
AAS 17-806

A SPARSE COLLOCATION APPROACH FOR OPTIMAL
FEEDBACK CONTROL FOR SPACECRAFT ATTITUDE

MANEUVERS

Mehrdad Mirzaei∗, Puneet Singla†, Manoranjan Majji‡

In this paper, sparse collocation approach is used to develop optimal feedback
control laws for spacecraft attitude maneuvers. The effective collocation process
is accomplished by utilizing the recently developed Conjugate Unscented Trans-
formation to provide a minimal set of collocation points. In conjunction with the
minimal cubature points, an l1 norm minimization technique is employed to opti-
mally select the appropriate basis functions from a larger complete dictionary of
polynomial basis functions. Finite time attitude regulation problem with terminal
constraint is considered. Numerical simulations involve asymmetric spacecraft
equipped with four reaction wheels.

INTRODUCTION

Spacecraft attitude maneuvers play an important role in the success of many space missions
and they result in nonlinear optimal control problem. Extensive research has been carried out to
develop semi-analytical and numerical solutions to optimal open loop and feedback attitude control
problems [1–10]. Application of the variational principles, [11] in conjunction with the Pontryagin’s
principle [12], typically yields a two-point boundary value problem for optimal state and the control
law. The main shortcoming of the open loop solutions to optimal control problems is their sensitivity
to the initial conditions and the unstructured perturbations, including modeling errors and exogenous
disturbance inputs. Feedback solutions provide an attractive alternative to the optimal open-loop
solutions in that they are fundamentally conceived from Bellman’s principle of optimality, [13]
and are robust to variations in initial conditions and external disturbances. The feedback control
solutions can be determined by solving a nonlinear hyperbolic partial differential equation called
the Hamilton Jacobi Bellman (HJB) equation [1, 14] over the domain of interest, with specified
boundary conditions for some or all initial states.

While the quest for a unified solution approach to the time dependent and asymptotic HJB equa-
tion remains a holy-grail for a general dynamical system with arbitrary functions as performance
indices and terminal manifolds, researchers have worked on various methods to provide local solu-
tions to this important problem [2–10]. Approaches like θ−Dmethod [4] and its variants [3] employ
quasi-linearization style strategy, where the value function is updated recursively, as dictated by the
ordering parameter. An alternative solution methodology emerges by developing a series expansion
of the value functional and writing the resulting optimal control law as a function of the high order
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nonlinear feedback gains, following a process originally developed by Albrecht [6,7]. This process
was recently generalized to specialize the feedback control process to reach terminal manifolds at a
specified terminal time by Vadali and Sharma [8]. While the series solution methodology was shown
to be useful, the curse of dimensionality renders the method to only provide local solutions. This
shortcoming is shared by all other solutions to the problem.

An alternative consideration of the solution of the HJB equation is to solve the PDE directly. In
addition to the finite difference approach, the method of characteristics, the Galerkin method [15–
17], the finite element approach [18] , Collocations methods [19–21] and Level set methods [22,23]
are also used to approximate the solution to HJB equation. The high computational cost involved in
these methods for higher dimensions limit the applicability of these methods for many practical en-
gineering problems. Furthermore, all aforementioned approaches assume a structure for the optimal
feedback control, which is unknown in the general problem.

In this work, recently developed sparse collocation methods [24–26] have been used to develop
optimal feedback control laws for spacecraft attitude maneuvers. The solution process involves the
finite series expansion of the value function in terms of suitable polynomial basis functions. The
coefficient and order of the finite series expansion for the value function are determined by exactly
satisfying the HJB equation at the collocation points. The main challenge in the development of
any collocation method lies in choosing appropriate collocation points and the basis functions. In
one-dimensional system, the Gaussian quadrature points along with Lagrange interpolation polyno-
mials provide the optimal choice for collocation points along with minimal order basis functions.
However, the Gaussian quadrature methods suffer from curse of dimensionality since the number of
quadrature points in an n-dimensional space are constructed from the tensor product of one dimen-
sional quadrature points. On the other hand, the total degree of multivariate Lagrange interpolation
polynomials constructed from the tensor product of one dimensional interpolation polynomials,
grow quickly with number of multi-dimensional collocation points. The higher order polynomial
basis functions are less desirable due to Gibbs phenomenon [27]. The construction of multivariate
interpolation polynomials from a given set of collocation points is an active area of research. In
Ref. [28], an algorithm is proposed to construct a minimal degree interpolation polynomial for the
given set of points in general multi-dimensional space. The least degree interpolation polynomial
is generated by first constructing the Vandermonde matrix [28] from the given points, with each
row corresponding to one point. The columns are formed from the monomials of increasing order.
Gauss elimination with partial pivoting is applied to the Vandermonde matrix, where the partial
pivoting process follows special rules as outlined in [28]. This algorithm produces the least degree
interpolation polynomial for the given set of points and function values, which can in turn be used
for collocation. However, this process can become computationally expensive with dimension and
as the number of points increase. Sparse collocation method utilizes recently developed non-product
quadrature scheme known as Conjugate Unscented Transform (CUT) methodology [29, 30] to alle-
viate the effect of curse of dimensionality by providing minimal set of cubature points in a multi-
dimensional space. Rather than using tensor products as in Gauss quadrature, the CUT approach
judiciously selects special structures to extract symmetric quadrature points constrained to lie on
specially defined axes. These new sets of so-called sigma points are guaranteed to exactly evaluate
expectation integrals involving polynomial functions with significantly fewer points. Furthermore,
the recent advances in sparse approximation are utilized to formulate the interpolation polynomials
directly in the multidimensional space for the chosen collocation points. The handshake of CUT
approach with sparse approximation tools provide the foundation of sparse collocation methods to
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solve the multivariate PDE like HJB equation.

In the following, we outline the sparse collocation method which will be used to derive optimal
feedback control laws for spacecraft attitude maneuvers. Finite time attitude control problem with
terminal time constraint is considered. For attitude control purposes, the spacecraft is assumed to
be equipped with reaction wheel.

PROBLEM STATEMENT

Let us consider a spacecraft with four reaction wheels and hence the angular momentum of the
system H will be sum of the spacecraft and wheels angular momentum.

H = Iω + CTJΩ (1)

where, ω and Ω represent the spacecraft angular velocity vector and reaction wheel angular velocity
vector, respectively. I is the spacecraft inertia matrix and J is the wheels axial moment of inertia
matrix. The matrix C represents the orientation of the wheels axis to spacecraft body frame. In the
absence of the external torques, the angular momentum will be conserved and the governing Euler
equation of motion can be written as follows:

Ḣ = Iω̇ + CTJΩ̇ + [ω̃] H = 0 (2)

where

[ω̃] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

Finally, the system dynamic equation can be written in the following form:

Iω̇ = − [ω̃] H− u (4)

The design of optimal spacecraft attitude maneuver involves the solution of the following optimal
control problem:

min
u(t)

J =
1

2

∫ tf

0
(ωTQω + uTRu)dt (5)

Subject to : Iω̇ = − [ω̃] H− u ω (0) ∈ [−`, `] (6)

ψ[ω(tf ), tf ] = 0 (7)

Q is positive semidefinite matrix and R is positive definite matrix. It is assumed that tf is known.
We are interested in computing the feedback control law for control vector u, which require the
solution of the the Hamilton Jacobi Bellman (HJB) equation for the optimal value function V :

∂V

∂t
+ min

u

{
1

2
ωTQω +

1

2
uTRu +

∂V

∂ω

T [
−I−1([ω̃] H + u)

]}
= 0 (8)
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∀ω ∈ [−`, `] , V (0, t) = 0 , V (ω(tf ), tf ) = 0 on ψ [ω(tf ), tf ] = 0 (9)

Notice that due to the existence of the terminal constraint, the final boundary condition of value
function is only satisfied on the terminal manifold and is undefined outside the support of terminal
manifold [1].

The optimal control law through the application of Pontryagin’s maximum principle is related to
the optimal value function by the following expression:

u(ω, t) = R−1I−T
∂V

∂ω
(10)

The substitution of equation (10) in equation (8) leads to the following PDE for the solution of the
value function:

∂V

∂t
− ∂V T

∂ω
I−1 [ω̃]H +

1

2
ωTQω − 1

2

∂V T

∂ω
I−1R−1I−T

∂V

∂ω
= 0, V (ω(tf ), tf ) = νTψ[ω(tf ), tf ]

(11)

where ν is the Lagrange multiplier to take into account the terminal state constraints. The terminal
Lagrange multipliers are necessary to track the sensitivity of the value function with respect to the
terminal constraint, so as to make the feedback control process continually aware of the manifold to
reach at the given time. Notice that the solution process in this case becomes more complicated as
the newly introduced Lagrange multiplier, ν is an additional unknown. A key result can be arrived at
by considering the sensitivity of the augmented cost function, Va = V (x(t0)) + νT

(
ψ(xtf )− ψf

)
with respect to Lagrange multiplier vector, ν. It can be derived that if all of the necessary conditions
are satisfied, then the gradient of augmented cost function with respect to ν along the optimal
trajectory is given by:

∂Va
∂ν

=
∂V (x(t0))

∂ν
+
(
ψ(xtf )− ψf

)
= 0 (12)

Because the terminal conditions are also satisfied as part of the necessary conditions and because the
initial time is arbitrary, the preceding result simply results in ∂V (x(t),t)

∂ν = 0. This extra condition was
exploited by Sharma and Vadali to find the value of ν [8]. This important and relatively unknown
result has similarities to Bryson’s sweep method. However, the series expansion solution involve
the vector series inversion for the Lagrange multiplier which can be computationally expansive as
the state dimension increases.

PROPOSED METHODOLOGY

In this work, we exploit recently develop sparse collocation method to solve the HJB equation
in presence of terminal constraints. According to this approach [24–26], a series expansion for the
value function is assumed. Motivated by the appearance of the Lagrange Multipliers in the boundary
condition, it can be stated that the value function is now a function of the state vector, as well as the
Lagrange multiplier vector:

V (ω,ν, t) =

m∑
i=1

ci(t)φi(ω,ν) = cT (t)Φ(ω,ν) (13)
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where, ci(t) are unknown coefficients and φi(.)’s are known basis functions of ω and ν.The substi-
tution of approximated value function in the HJB equation leads to the following error equation:

e(ω,ν, t) = Φ(ω,ν)T ċ− (I−1 [ω̃] H)
T ∂Φ(ω,ν)T

∂ω
c(t) +

1

2
ωTQω

− 1

2
cT (t)

∂Φ(ω,ν)

∂ω
I−1R−1I−T

∂Φ(ω,ν)T

∂ω
c(t) (14)

cT (tf )Φ(ωf ,ν) = νTψ [ω(tf ), tf ] (15)

Notice that the error term, e(ω,ν, t) is a result of the truncation of the value function series. Gener-
ally, method of weighted residuals such as Galerkin transcription or collocation methods are used to
solve for unknown coefficient in the solution domain. However, the presence of terminal constraint
prohibit the application of weighted residual methods. This is due to the fact that the value func-
tion at the terminal time is defined only on the constraint surface rather than over the whole state
space. In case, the terminal constraint corresponds to the specified value for the terminal state, the
value function at terminal time is defined only at singleton point in the state space. Furthermore, the
Lagrange multipliers are constant along an optimal trajectory, which is specified by an initial con-
dition on the state variable. Hence, they are function of the state variable rather than time. Hence,
in this work we exploit characteristic solution of the HJB equation to construct the optimal value
function [31].

The characteristic solution of the HJB equation comprised of the first-order necessary conditions,
and the co-state dynamics. The co-state is defined as sensitivity of value function with respect to
state, so the relation between optimal value function and co-state is:

∂V (ω(t), t)

∂ω
= λ(t) (16)

The optimal open-loop solutions allow us to determine gradients of the optimal value function, i.e.,
co-state vector along an optimal trajectory. From the above, the co-state trajectories are determined
for a single initial condition via solution of the Two-Point Boundary Value Problem (TPBVP).
Through iterative numerical methods, one also obtains a Lagrange Multiplier value corresponding to
this optimal trajectory. As stated, these methods provide only open-loop optimal control solutions,
which must be determined for every desired initial condition. If open-loop solutions can be obtained
over the entire state-space domain, then one can interpolate a optimal control law without resolving
the TPBVP.

The substitution of equation (13) in equation (16) provides us a relationship between the co-state
vector and unknown coefficients, c(t):

λ( t|ω(t),ν) =
∂Φ(ω, t)T

∂ω
c(t) (17)

Now, one can compute unknown coefficient vector c(t) by computing co-state vector for at least N
initial conditions. This leads to the following constraint equation:

λi(t) =
∂V (ωi(t),ν)

∂ω
=
∂Φ(ωi(t),ν(ω0i))

T

∂ω
c(t) i = 1, 2, . . . , N (18)
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The equation (18) is the main equation which will provide a numerical framework to find the optimal
feedback control law for a terminally constrained problem. By discretizing the time vector, one can
write down the co-state matching conditions at each time step:

λ
(j)
i (tk) =

∂Φ(ωi(tk),ν(ω0i))
T

∂ωj
ck i = 1, 2, . . . , N , j = 1, 2, . . . , d (19)

This leads to the following set of linear equations at each time:

A(j)(tk)ck = B(j)(tk) , j = 1, 2, . . . d (20)

where:

A
(j)
i (tk) =

∂Φ(ωi(tk),ν(ω0i))
T

∂ωj
(21)

B
(j)
i (tk) = λ

(j)∗
i (tk) (22)

After solving this system of equations for unknown coefficient c(t), one can compute optimal feed-
back law by using the following equation:

u(ω,ν, t) = R−1I−T
∂Φ(ω,ν)T

∂ω
c(t) (23)

The whole process can be summarized in following steps:

1. Generate N initial condition in the desired domain, ω0i ∈ [−`, `].

2. Solve the open-loop TPBVP for all the N initial conditions from step 1 to obtain ωi(t), λi(t)
and ν(ω0i).

3. Solve the equation (22) along all the optimal trajectories from step 2, to determine unknown
coefficient vector c(t).

Generation of initial condition samples

The main challenge lies in choosing appropriate initial condition samples (or collocation point)
and the basis functions. This is due to the fact that the number of collocation points and polyno-
mial basis functions would not be the same for a general n-dimensional system. The growth of
polynomial basis functions up to a fixed degree, d, is combinatorial in nature with the increase in
state-space dimension. For a set of polynomial basis functions up to total degree d, the total num-
ber of polynomial basis functions is given as m =

(
n+d
d

)
, which will be different from the total

number of collocation points (denoted by N ) given by any of the method. When m < N , i.e. the
number of collocation points are greater than the number of basis functions, the collocation process
leads to an over-determined system of equations. The over-determined system typically does not
possess sufficient degrees of freedom to accommodate the physics of the value function. An alter-
native approach would be to have m > N , i.e. fewer collocation points than the number of basis
function. The collocation process in this case leads to an under-determined system of equations.
This additional design freedom offered by the redundant basis functions manifests itself as a lack of
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Figure 1. Comparison of Points - 9th Order Accuracy.

uniqueness in choosing the appropriate polynomial basis function set and will be exploited in this
work.

In one-dimensional system, the Gaussian quadrature points along with Lagrange interpolation
polynomials provide the optimal choice for collocation points along with minimal order basis func-
tions. However, the Gaussian quadrature methods suffer from curse of dimensionality since the
number of quadrature points in general n-dimensional space are constructed from the tensor prod-
uct of one dimensional quadrature points. Even for a moderate-dimension system involving, say, 6
state variables, the number of points is 56 = 15, 625 with only 5 points along each direction.

The sparse grid quadratures, and in particular Gauss-Legendre Smolyak (GLgnSM) quadrature
method, take the sparse product of one dimensional quadrature rules and thus have fewer points
than the equivalent Gaussian quadrature rules, but at the cost of introducing negative weights [32]
which can further lead to numerical instability [33]. Note that the Gaussian quadrature rule is
not minimal for m ≥ 2, and there exist quadrature rules requiring fewer points in high dimen-
sions [34]. In this work, recently developed CUT methodology is leveraged to break this curse of
dimensionality and have a computationally efficient collocation scheme to solve the HJB equation
in a multi-dimensional space.

The CUT approach [30, 35–37] can be considered an extension of the conventional UT method
that satisfies additional higher order moment constraints. Rather than using tensor products as in
Gauss quadrature, the CUT approach judiciously selects special structures to extract symmetric
quadrature points constrained to lie on specially defined axes. These new sets of so-called sigma
points are guaranteed to exactly evaluate expectation integrals involving polynomial functions with
significantly fewer points. Figure 1 shows a comparison of the number of points required for CUT
and Gauss-Legendre quadratures for similar accuracy, clearly illustrating the reduced growth ex-
hibited by the CUT method. More details about the CUT methodology and its comparison with
conventional quadrature rules can be found in Ref. [30, 35–38].
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Optimal selection of basis functions

If one considers the construction of Lagrange interpolation polynomials from the tensor product
of one dimensional Lagrange interpolation polynomials, it can be observed that the total degree of
the resultant interpolation polynomial grows quickly even with few number of points. The higher
order polynomial basis functions are not desirable due to Gibbs phenomenon [27]. In general, the
appropriate set of basis or polynomial degree cannot be determined just from the number of points.

To overcome this difficulty, a sparse optimization based basis selection process is incorporated to
select the basis that is best for the given set of points and dynamics of the system. In particular, the
the linear system of equation (22) is solved by minimizing the l1-norm of the coefficients. Ideally,
l0-norm of the coefficient vector is to be minimized but this leads to a non-convex optimization
problem. On the other hand, l1-norm is convex and provides a close approximation to l0-norm cost
function, by making the coefficients close to zero. Hence, an iterative l1 norm optimization is used
to find the minimal polynomial expansion for value function.

min
ck

‖Wck‖1 (24)

subject to: A(tk)ck = B(tk) (25)

Equation (24) minimizes the l1 norm of ck and equation (25) represents the collocation constraints.
Intially, the weight wi for ith coefficient is chosen to be proportional to the total degree of the
corresponding basis function. In successive iterations, the weight matrix is inversely proportion to
the corresponding coefficient value to force the numerically small coefficients to be zero:

W = diag[W1, W2, . . . ,Wm] (26)

Wl
(iter) =

1

(cl(iter−1) + ε)
, l = 1, 2, . . . , m ε = 0.1 (27)

The same procedure can also be used to find an interpolating surface for the Lagrange multiplier ν.

NUMERICAL RESULTS

This section represents the numerical simulation results to validate the proposed method. For
simulation purposes, following values are assumed for spacecraft and reaction wheel parameters.
All values are in SI units if not specified otherwise.

I =

 87.212 −0.2237 −0.2237
−0.2237 86.067 −0.2237
−0.2237 −0.2237 114.562



C =


1
0
0√
3/3

0
1
0√
3/3

0
0
1√
3/3


J = diag[0.05, 0.05, 0.05, 0.05]
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The assumed cost function parameters for numerical simulation are listed below:

R =

1 0 0
0 1 0
0 0 1

 Q = I tf = 0

The terminal constraint manifold has been defined as:

ψ [ω(tf ), tf ] =

ω1

ω2

ω3


tf

=

0
0
0


The initial condition domain is considered to beω(0) ∈ [−5, 5]deg/s. It is assumed that the reaction
wheels at t = 0 are in rest. Both the value function and Lagrange multipliers expansion includes
polynomial basis functions up to order 10th resulting in a total of 8008 basis functions. According
to the CUT8, there are a total of N = 59 collocation points. For each collocation point, the TPBVP
is solved by MATLAB in-built function BVP4c with tolerance of 10−7. The time domain t ∈ [0, 20]
is discretized into 500 equal increments. The sparse approximation procedure outlined in previous
section is used to solve for the unknown coefficient vector. Figure 2 shows the plot of non-zero
coefficients as a function of time. At a given time, on average only 174 coefficients (out of 8008)
are non-zero.

It should be noted that the coefficients of the quadratic terms such as ω1ν1, ω2ν2, ω3ν3 dominate
other non-zero coefficients and hence, one can conclude that a linear controller is a good approxi-
mation of the nonlinear controller. For validation purposes, the feedback solution is also compared
to open-loop solution corresponding to five random conditions (other than collocation points). Table
1 shows the initial conditions and the optimal cost value corresponding to both the open loop and
closed loop solutions. It can be observed that the closed-loop cost values matches very well with
open loop cost values providing a basis of optimism in support of the proposed approach.
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Table 1. Open Loop Cost vs. Closed Loop Cost

Initial Condition(deg/s) Open Loop Cost Value Closed Loop Cost Value

[−3.5810,−0.7850, 4.1597] 5.1173 5.1178
[2.9221, 4.5951, 1.5584] 4.1755 4.1752

[−4.6410, 3.4893, 4.3373] 7.9899 7.9891
[1.7876, 2.5783, 2.4293] 2.3793 2.3792

[−1.0771, 1.5527,−3.2888] 7.9899 7.9891

Furthermore, Figures 3-7 shows the error between open-loop and closed loop solutions for opti-
mal state and control trajectories. As expected, the closed loop solution matches very well with the
open-loop solution.
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Figure 3. Error profiles between closed-loop and open-loop solution for initial condition # 1
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Figure 5. Error profiles between closed-loop and open-loop solution for initial condition # 3
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