Privacy Leak Classification on Mobile Devices

Anastasia Shuba, Evita Bakopoulou, Athina Markopoulou
EECS Dept, UC Irvine
{ashuba, ebakopou, athina}@uci.edu

Abstract—Mobile devices have access to personal, potentially
sensitive data, and there is a growing number of mobile apps that
have access to it and often transmit this personally identifiable
information (PII) over the network. In this paper, we present
an approach for detecting such PII “leaks” in network packets
going out of the device, by first monitoring network packets on
the device itself and then applying classifiers that can predict
with high accuracy whether a packet contains a PII leak and of
which type. We evaluate the performance of our classifiers using
datasets that we collected and analyzed from scratch. We also
report preliminary results that show that collaboration among
users can further improve classification accuracy, thus motivating
crowdsourcing and/or distributed learning of privacy leaks.

Index Terms—machine learning, data analytics, privacy

I. INTRODUCTION

Mobile devices have access to a wealth of personal, poten-
tially sensitive information and there is a growing number of
mobile apps that access, process and transmit some of this
information over the network to remote servers. Sometimes
this is justified (required for the intended operation of the
applications, e.g., location is needed by GoogleMaps) and
controllable (e.g., by the user through permissions); but for
the most part, users are not in control of their data today.
Applications and third party libraries routinely transmit user
data to remote servers, including advertising servers and
trackers, and users are typically unaware of how their personal
data is shared and for what purpose.

To address this problem, we take a network centric ap-
proach. Since, by definition, personal information is trans-
mitted from mobile apps over the network interface towards
remote servers, network traffic is a natural vantage point
for comprehensive detection and control of such leaks. We
develop AntShield — an approach that (i) intercepts outgoing
network packets on the device, and (ii) employs a hybrid
string matching and classification approach to detect leaks of
personally identifiable information (PII). The contributions of
this paper are the following:

e Classification Methodology. We present a multi-label
classification methodology (Binary Relevance with De-
cision Trees) that leverages the information available on
the device but also meets the resource constraints and
requirements of the mobile device. Using a dataset that
we collected from scratch, we show that it achieves
significantly higher accuracy (8-25% improvement) and
lower variance (a factor of 2-5) compared to state-of-the-
art. We also design and advocate for per-app, instead of
prior per-domain, classifiers: they achieve similar clas-
sification accuracy, but allow faster and more scalable
operation while covering more traffic.

This work has been supported by NSF Award 1649372, a DTL Grant
2016, and CPCC at UCI. A. Shuba has been partially supported by an ARCS
Fellowship, and E. Bakopoulou has been partially supported by a H. Samueli
and a NetSYS Fellowship.

e Collaboration. We also experimented with training and
testing classifiers on different real users. Preliminary
results showcase the potential of collaboration among
users to further improve classification accuracy.

PII leak detection can provide users with transparency about
where their data is going, and can enable action (e.g., blocking
or obfuscating the transmitted PII). Furthermore, this work is a
first step towards a distributed system for detecting of privacy
leaks, which is still an open problem.

The structure of the rest of the paper is as follows. Section
IT reviews closely related work. Section III describes the
problem of PII leakage and the approach AntShield is taking.
Section IV describes the classification methodology in detail
(while system aspects of AntShield are deferred to [6]). Section
V presents our collected dataset and evaluates AntShield’s
classification accuracy. Section VI presents preliminary results
on collaboration among users to further improve classification
accuracy, and Section VII concludes the paper.

II. RELATED WORK

In this paper, we focus only on network-centric approaches
that identify PII leaks at the packet level, and we do not discuss
other approaches, such as custom OS, rooting the phone, etc.
One design decision is where to intercept and inspect network
packets: in the middle of the network (as in Recon [5]) or
on the device itself (as in AntMonitor [7] and Lumen (a.k.a.
Haystack) [4]). Another important design decision is what in-
formation to extract from the packet in order to detect whether
it contains a privacy leak, and the state-of-the-art consists of
two complementary approaches. On one hand, AntMonitor [7]
and Lumen [4], keep a blacklist of strings (potential PII leaks)
and perform deep packet inspection (DPI) on each packet to
match any PII strings in headers and/or payload; therefore,
they are unable to detect leakage of information that changes
dynamically, is not part of the list, or is obfuscated. On the
other hand, Recon [5] trained classifiers to detect PII within
packets, but relied on a fully centralized approach: traffic
was routed to and analyzed at a remote server, potentially
impacting scalability and security.

Our AntShield approach combines the best of both worlds:
it can be applied on the device (in addition to the middle of
the network) and it uses machine learning (which finds PII
without a priori knowledge). Operating on the device presents
both opportunities and challenges." The closest related to
this work, and our baseline for comparison, is Recon [5].
Our work builds on and improves over it by (i) leveraging
information accessible on the device and using multi-label

On the upside, it obviates the need for a trusted infrastructure and gives full
control to the user, which we believe is the right approach in privacy. Devices
also have access to important contextual information, such as which mobile
apps generate the packets in question. On the downside, mobile devices have
limited resources to conduct traffic analysis using DPI and machine learning.

classification (instead of a combination of binary classification
and heuristics) to improve classification accuracy; and (ii)
applying classifiers in real-time on the mobile device for the
first time.

III. PROBLEM AND APPROACH

Personally Identifiable Information (PII). In this paper
we are interested in the following PII:

o Device Identifiers: IMEI, Device ID, phone number, serial
number, ICCID, MAC Address.

o User identifiers: credentials (per app, usually transmitted
over HTTPS), Advertiser ID, email.

o User demographics: first/last name, gender, zipcode, city,
etc. - unavailable through Android APIs.

o Location: latitude and longitude coordinates, available
through Android APIs.

o User-defined: the user can also define any custom string
that should be monitored, such as digits of her credit card.

We refer to the transmission of a packet from the device to
the network, containing at least one PII, as a privacy leak or
exposure.” Our goal is to detect such privacy leaks in packets
going out of a device accurately and in real-time.

System. AntShield is a regular mobile app that runs in the
background and is able to intercept and inspect packets before
forwarding them over to their intended destinations. IP packets
are the input to our methodology, and the classification of each
packet to one or more PII types it may contain is the output.

AntShield leverages the AntMonitor Library (which we pre-
viously developed in [7]) to intercept and inspect network
traffic. AntMonitor Library’s VPN-based implementation is lean
and allows AntShield to inspect packets in real-time (~1ms
per packet), including encrypted packets (via a TLS proxy),
without impacting user experience (see [6] and [7]). AntShield
is able detect PII in outgoing packets and then provide users
with an option to take some action (e.g., block or obfuscate
PII before forwarding the packet). 3

Although challenging, the design and evaluation of the Ant-
Shield system is out of scope and details are deferred to
the technical report [6]; except for constraints that affect the
classification methodology, which is the focus of this paper.

Packet Classification. In this paper, we train and apply
packet classifiers to network packets (at the IP layer), in real-
time on the mobile device, to detect PII leaks. Learning is
a powerful approach for this problem because it can predict
leaks without prior knowledge of the actual user’s private
information. For example, we do not need to know the user’s
email to detect the fact that the user’s email is leaking.

IV. CLASSIFICATION METHODOLOGY

Our methodology is depicted in Fig. 1, and it consists of
the following steps.

2This transmission may be: (i) benign, e.g., necessary for the operation of
the app, acceptable to the user; (ii) of the honest-but-curious nature; or (iii)
intended to collect information about the user. Distinguishing between privacy
exposure and an actual privacy leak is out of the scope of this paper, and we
refer to the two terms interchangeably, meaning “exposure.”

3 Although the current AntShield prototype is built for Android, it is feasible
to implement it on iOS as well since the VPN API is available for devices of
versions 9.0 and above.

/spi/

/api/

&lon=

&udid=

&zip=

&gender=
settings.crashlytics.com\r
X-CRASHLYTICS-ADVERTISING- ‘
TOKEN

H’I;I__'

GET
/spi/v2/platforms/android/apps...
Host: settings.crashlytics.com

X-CRASHLYTICS-ADVERTISING-
TOKEN: ae7...92

(a) Training phase: packets are broken into words based on various
delimiters (e.g. “:”, */”, “?”) and are used as features in training a
decision tree (an example is shown in Fig. 4).

DPI
[Pre-defined

Classifiers

No Leak]
Per-App]

—

N
[Features] [General]

(b) Testing phase: each packet is searched in parallel for predefined
PIIs and for any features appearing in the trees generated in the
training phase. The features found are then passed to the classifiers
for predicting PII leaks.

Fig. 1. Overview of AntShield’s classification.

1) Feature Extraction: Similar to prior state of the art [5],
we break a packet into words based on various delimiters (e.g.,
“ 7, <Py and use these words as features in classification.
Words from all packets in a given dataset are extracted, and
those that appear too infrequently or too frequently (e.g.,
common HTTP headers) are discarded.

2) Multilabel Classification: Unlike prior state-of-the-art,
we treat PII detection as a Multi-Label problem, since a packet
may contain zero, one, or multiple PII. Our classifiers decide,
in one step, if any PII are contained in a packet, and if
so - of what type. More specifically, we use Mulan [9] to
perform multi-label classification using the Binary Relevance
(BR) transformation method [8]. The idea is to train a separate
binary classifier for each label. Since the C4.5 Decision Trees
(DTs) worked well for classifying leak vs non-leak, we use
them as the independent classifiers in BR.

3) Hybrid String Matching-and-Learning: A key insight is
the distinction on whether PII of interest is known to the device
or not. We refer to PII that consists of strings known a priori
on the device (e.g., via Android APIs, or defined by the user)
as predefined, and the ones that are not known to AntShield
as unknown. By default, we assume that any PII available
via Android API calls are predefined (e.g., Advertiser ID,
Device ID, IMEI, mac address, email, phone number, location
coordinates), and the rest are unknown (first/last name, gender,
zipcode, city, username, and password).

An inherent advantage of operating on the device is the
access to all the predefined strings that can be found with
DPI; we refer to this method as String Matching. This not
only gives us 100% accuracy on finding predefined leaks,
if they are not obfuscated, but also reduces the set of PII
that classifiers must learn, thereby improving the accuracy of
finding unknown leaks and reducing variance (see Sec. V).

4) App vs. Domain Classifiers: Third, we build classifiers
per-app, instead of per-destination-domain (as was done in
prior art [5]). This is only possible because AntShield is
running on the device and can accurately map a packet to the
app that generated it. Our results show that per-app classifiers
perform similarly to per-domain ones, but they also have

Auto M: 1
of Apps 414 149
of packets 21887 25189
of destination domains 597 379
of leaks detected 4760 3819
of unknown leaks 483 516
of leaks in encrypted traffic 1513 1526
of packets with multiple leaks 1506 790
of leaks in TCP (other ports) 38 7
of leaks in UDP 17 12

TABLE I
SUMMARY OF THE ANTSHIELD DATASET.

important system advantages.* We also show that both types of
classifiers outperform a general classifier, which can be used
for apps/domains for which not enough data was seen.
Real-Time Implementation on the Mobile Device. The
classifiers described above have value in their own right.
However, it is highly non-trivial to apply them in real-time
on a mobile device, with limited CPU and RAM. AntShield
is the first system to achieve this goal thanks to multiple
optimizations in the Android implementation. First, in order to
avoid Java string parsing needed to extract words from packets,
we exploit the DTs. Specifically, we use DPI (~1ms delay per
packet) to search for words that appear in the trees instead
of extracting all words from each packet (30ms+ per packet).
Second, we use two-phased training to minimize the feature
set that needs to be loaded into memory: we first train on all
features, and then train again on those features that ended up
in the DTs from the first phase. Due to lack of space, we omit
the details of these engineering efforts and their respective
gains in performance, and defer to our technical report [6].

V. CLASSIFICATION RESULTS

Dataset. In order to evaluate the effectiveness of our
methodology, we collected our own dataset, summarized in
Table 1. We captured all packets generated by different apps
on a test device (Nexus 6) and labeled them with the PII types
that they leak using AntShield’s DPI capability. To cover all
PII types, we manually entered unknown types into AntShield.
We interacted with apps in two different ways. First, in order
to assess PII leaks during typical user behavior, we interacted
with the 100 most popular and free Android apps, based on
rankings in AppAnnie [1], spending 5 minutes on each app.
Second, we used the Ul/Application Exerciser Monkey [2] to
automatically interact with apps. This does not capture typical
user behavior but enables extensive and stress testing of more
apps. We had Monkey perform 1,000 random actions in each
tested app while AntShield logged the generated traffic. We
repeated this procedure for the 400 most popular apps.

Methods under Comparison. We use our dataset to com-
pare AntShield’s classification accuracy to the previous state-
of-the-art Recon approach. Since AntShield combines several
ideas, we evaluate each individual idea as well as the entire
approach, by considering the following baselines:

1) Complete Recon approach as per Section II: classify all
(predefined and unknown) leaks, using binary classifiers

4First, they allow for easy setup and scalability: only the few classifiers
for the installed apps on the particular device must be loaded into memory.
This is much smaller than hundreds of domains contacted by those apps and
the third-party libraries contained within them. Second, they apply to all TCP
and UDP traffic, not just to HTTP(S) traffic. Third, per-app classifiers obviate
the need for DNS lookups, which are costly and inaccurate, but are necessary
when using per-domain classifiers.

Binary Classification
— = — = Leak Classification
--------------- Combined Classification

Fig. 2. Evaluation approaches: (1) Binary Classification: we assess how well
we identify whether or not a packet contains a PII (Sec. V-1); (2) Leak
Classification: we assess how well we infer the PII type from packets that
already contain a PII, ignoring packets without PII (Sec. V-2); (3) Combined
Classification - assess how well we identify the PII type and the No Leak
label, considering all packets (Sec. V-3).

to detect a leak first, then use heuristics to determine the
type of PII leak.’

2) Recon classifying unknown PII only.

3) String Matching on predefined PII, Recon trained on
unknown; testing done on all PIIL.

4) Multi-Label classification trained and tested on predefined
and unknown PIL.

5) Multi-Label classification trained and tested only on un-
known PII.

6) Complete AntShield approach: String Matching for pre-
defined and Multi-Label classification for unknown leaks;
Multi-Label trained on unknown only, tested on all PIIL

Per-app vs. Per-domain classifiers. For each method,
we compare how well the per-domain, per-app, and general
classifiers perform. We train specialized classifiers for those
domains and apps that contain at least one positive sample
(packet with a PII leaked), and one negative sample (packet
with no PII leak). Results (Table II) show that per-app and per-
domain classifiers perform similarly but per-app classifiers are
able to cover more data than the per-domain classifiers.® The
number of possible specialized classifiers that we can build in
each case and the amount of traffic that they can cover in our
dataset is as follows:

o All PII, per-app classifiers: 211 (93.3% of traffic, 99.5%
of packets with PII).

o All PII, per-domain classifiers: 182 (63.6% of traffic,
95.0% of packets with PII).

o unknown PII, per-app classifiers: 47 (54.4% of traffic,
99.5% of packets with unknown PII).

o unknown PII, per-domain classifiers: 49 (24.5% of traffic,
87.4% of packets with unknown PII).

Evaluation Approaches. After classifying a packet, either
a leak is detected with one or more PII types, or No Leak is
detected. Depending on how one summarizes these numbers
over classified packets, we may have different assessments.
In particular, the majority of packets contain no leaks and
if we consider them when computing F1 scores and other
classification metrics, our results may look deceivingly good
since non-leaky packets are easy to classify. Hence, we con-
sidered three evaluation schemes, summarized in Fig. 2. For
each approach, we perform 5-fold cross-validation on the given

SWe use the Recon code available here: https:/github.com/Eyasics/recon

OThis is expected since apps generally exhibit more diverse behavior by
connecting to various domains, some of which collect PII and some of which
do not. Thus, we are more likely to find apps that have sent at least one
packet containing PII and one packet without PII, as opposed to domains that
receive packets with and without PIIL

Method

(1) Recon on AIl PIT | (2) Recon on un- | (3) String Match- | (4) Multi-Label on | (5) Multi-Label on | (6) String Match-
known ing & Recon on | All PII unknown ing & Multi-Label
unknown
Per-Domain Avg 73.8% + 39.3 69.5% + 45.5 94.9% + 20.7 99.2% + 1.90 99.3% + 2.88 98.7% + 10.6
Per-App Avg 74.6% + 30.6 69.0% + 42.8 97.6% + 13.0 98.8% + 2.24 98.9% + 3.23 99.6% + 3.05
General 55.6% 50.3 97.3 77.4% 81.8% 99.6%
TABLE 11

LEAK CLASSIFICATION (SEC. V-2) RESULTS: HOW WELL EACH METHODOLOGY DISTINGUISHES BETWEEN LEAK TYPES. F1 SCORE REPORTED BASED

ON 5-FOLD CROSS-VALIDATION. PRECISION AND RECALL ARE DEFERRED TO [6].

model (when applicable), and calculate the average and the
standard deviation across the trained specialized classifiers.

1) Binary Classification: This evaluation scheme evaluates
how well the models classify a packet as containing a leak
or not. In this case, both Recon’s DT and our Multi-Label BR
achieve similar F1 scores, over 95% on average. These results
are consistent with Recon’s own reports in [5], and their full
details can be found in [6].

2) Leak Classification: Table II shows how well each
model distinguishes PII types in packets that contain a leak,
i.e., packets without a PII are not taken into account. First,
standard deviation is high because certain domains are easy
to learn and get near perfect F1 scores, while a small set of
domains are difficult (some even have a 0% F1 score). Recon’s
heuristic scores low when attempting to extract the PII type
(column 1); see [5] for a description of the heuristic. Second,
when we reduce the set of PII types to look for (column 2), the
heuristic performs slightly worse, probably due to not having
enough samples of unknown PII. Third, as expected, String
Matching can find predefined P1ls with 100% accuracy, thus the
overall F1 score improves by ~20% (column 3 vs. column 1),
and the standard deviation decreases. Fourth, the Multi-Label
approach shows significant improvement when compared to
Recon’s heuristic (column 4 vs. 1, and column 5 vs. 2); this
is expected, since we do not need to estimate probabilities or
calculate out thresholds as Recon does. Fifth, the complete
AntShield achieves near perfect performance, and decreases
the standard deviation (column 6 vs. 1-3). Finally, in most
cases, the specialized classifiers outperform the general ones.

3) Combined Classification: This scheme evaluates how
well each model distinguishes among PII types and “no leak,”
i.e., packets without a PII are taken into account. In this case,
all methodologies achieve F1 scores close to 90% and the
difference between the performance of different classification
methods is less pronounced (see [6]). This is because the
majority of packets do not contain a leak, the binary classifiers
work well (see Sec. V-1) and classify the “no leak” packets
correctly, making the results look deceivingly good. This is
why we emphasize the Leak Classification performance, as it
provides deeper insight into the classifiers’ performance.

VI. COLLABORATION AMONG USERS

The classification approach we described above can detect
PII leaks in any packet trace (on the device or at a remote
server, online or offline), although our intended application
was on the mobile device and in real-time. However, there
was no distinction among different users or devices, so far, in
training and testing those classifiers. An interesting question is
whether sharing information (training data, classifiers, or other
information) among different mobile users, directly or through
a crowdsourcing entity, can help improve the classification

accuracy, as opposed to each user training and testing on their
own data. Preliminary results below show that the answer is
yes, which motivates further investigation of collaboration and
distributed vs. centralized learning of privacy leaks.

Dataset. To answer that question, we utilized another
dataset: 10 real users (members of our group at UC Irvine)
used the AntMonitor app [7] to contribute packet traces (in
PCAPNG format) from their Android phones for a period of
7 months. We analyzed the packets generated only by two
apps: Facebook and Chrome, which were used by all users.
For some users we also have logs of the same user over a
different time period or using a different phone, which we
refer to as “alter-egos”; this increases the number of distinct
users to 19 and 8 for Facebook and Chrome, respectively. For
our experiments, we decided to include the users that have
a significant number of (HTTP) packets and leaks for both
Facebook and Chrome.

Q1: Can one user’s classifier accurately detect leaks on
another user’s packets? As a first step, we train (with 10-fold
cross validation) binary DTs on each user’s data separately and
we test on every user individually, and we report the results in
Fig. 3. Each row indicates a user’s classifier and each column
indicates another user’s data used for prediction. In Fig. 3(a),
the diagonal has very high F1 scores, which is expected since
the same user’s logs were used for training and testing. user_|2
is an exception: her classifier is weak and cannot predict well
even on the same data. The weak classifier is the result of
having too few positive (leaking) examples to learn from. On
the other hand, user_m’s classifier can achieve F'1 > 0.8 when
predicting on user_a’s data; however user_e’s classifier cannot
predict well user_m’s leaks. We can observe a symmetry
between two other users: user_c and user_a: user_c’s classifier
can predict well user_a’s leaks and vice versa. Moreover, there
are some users (user_|-3, user_d) that can be predicted well
only by their own classifiers. Interestingly, the heatmap for
the Chrome app (Fig. 3(b)), shows different patterns: (i) when
we train on user_|-all (data from all alter-egos of user_l), we
achieve good scores on all the alter egos of user_l; and (ii)
user_|-4’s classifier can predict quite well on user_a’s data.

To understand when some users’ classifiers can predict other
users’ leaks, we looked at the common PII types between
users. For the Facebook app, we observed that user_m has a
similar number of common PII types with all the users except
for user_|-3. Similarly, user_d has a similar number of com-
mon PII types with user_m and user_a. Regardless, user_m’s
classifier cannot predict well on user_d’s data, indicating that
the number of common PII types is not a significant metric
for predicting performance. Digging deeper, we found that the
types of features that end up in the DTs themselves are a
stronger indication of predictive power. In Fig. 4, we show the
classifier trained on user_m’s data. “?aid=" (a URL parameter

user_|-2 user_|-2
user_|-3 08 user_|-3
®
user_|-4 8 wserisa
user_|-all - 06 ¢
G user_|-all
user_m 9]
9 user_m
user_t-2 049 -
user_c e user_d
wer_d [0 02" wera]
user_a user_s
0.0

@
.
@
@
=4

user_c
user_d

b
.
D
@
=

user_|-2
user_|-3
user_|-4
user_l-all
user_m
user_t-2
user_|-2
user_|-3
user_|-all

(a) F1 Heatmap for Facebook App

user_m

(b) F1 Heatmap for Chrome Browser App

I F1 when trained on merged B F1 when trained on self

1OI | Ii
o @ o 9 T oo
- ! [

o O
8 &
3 3

I
user
(c) Facebook App

o
©

o
©

o
=

o
o

o
b

F1 score on test
o
S

F1 score on test

o
)

o
o

0.0

o
o

all

user_c
user_a

user_m

user_d
user_a
user_s
I
user_|-4
user_|
user_t:
user,

Fig. 3. (a-b) Q1: sharing one user’s data can help another user predict. A classifier is trained on each user on the y-axis and is tested
on each user on the x-axis, for packets belonging to Facebook (a) and Chrome (b) apps. (¢): Q2: sharing training data among all users
helps. The prediction power of a classifier trained on “merged” (80% of all users’ data) is larger than a classifer trained only on “self” (that
user’s (80%) data collected on that user’s device). In both cases, the classifier is tested on the mentioned user’s 20% remaining data.

that is often associated with Advertiser ID) appears closer to
the root of the tree (indicating highest information gain); and
it is responsible for the predictive power of user_m’s classifier
on several other users in our dataset.

Q2. Can sharing among more users help? Next, we
trained on 80% of all users’ merged data and tested on the
remaining 20% of each user data separately. We compared to
the case when we train on 80% each individual user’s data and
test on the same remaining 20%. We report the F1 scores in
Fig. 3(c), which shows significant improvements when data is
shared among users. For instance, when we trained and tested
(with cross-validation) on user_|-4’s data, the F'1 score was 0.
However, when we trained on all users’ training data, user_I-4
achieved F'1 = 0.83. That is, if the data of other users were
not used for training, this particular user could not predict any
PII leaks with his/her existing training data.

Q3. Can classifiers themselves leak private informa-
tion? Interestingly, we observe one particular feature
/my_gen_x_hillary_problem...” that appears since the data was
collected close to the US election in the summer of 2016. This
feature contains sensitive information (e.g., political interests
and browsing history of user_m), which is in itself a privacy
leak. This motivates the need for privacy-preserving techniques
for sharing training data and/or classifiers from individual
mobile devices with other users or with a crowdsourcing entity.

Fig. 4. Partial view of the DT for the Facebook app of user_m.

Future Directions. Our preliminary findings show that
sharing information among users has the potential to train
more accurate classifiers, which motivates future work on
collaboration among users for learning PII leaks, either in
a centralized or decentralized way [3]. However, there are
a number of open questions that need to be addressed to
achieve that potential. First, there are different patterns across
users, apps and domains and one needs to identify which
users should collaborate to share data and train classifiers.

An automated approach is needed to identify similar users or
cross-association of users and other features (e.g., applications,
domains), as demonstrated in Q1, Q2 above. Second, there is
the concern of privacy: how to share information (training data,
classifiers, or other information [3]) between pairs or groups
of users and/or with a crowdsourcing entity in a privacy-
preserving way, since sharing training data and/or classifiers
compromises privacy as well, as demonstrated in Q3.

VII. CONCLUSION

This paper provides a classification methodology for detect-
ing privacy leaks, which we define as transmission of personal
information in network packets generated by a mobile device.
This work is the first step towards truly distributed detection
of PII leaks because (i) AntShield is the first such system
that can run on the device itself and (ii) we demonstrate
the potential and challenges of collaboration among different
mobile devices. Future work will focus on (ii) identifying
similar users that should collaborate to train the classifiers
and (ii) distributed learning of PII leaks within the Federated
Learning framework [3].

REFERENCES

(1]
[2]

App annie. https://www.appannie.com.
Ui/application exerciser monkey. https://developer.android.com/studio/

test/monkey.html.

[3] B. McMahan and D. Ramage. Federated learning:
Collaborative ~ machine learning without centralized training
data. https://research.googleblog.com/2017/04/federated-learning-

collaborative.html, April 2017.

A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
P. Gill, M. Allman, and V. Paxson. Haystack: A multi-purpose mobile
vantage point in user space. arXiv:1510.01419v3, Oct. 2016.

J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. Recon:
Revealing and controlling pii leaks in mobile network traffic. In Proc. of
the 13th Annual Int. Conf. on Mobile Systems, Applications, and Services
(MobiSys), volume 16, New York, NY, USA, 2016.

A. Shuba, E. Bakopoulou, M. M. Asgari, H. Le, D. Choffnes, and
A. Markopoulou. Antshield: On-device detection of personal information
exposure. arXiv preprint arXiv:1803.01261, 2018.

A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Markopoulou.
Antmonitor: System and applications. arXiv:1611.04268, 2016.

G. Tsoumakas and I. Katakis. Multi-label classification: An overview.
Int’l Journal of Data Warehousing and Mining, 3(3), 2006.

G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas. Mulan:
A java library for multi-label learning. Journal of Machine Learning
Research, 12:2411-2414, 2011.

(4]

(5]

(6]

(71
(8]
(91

