimizations [4, 5]. A major reason is
most existing frameworks target at data-driven applications. Data
are divided into independent pieces followed by parallel MapRe-
duce operations. Depending on applications, data might be highly
connected and cannot be easily partitioned [6, 7]. Also, striving
for higher cluster computing performance involves more complex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM 18, October 22-26, 2018, Seoul, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5665-7/18/10...$15.00
https://doi.org/10.1145/3240508.3243654

Guannan Guo
ECE Dept, UIUC, IL
guannan4@gmail.com

Martin D. F. Wong
ECE Dept, UIUC, IL
mdfwong@illinois.edu

resource managements and irregular compute patterns. The key
challenge is thus to develop an elastic programming system—-which
is believed to deliver the next leap of engineering productivity and un-
leash new business model opportunities [4, 8].

Machine learning library
(DNN, RNN, etc.)

Cell library
(operator, feeder)

3rd-party IP
collectiol

C++ Stream Graph API

Event-driven | | Resource
reactor control

Network

) Serialization
programming

I/O stream

DtCraft Kernel (master, agents, executors)

iz §=2 i - Pz i=

Figure 1: Software stack of the DtCraft system [9].

To this end, we have developed a system called DtCraft [9].
DtCraft is a general-purpose distributed programming system
based on data-parallel streams [10]. Figure 1 gives an overview
of DtCraft’s software stack. The main theme is to make parallel
and distributed programming easier to handle through our stream
graph programming model. In order to ensure the best perfor-
mance, we have redesigned many core system components from
the ground up using modern C++17. These include network pro-
gramming libraries, built-in serialization and deserialization inter-
face, event-driven reactor, and so on. Users can make use of ro-
bust C++ standard library along with our parallel framework to
deploy high-performance distributed applications on Linux clus-
ters. In fact, we found most users are able to master DtCraft’s ap-
plication programming interface (API) required for most of the ap-
plications in a couple of days.

To enable an order of magnitude more users to build produc-
tion applications using DtCraft, we developed several libraries on
top to handle new types of workloads. The first library, MLCraft,
implements a set of estimators with high-level API to greatly sim-
plify machine learning programming in common use cases. Each
estimator works seamlessly with the DtCraft core, allowing users
to quickly scale out and create new machine learning algorithms
without wrestling with low-level details. The second library, Cell-
lib, provides a set of predefined stream graphs that can be readily
added to an application graph. This largely simplifies the graph
creation process and helps mitigate buggy implementations due to
immature copy-and-paste mistakes. Users can also add new stream
graphs to the library collections and expose them in other parts

https://doi.org/10.1145/3240508.3243654
https://doi.org/10.1145/3240508.3243654

Container 1 Container 2
Task1 Task2 DtCraft Machine Clusters
Vertex: B Vertex: D Stream (shared storage)
Stream: B>A Stream: C>D graph
Computer Master Master
node (scheduler)

Task3 Task4

Vertex: A — | | Vertex: C

Stream: B>A Stream: C->D
Container 3 Container 4

— | Agent (machines)

Executor
(B)

Executor
(Linux container)

Figure 2: The system architecture of DtCraft. The kernel consists of a master daemon and one agent daemon per working ma-
chine. User describes an application in terms of a sequential stream graph and submits the executable to the master through
our submission script. The kernel automatically deals with job scheduling, process communication, and work distribution
that are known difficult to program correctly. Data is transferred through either TCP socket streams on inter-edges or shared
memory on intra-edges, depending on the deployment by the scheduler. Application and workload are isolated in Linux con-

tainers.

of DtCraft including streaming and batch applications. These li-
braries can facilitate the developments of new multimedia, AL, and
real-time streaming systems [11].

Our work and user experiences lead us to believe that each sys-
tem has its own reason to exist. The judgement should be left
for users. DtCraft is being actively maintained and has recently
acquired multi-year supports from Defense Advanced Research
Projects Agency (DARPA) to help advance the next generation dis-
tributed computing. This will allow us to provide long term sup-
port for each major release. For more details about DtCraft, please
refer to our official website [9].

2 THE DTCRAFT SYSTEM

In this section we highlight the system architecture of DtCraft and
discuss our stream graph programming model.

2.1 System Architecture

The overview of the DtCraft system architecture is shown in Figure
2. The system kernel contains a master daemon that manages agent
daemons running on each cluster node. Each job is coordinated by
an executor process that is either invoked upon job submission or
launched on an agent node to run the tasks. A job or an applica-
tion is described in a stream graph formulation. Users can specify
resource requirements (e.g. CPU, memory, disk usage) and define
computation callbacks for each vertex and edge, while the whole
detailed concurrency controls and data transfers are automatically
operated by the system kernel. A job is submitted to the cluster via
a script that sets up the environment variables and the executable
path with arguments passed to its main method. When a new job
is submitted to the master, the scheduler partitions the graph into
several topologies depending on current hardware resources and
CPU loads. Each topology is then sent to the corresponding agent
and is executed in an executor process forked by the agent. For
those edges within the same topology, data is exchanged via effi-
cient shared memory. On the other hand, connections across dif-
ferent topologies run through TCP sockets.

2.2 Stream Graph Programming Model

One of the key inventions of DtCraft is the stream graph pro-
gramming model. The term “stream" is analogous to an assem-
bly pipeline, where one end generates a series of products and
the other end processes these products in a first-in-first-out (FIFO)
manner. Listing 1 shows the gateway classes to create a stream
graph.

class Vertex {
any_type any;
shared_ptr <OutputStream > ostream(key_type);
shared_ptr <InputStream > istream (key_type);

I8

class Stream {
function <Signal (Vertex&, OutputStream&)> on_os;
function <Signal (Vertex&, InputStream&)> on_is;

I8

class Graph {
VertexBuilder vertex ();
StreamBuilder stream (key_type,
ContainerBuilder container ();

}s

key_type);

Listing 1: Gateway classes to create a stream graph.

A stream graph consists of three major components, vertex,
stream, and container. A vertex is a place to store computation re-
sults and a stream represents a directed channel to send or receive
data. Each stream is associated with two computation callbacks,
one on input side and one on output side. These computation call-
backs occur whenever data is available on the underlying device
which can be a file, a socket, or a pipe. Multiple streams are inde-
pendent of each other and can run in parallel. A container repre-
sents one unique partition of a stream graph. Unlike existing clus-
ter computing frameworks, DtCraft delegates the scheduler con-
trol to users. Gaining valuable hints from users instead of blind
graph partitions can guide the scheduler toward the best job de-
ployment.

3 APPLICATIONS AND EXAMPLES

In this section, we give several concrete examples to help readers
better understand DtCraft.

3.1 A Vanilla Stream Graph

Listing 2 presents a simple yet representative stream graph exam-
ple. The stream graph consists of two vertices, A and B, and two
streams. Each vertex sends a greeting message to the other end and
closes the underlying stream channel. Closing one end of a stream
will subsequently force the other end to close. The program termi-
nates when no active stream events exist. Finally we create two
containers each of 1 GB memory and 1 CPU to distribute A and B
to two machines.

Graph G;
auto A = G.vertex ();
auto B = G.vertex ();
auto lambda = [] (Vertex& v, InputStream& is) {
if (string s; is(s) != —1) {
cout << "Received: " << s << '\n';
return Event ::REMOVE;

}

return Event :: DEFAULT;
}s
auto AB = G.stream (A, B).on(lambda);
auto BA = G.stream (B, A).on(lambda);

A.on([&AB] (Vertex& v) {
(«+v.ostream(AB))("hello world from A"s);

1)
B.on([&BA] (Vertex& v)
(«v.ostream(BA))("hello world from B"s);

1)

G.container ().add(A).memory(1_GB).cpu(1);
G.container ().add(B).memory(1_GB).cpu(1);

Executor (G).run ();

Listing 2: A distributed hello-world stream graph.

There are three important aspects. First, data streams are paral-
lel. The program might print A’s message before B or B’s message
before A, whichever arrives first. Second, even though the stream
graph contains a cycle, developers should be aware of the fact that
computation occurs asynchronously. There is no explicit synchro-
nization or loop linearization to break the cycle. Third, distributing
A and B to different nodes takes only two lines of code. The same
code running on a local machine can easily scale out to multiple
machines. These advantages allow DtCraft to create more general
and faster dataflow graphs compared to [2, 3, 12].

3.2 Online Machine Learning

The second example is a online image classifier using our built-in
deep neural network (DNN) library. Implementing a production
distributed or online machine learning algorithm is a notoriously
difficult task not because of the learning algorithm but the complex
peripheral works such as streaming, model exposure, and data col-
lection [8]. DtCraft’s machine learning library aims to reduce this
barrier. Figure 3 shows the stream graph to train a DNN classifier
through a sequence of images from the MNIST database [13]. The
stream feeder is a cell of a predefined stream graph that is read-
ily useable to create image streams. The other vertex takes a DNN
classifier and performs online training on each image stream.

Stream feeder

Images
MNIST
images

Online
training

Next batch
or stop

DNN classifier

Figure 3: A online image classifier stream graph.

Graph G;

auto src = G.insert <cell :: MnistStreamFeeder >(
mnist_image_file , mnist_label_file

)s

auto dnn = G.vertex ();

auto d2s = src.in(dnn);

dnn.on([&] (Vertex& v) {
auto& ¢ = v.any.emplace<DnnClassifier >();
printf ("DNN classifier [784x30x10]\n");
c.layer <FullyConnectedLayer >(784, 30, RELU);
c.layer <FullyConnectedLayer >(30, 10);

(+v.ostream(d2s))(10000);

1

G.stream(src.out(), dnn).on(

[&] (Vertex& v, InputStream& is) mutable {
auto& ¢ = any_cast<DnnClassifier&>(v.any);
Eigen :: MatrixXf M;

Eigen:: VectorXi L;

while (is(M, L) != -1) {
auto cnt = ((L — c.infer(M)) == 0).count();
auto acc = cnt /static_cast<float >(M.rows ());

printf("Accuracy: %f\n", acc);
c.train(M, L, 1, 64, 0.01f, [] () {});
(«v.ostream(d2s))(acc < 0.95f ? 10000 : —1);

}
return Event :: DEFAULT;

}
)

G.container ().add(dnn);
G.container ().add(src);

Executor (G).run ();

Listing 3: Implementation of the online image classifier.

The implementation is shown in Listing 3. In a rough view, there
are only a couple lines of code to implement a distributed online
machine learning algorithm. This sequential code is capable of run-
ning distributively on two nodes, one for dnn and another for src.
At each time step, the DNN classifier dnn requests 10000 images
from the stream feeder src and performs training until the accu-
racy reaches 95%. It is observed that the feeder cell simplifies the
graph creation process. By calling src.in(dnn), a stream d2s con-
necting dnn to src is automatically added to the graph. In short, the
cell interface introduces a new way to develop “reusable" software
at cluster scale. Users can create new cells to encapsulate certain
applications, thereby allowing better reuse of design efforts.

3.3 External Program

DtCraft supports the execution of external programs. This is par-
ticularly useful when users want to create new streaming applica-
tions on top of existing or 3rd-party programs. When a vertex is
specified as an external program, the kernel spawns a new program
supplied by the given command. Connections will be passed to the

program through the environment variable DTC_BRIDGES, where
key is the stream name and value is the associated file descriptor.
Users can retrieve these handles and establish stream channels us-
ing their own libraries or our I/O stream APIL As shown in Figure
4, the demo contains two vertices and one stream to emulate real-
time image processing via external programs.

Vertex A Vertex B Vertex A Vertex B
Delegate I/O
to external
programs
Set env Set env
SpawnI variable variable [SPaWn Spawn /_

BRIDGE: AB

Image

Stream Stream CIFAR
Producer Producer Images
C++ program bragran C++ program h
program program

Figure 4: Image stream processing via external programs.

Graph G;

auto A = G.vertex ().program("cifar —10_stream");
auto B = G.vertex ().program("processing.py");
G.stream (A, B).tag("AB");

G.container ().add(A);

G.container ().add(B);

dtc :: Executor (G).run ();

Listing 4: The top-level graph implementation.

auto fd = get_bridge_fd ("AB");
auto cifar = CIFARHandle("cifar_data.bin");
Reactor reactor;
reactor .insert <PeriodicEvent >(1s, true, [&] (auto&) {
cifar.write_one_image (fd, batch_size);
if (cifar.empty()) {
return Event ::REMOVE;
}
return Event :: DEFAULT;
1)

reactor . dispatch ();

Listing 5: CIFAR-10 image stream generator.

fd = get_bridge_fd("AB")
while true:

data = read_one_image(fd, size_per_image);
process image from data
#

Listing 6: Python-based image stream consumer.

There are three programs, a top-level stream graph description
in Listing 4, an image stream generator based on CIFAR data-
base [14] in Listing 5, and a python-based image stream consumer
in Listing 6. The stream generator employs DtCraft’s event reac-
tor to create a sequence of image streams for every one second.
The image stream goes to a python program of a pre-define kernel
for image processing. Please be mindful these two external pro-
grams are for demonstration purpose only. One can replace them
with other applications. The top-level graph description is the key
contribution of DtCraft. It is extremely simple to distribute a set
of external programs and let them talk to each other. Currently,
we are leveraging the existing container technologies to enhance

this functionality. For example, with Docker containers [15] we
can bring up different software to a DtCraft cloud. These contain-
ers can communicate with one another through our streamming
interface, allowing users to create new software on top of exsiting
ones at cluster scale.

4 AVAILABILITY

The source of DtCraft is published on GitHub under MIT li-
cense [16]. Project details, step-by-step tutorials, and cookbook are
available on the project homepage [9].

5 ACKNOWLEDGMENT
The works is supported by DARPA under award FA8650-18-2-7843.

6 CONCLUSION

This paper presents a new distributed system DtCraft to stream-
line the programming for computer clusters. DtCraft introduces
a powerful stream-oriented programming model and can power
large-scale industry applications in machine learning, multimedia,
and cloud computing. Since the first public release in December
2017, DtCraft has been used in multiple research projects at the
University of Illinois at Urbana-Champaign. At the same time, we
are collaborating with our industry partners to obtain state-of-the-
art results. We also work with startups to prototype new workloads
and business models. Future work will focus on both application-
and system-level improvements on DtCraft.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A system for general-

purpose distributed data-parallel computing using a high-level language. In

USNIX OSDI, pages 1-14, 2008.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-

ing. In USNIX NSDI, 2012.

[4] L.Stok. The next 25 years in EDA: A cloudy future? IEEE Design Test, 31(2):40-46,
April 2014.

[5] Mengfan Tang, Siripen Pongpaichet, and Ramesh Jain. Research challenges in
developing multimedia systems for managing emergency situations. In ACM
MM, pages 938-947, 2016.

[6] Tsung-Wei Huang and Martin D. F. Wong. Opentimer: A high-performance tim-
ing analysis tool. In ACM/IEEE ICCAD, pages 895-902, 2015.

[7] Tsung-Wei Huang, Martin D. F. Wong, Debjit Sinha, Kerim Kalafala, and Natesan
Venkateswaran. A distributed timing analysis framework for large designs. In
ACM/IEEE DAC, pages 116:1-116:6, 2016.

[8] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. Hidden technical debt in machine learning systems. In NIPS, pages 2503—
2511, 2015.

[9] DtCraft project. http://dtcraft.web.engr.illinois.edu/.

] Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong. DtCraft: A High-

performance Distributed Execution Engine at Scale. IEEE TCAD, 2018.

[11] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin D. F. Wong. Mt-
Detector: A High-performance Marine Traffic Detector at Stream Scale. In ACM
DEBS, 2018.

[12] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Fast-
flow: high-level and efficient streaming on multi-core. In Programming Multi-
core and Many-core Computing Systems, Wiley, page 13, 2012.

13] MNIST database. http://yann.lecun.com/exdb/mnist/.

14] CIFAR image database. https://www.cs.toronto.edu/~kriz/cifar.html.

15] Docker. https://www.docker.com/.

16] DtCraft source. https://github.com/twhuang-uiuc/DtCraft.

=

http://hadoop.apache.org/
http://dtcraft.web.engr.illinois.edu/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.docker.com/
https://github.com/twhuang-uiuc/DtCraft

	Abstract
	1 Introduction
	2 The DtCraft System
	2.1 System Architecture
	2.2 Stream Graph Programming Model

	3 Applications and Examples
	3.1 A Vanilla Stream Graph
	3.2 Online Machine Learning
	3.3 External Program

	4 Availability
	5 Acknowledgment
	6 Conclusion
	References

