SECProv: Trustworthy and Efficient Provenance
Management in the Cloud

Shams Zawoad, Ragib Hasan, and Kamrul Islam
Department of Computer and Information Sciences

University of Alabama at Birmingham, AL 35294, USA
szawoad42 @gmail.com, ragib@uab.edu, kamrulislamtopu @ gmail.com

Abstract—The black-box nature of clouds introduces a lack
of trusts in clouds. Since provenance can provide a complete
history of an entity, trustworthy provenance management for
data, application, or workflow can make the cloud more account-
able. Current research on cloud provenance mainly focuses on
collecting provenance records and trusting the cloud providers
in managing the provenance records. However, a dishonest cloud
provider can alter the provenance records, as the records are
stored within the control of the cloud provider. To solve this
problem, we first propose CloProv — a provenance model to
capture the complete provenance of any type of entities in the
cloud. We analyze the threats on the CloProv model considering
collusion among malicious users and dishonest cloud providers.
Based on the threat model, we propose a secure data provenance
scheme - SECProv for cloud-based, multi-user, shared data
storage systems. We integrate SECProv with the object storage
module of an open source cloud framework — OpenStack Swift
and analyze the efficiency of the proposed scheme.

I. INTRODUCTION

The rise of cloud computing has changed the way of using
computing services and resources. Today, people are enjoying
various services provided by the cloud, such as Dropbox, Office
365, Netflix, Gmail, Google Calendar, and Amazon Elastic
Compute Cloud (EC2) instances. While cloud computing is
attractive as a cost-efficient and high-performing model, the
trustworthiness and accountability of cloud infrastructures have
become a rising concern as today’s cloud infrastructures often
suffer from security issues [1], [2], [3]. Cloud computing
appears as a black-box to the end users, which is beneficial to
a cloud service provider (CSP) for management and security
purposes. Unfortunately, the black-box nature introduces the
lack of transparency for cloud providers’ activities, which
results in distrust and lack of accountability of clouds.

Since provenance information provides the complete history
of an entity, i.e., history of the ownership of an entity
and the actions performed on that entity [4], incorporating
secure provenance as a fundamental property of the cloud
can establish trust and accountability of the cloud. Secure
provenance tracking can make the cloud compliant with several
data protection laws and regulations, such as Sarbanes-Oxley
(SOX) [5], Health Insurance Portability and Accountability Act
(HIPAA) [6], and Gramm-Leach-Bliley act [7]. Provenance can
be also helpful in digital forensics investigation involving clouds
for tracking a suspect’s activities and establishing a proper chain
of custody [8]. By utilizing provenance information, scientists
can reason about the origin of data creation, evolution, and
flaws in the experiments executed on the cloud.

Past research on cloud provenance mainly focused on
modeling, collecting, and querying provenance, leaving security
unexplored [9], [10], [11]. State-of-the-art secure provenance
schemes [12], [13], [14] cannot be applied in clouds when
the CSP is dishonest. The existing works on secure cloud
provenance [15], [16] rely on the trustworthiness of CSPs
and protect provenance information from external adversaries.
However, the honesty of the CSPs cannot be guaranteed. A
CSP in its entirety or an employee of the CSP can be dishonest.
A cloud is considered as untrusted in contemporary research
works [17], [18], [19], [20], [21], [22], [23]. Since all the data
and the access histories are under the control of a CSP, a
dishonest CSP can always tamper with the provenance records.
Moreover, from the provenance data, an attacker can learn
confidential information about the data stored in the cloud.

Our Contributions. In this paper, we address the threats of
trustworthy provenance management in clouds and propose
efficient and secure provenance models while considering that
a dishonest CSP can collude with malicious users to alter the
provenance information. More specifically, the contributions
of this work are the following:

1. We present a novel provenance model — CloProv to
capture the provenance of any type of entities in clouds.
The model complies with the provenance data model (PROV-
DM) proposed by W3C [24]. We introduce the notion of
provenance block and system provenance to efficiently manage
the provenance records of an entity. The proposed model
can motivate researchers to invent secure schemes for various
representations of entities.

2. We analyze the threats on CloProv considering the CSPs as
malicious and collusion between dishonest CSPs and malicious
users. Based on this threat model, we then propose a secure
data provenance scheme — SECProv, which ensures the required
security properties. To ensure the integrity of provenance
records and chronological ordering of the provenance records,
we use the concept of secure provenance chain, introduced in
[13] and apply the aggregate signature scheme [25] to efficiently
manage the provenance chain. By securely constructing the
system provenance using accumulators and publishing the
proofs of system provenance to the Internet at the end of
every epoch, we can preserve the integrity of the provenance
even when the CSP is dishonest.

4. SECProv ensures stronger security properties than a state-of-
the-art secure provenance scheme — SProv [13]. In SProv, users

have full control over the data and provenance information
generated by the users. Whereas, in clouds, the data and the
provenance records are under the control of an untrusted CSP.
Therefore, SProv cannot guarantee all the security properties
required for a cloud-based data storage model when the CSP
is dishonest. Managing provenance records using our proposed
CloProv model and securing the provenance chain using the
aggregate signature scheme also make SECProv highly storage
efficient while incurring very modest performance overhead
compared to SProv.

5. We integrate SECProv with an open source storage frame-
work for clouds — OpenStack Swift and evaluate the perfor-
mance of the proposed scheme for various attributes of the
system. The overhead for users can be as low as 1.84% and
5.6% to add and update a file respectively, and the average
CPU overhead on cloud storage is 2.16%. We also show that
SECProv is highly storage-efficient compared to SProv.

Outline. Section II introduces the CloProv model and presents
the threat model on CloProv for data provenance. We present
the details of SECProv scheme in Section III. Section IV states
the security analysis of the SECProv. Implementation of the
proposed model and experimental evaluation are discussed in
Section V. Section VI presents the related research works. Sec-
tion VII concludes and outlines the future research directions.

II. CLOUD PROVENANCE MODEL
A. CloProv Model

In CloProv, we use the core structures of PROV-DM [24]
and introduce some new attributes to ensure the security of
the captured provenance.

e Entity (£): An entity (£) is a generic representation of
different types of elements, such as files, applications, VMs,
etc.

e Activity (AC): An activity occurs over a period of time and
acts upon or with entities, such as, modifying a file’s content.

e Agent (A): An agent is responsible for an activity taking
place on an entity. Depending on the types of the entity and
activity, an agent can be a person or a software/hardware.

e State (S): The state of an entity at a given time represents
the value of various attributes of the entity. The attributes can
vary depending on the types of entities.

e Provenance Record (PR): The state of an entity is changed
when an agent executes an activity on an entity. A provenance
record of an entity represents how the entity comes to a given
state from its previous state. According to W3C PROV-DM, a
provenance record of an entity should include information
about the entity, agent, activity, and the various relations
between these three core elements, such as, generation, usage,
communication, derivation, attribution, association, delegation,
and started time. Since the attributes of states and activities
can vary depending on the types of entities, the content of
provenance records also varies for different types of entities.

o Provenance Chain (PC): The provenance chain of an entity
is the sequence of provenance records of the entity ordered by

the time. A provenance chain presents how the entity evolves
over the time.

e Provenance Block (PB): To efficiently manage the prove-
nance chain, we introduce the notion of provenance block. A
provenance block of an entity holds the provenance records
and provenance chain information of a certain epoch. Let us
assume that PRj, PRS, ... PR} are the provenance records
generated for an entity £ in an epoch e. The provenance block
of the entity £ for the epoch e, PBg, contains the provenance
records PR§, PR, ... PR, along with their chronological
order information.

e Provenance Block Chain (PBC): The provenance block chain
of an entity £ is the time-ordered sequence of provenance
blocks PB2| PBE| ...|PB2 where the sequence of the epochs
is 0,1, ...n.

o System Provenance (SP): The system provenance of an epoch
contains information about all the provenance blocks generated
during the epoch. The system provenance for the epoch e,
SP,, contains information about the provenance blocks PB;I,
...PBg , where &, ...E,, are m different entities.

o Proof of System Provenance (PSP): For a system provenance
SP,, there is a proof PSP,, which is made publicly available
to the Internet to ensure the integrity of the system provenance.

Provenance Block PB,,”

(PR | [PRuw]

Provenance Chain

Provenance Block PBtz0 PSP,

[PRY, | [PRY] | o
Provenance Chain
7

i i

Published to
the Internet

Provenance Block PB“l Provenance Block PBtzl
PR,y PR, '3 | PR,y PRy [[SP; PSP,
Provenance Chain Provenance Chain)
Published to

l Provenance Block Chain ———p» | the Internet

Fig. 1: CloProv Model
Figure 1 represents the various components of CloProv
model. The provenance record generation process along with
securing the provenance chain and provenance block chain can
vary for different types of entities.

B. Threat Model for Data Provenance

In the data provenance domain, an entity is a document that
can be a file or a database tuple stored in the cloud. To design
the threat model, we first present the stakeholders below:

e CSP: A Cloud Service Provider (CSP) is the owner of a
public cloud infrastructure who provides data storage services.
The CSP is responsible for generating and storing all the
provenance related information. The CSP can be malicious in
its entirety or an employee of the CSP can be malicious.

e Users: Users are the agents who can access the document
hosted in clouds and have read/write access to a document.
Multiple users can have read/write access to a single document.
A user can be malicious alone or can collude with other users
and the CSP.

e Intruder: An intruder can be any malicious person including
insiders from the CSP who wants to reveal confidential
information of a document from the provenance records or to
tamper with the provenance information.

e Auditor: The role of an auditor is to verify the integrity of
the provenance information. The auditor is considered as a
trusted entity.

1) Attackers’ Capabilities: Unlike the previous works of
secure provenance in the cloud [15], [16], we do not consider
cloud providers as honest. We also consider that cloud users
can be malicious and can collude with the CSP to manipulate
the provenance information. Considering the collusion model,
attackers are capable to modify provenance records, provenance
chains, provenance blocks, and system provenance.

2) Possible Attacks: Below, we present several possible
attacks on CloProv model in the data provenance domain.

Attacks on Provenance Records and Provenance Chain.

Attackers can manipulate information of the provenance records,
such as the agent’s information, time of an activity, etc.
Attackers can also insert a fake provenance record, remove
a provenance record, and can reorder the provenance records
from a provenance chain. Additionally, all the provenance
information of one document can be tagged to another
document. The agent of the altered, fake, or deleted provenance
record can be the malicious user or other honest users who
have access to the document. A malicious user can reorder
his/her provenance records, or the provenance records of other
honest users.

Repudiation. A dishonest user can repudiate the provenance
records where he/she is the agent of the provenance record. A
malicious CSP can also repudiate a published proof of system
provenance of an epoch.

Attacks on Provenance Blocks and Block Chain. Attackers
can remove provenance blocks from the provenance block
chain. The order of the provenance blocks in the provenance
block chain can also be altered with or without manipulating
the provenance chain of the block.

Privacy Violation. A provenance record of a document
contains information about the changes to the document, which
can leak confidential information for sensitive documents.
However, an auditor needs to access the provenance records
to verify the integrity of the provenance. Hence, a malicious
entity can get access to the confidential provenance information
through unauthorized access to the verification procedure.
Additionally, since the proofs of system provenance are publicly
available on the Internet, an adversary can acquire the published
proofs and try to retrieve confidential information from the
proofs.

3) System Property: Considering the aforementioned attack
scenarios, we argue that a secure data provenance scheme
for CloProv should ensure the following integrity (I) and
confidentiality (C) properties.

I1: One or more malicious users whether acting alone or
colluding with the CSP cannot tamper with the provenance

records of the malicious user or the provenance records of the
other non-colluding honest users.

I2: One or more malicious users whether acting alone or
colluding with the CSP cannot plant a fake provenance record
in the provenance chain, where the agent in the fake provenance
record is one of the malicious user or a non-colluding honest
user.

I3: One or more malicious users whether acting alone or
colluding with the CSP cannot remove a provenance record
from the provenance chain, where the agent of the deleted
provenance record is one of the malicious user or a non-
colluding honest user.

I4: One or more malicious users whether acting alone or
colluding with the CSP cannot reorder the provenance records
in the provenance chain, where the agents in those provenance
records are the malicious users or other non-colluding honest
users

I5: Provenance records of one document cannot be claimed as
the provenance records of another document.

I6: A user cannot repudiate provenance chain information.
A CSP cannot repudiate any published proof of system
provenance.

I7: A malicious CSP cannot tamper with the order of the prove-
nance blocks or cannot remove a block from the provenance
block chain.

C1: Adversaries cannot recover any confidential information
from the provenance records, provenance chain, and published
proofs of system provenance.

III. SECPROV: A SECURE DATA PROVENANCE SCHEME
FOR CLOPROV

A. Building Blocks

Provenance Record. Considering the current state of the
document D; is S;, a provenance record PR; for the document
D, can be represented as described in Algorithm 1 using W3C
PROV Ontology [26].

Algorithm 1 Representation of a Provenance Record

1: :document_D);

2: a prov:Entity

3: prov:wasAttributedTo :U;

4: prov:wasGeneratedBy :documentWriteActivity;
5: prov:value Hash(S;)

6: ZUZ'

7: a foaf:Person, prov:Agent;

8: foaf:openid “Unique ID of U;”;

9: :documentWriteActivity
10: a prov:Activity;
11: prov:startedAtTime 7T; xsd:dateTime;
12: wasAssociatedWith :U;
13: :changelnfo
14: a prov:Entity
15: prov:value Encg, (C'S;)
16: prov:wasDerivedFrom :document_D);
17: :sessionKey
18: a prov:Entity
19: prov:value Encpg , (K;)

In Algorithm 1, Hash(S;) is a collision-resistance, one-way
hash of the current state of the document D;. U; is the identity
of the actor who is responsible for the change of state of D;
from S;_1 to S;. Enck,(CS;) denotes the encrypted C'S;
using the session key K, where C'S; describes the changes
in the document from the previous state to the current state,
such as file difference, the difference in the value of database
tuples, etc. T; is the time when the state of the document is
changed from S;_; to S;. Encpk ,(K;) is the encryption of
the session key K; using the public key of the auditor PK 4.
Aggregate Signature. Using the aggregate signature scheme,
we can create a secure provenance chain with a single data
structure. An aggregate signature scheme is a digital signature
that supports aggregation of signatures on a set of distinct
messages. Let us assume, there are n users and user U; has
private key SK; and public key PK;. A user U, signs a
message M; to generate a signature ;. The aggregate signature
algorithm merges all the signatures o; (1 < ¢ < n) and
produces a single short signature o. The aggregation procedure
can be also incremental. The verification procedure can decide
whether the aggregated signature o is valid using the public
keys of the users’ PK,, PK», ... PK,, the M distinct message
My, Ms, ... M,, and the aggregated signature o.

B. Provenance Chain Construction

In the SECProv design, the provenance chain for the
provenance records of a provenance block is represented by
the aggregated signature, . To maintain the order of the
provenance records while creating the provenance chain, we
add the most recent value of hash-chain of the provenance
records, HC, with the provenance block. We maintain the
chronological ordering of the provenance blocks of a document
by adding another item in the provenance block — a hash of
the previous block, BC'. The complete provenance block for
SECProv scheme is illustrated in Figure 2.

Provenance Block (PB,")
Block ID | Hash of Previous Block | Current Hash-Chain Value

Set of Provenance Records

Provenance Chain: Aggregate Signature 0

Fig. 2: A Provenance Block for SECProv

The chain construction scheme is a tuple of interactive
PPT algorithms ConstructChain = (Setup, InitProtocol, Prep-
ProvRecord, GenHashChain, Sign, AppendtoProvChain), such
that:

e Setup(g1, g2): Let G1 and G5 are two (multiplicative) cyclic
groups of prime order p which form the bilinear map for the
aggregate signature scheme. g; is a generator of G, gs is a
generator of G5. The setup procedure creates a public key and
private key for the users. The key generation process works as
follows: A user U; picks a random z; id Zp, and compute
v g;j. The private key of user U; is xj€Z, and the public
key of the user U; is v;eGo.

e InitProtocol : This algorithm first set up a session key K;
between a user and the CSP using the Diffie-Hellman key
exchange protocol. Additionally, if the provenance record
is the first record of the provenance block in an epoch,
it creates a new provenance block. The provenance block
can be the first provenance block for the document. In
this case, the value of BCj is set to the hash of the first
provenance record PRy of the block. If there are already one
or more provenance blocks for the document, then the value
of BC}, for the k" provenance block, P By, is generated as:
BCy < Hash(PBy_1), wherek > 1

While generating a new provenance block, the value of
current hash chain, HC, is set to the value of BC.
e PR, + PrepProvRecord(Uj, S;,CS;, K;, PKa): When the
state of a document is changed from its previous state .S;_1
to S;, this algorithm generates the provenance record PR;
according to the Algorithm 1. The confidential information is
encrypted using the session key K; and the session key K;
is encrypted using the public key of the auditor PK 4. We
assume that the public-private key pair PK 4, SK 4 are known
to all the auditors. However, to selectively disclose the records
to auditors, we can use broadcast encryption technique [27].

e HC; + GenHashChain (PR;, HC;—1) : This algorithm
generates the hash-chain of the provenance records. For a
provenance record PR;, the hash-chain HC); is generated as
follows:

HC; + Hash(PR;|HC;_1), wherei > 1 (D

The provenance block stores only the most recent value of
the hash-chain.

® o; + Sign(HC;,x;): This algorithm creates a signature of
the hash-chain value, HCj;, where user Uj is the actor in the
provenance record, PR;. To sign a message, the algorithm first
computes h; + H(HC;), where h; € G1, and o; < h*i. The
signature o; € G.
e o + AppendtoProvChain(o, o;, HCj, g2,v;): This algorithm
first verifies the signature o; on HC; using the public key v,
of the user U;. To verify, the algorithm first computes h; <
H(HC;) and accepts the signature o; if e(0;, g2) = e(h;, v;)
is true.

After the verification of the signature o;, the o; is appended
with the signature o as follows:

o4+ o X o;, wherei>1 2)

For the first provenance record of a provenance block, where
=0, 0 « oy

C. System Provenance Construction

To prepare the system provenance for an epoch, we used an
accumulator scheme — Bloom filter, which is used to check
whether an item is a member of a set or not [28]. The system
provenance construction algorithm works as follows:

e SystemProvenance < GenSystemProvBloom(Hash of all the
provenance blocks of the epoch): The algorithm generates k bit
positions for each of the input hash of provenance block by

hashing the item with k different hash functions. The calculated
k bit positions of a bit array will be set with 1. The algorithm
returns the bit array after inserting the membership information
of all the provenance blocks. The bit array is the system
provenance SP,, of an epoch, e.

Proof of System Provenance. We create a proof of the system
provenance, PS P,, for the system provenance, S P,, as follows;

PSP, =< SP.,T,, Sigsk.(SP., T,) >, 3)

Here, T}, is the time of publishing proof, Sigsx (SP.,T)p)
is the signature over (SP.,T),) using the private key of the
CSP, SK¢. The signature is included to ensure the non-
repudiation. The proofs will be published to the Internet and
can be available by RSS feed to protect it from manipulation
by the CSP after publishing the proofs. A blockchain-based
technology (commonly associated with modern cryptocurrency
[29]) can also be used to ensure the integrity of the proofs
since blockchain technology aims to provide a distributed and
unalterable ledger of information.

D. Verification

To verify the provenance of a document, an auditor is
provided with the provenance blocks generated in the epochs of
interest. The provenance records that an auditor wants to verify
can be in a single provenance block, in multiple consecutive
blocks, or in multiples dispersed blocks.

1) Block Verification: The first step of the overall verification
process is block verification. The block verification process
first runs the following VerifyProof algorithm:

Result < VerifyProof(P.SP.,PK¢): Using the public key of the
CSP, PK ¢, this algorithm verifies the signature of published
PSP,. If the signature is valid, the SF, and T, included
with the PSP, are valid and Result <+ True; otherwise,
Result + False.

If VerifyProof returns True, the block verification process
then runs the following IntegrityBloom algorithm:

e Result « IntegrityBloom (PB;,SP.): The algorithm first
generates HPB; = Hash(PB;) and then calculates the k
bit positions of the Bloom filter by hashing the H PB; with k
different hash functions. These bit positions are then compared
with the published S P.. If all the calculated bit positions are set
in the published Bloom filter S P,, Result < T'rue; otherwise,
Result < False.

2) Provenance Chain Verification: The provenance chain
verification algorithm, VerifyProvChain, verifies the chronologi-
cal ordering of the provenance records of a provenance block,
which works as follows:

e Result «+ VerifyProvChain (ProvenanceBlock, HPBprev, o,
g2):

The algorithm first retrieves n number of provenance records
PRy, ... PR, of the given provenance block. Then it verifies
the block chain using BC' If there are no previous provenance
blocks for the document, BC' should be equal to Hash(PRy),
otherwise, BC' will be equal to H PB,,;,,. If the comparison is
invalid, Result <— False, otherwise the algorithm continues.

The algorithm then creates the value of hash chain
HC,, HC,, HC,, for the provenance records
PRy, PRs,... PR, according to Equation 1 and HCj <+
BC. Later for all HC; (0 < ¢ < n), it computes

While creating the hash chain values, this algorithm traverses
all the provenance records and creates a map between the public
key of the user and the h; values where the user is the actor in
PR;. The set of h; values for user U; is denoted as .S; and the
it" value of this set is denoted as Sji, where S;; € {ho,...h,}.
Now, if m users are the actors of n provenance records in a
provenance block, where 1 < m < n, the verification result
is computed as follows:

True,
False,

e(0. 92) = [1j2, e(v;, IT:ZH Sji)
Otherwise

Result «+ { “)

Here, v; is the public key of user U; and nu; is the number
of provenance records, where U; is the actor of the provenance
records.

3) Provenance Block Chain Verification: When the prove-
nance records that need to be verified are in dispersing epochs,
an auditor can verify provenance block chain of the intermediate
epochs using the following VerifyBlockChain algorithm:

e Result «+ VerifyBlockChain (List of provenance blocks, PK¢):
This algorithm takes all the provenance blocks of a document
which are generated between the start and end epoch. For
each block, the algorithm first runs the VerifyProof and
then IntegrityBloom algorithm to ensure the integrity of the
provenance block. Then for each block, the algorithm checks,
whether the BC' value of the block is equal to the hash of its
previous block. If the chain maintains for all the blocks, we
then run the VerifyProvenanceChain algorithm for only those
blocks, which holds the provenance records to be verified.

IV. SECURITY ANALYSIS

In this section, we discuss how the SECProv scheme ensures
the security properties mentioned in the Section II-B3.

I1: If an adversary has altered a provenance record PR; to PR
of a provenance block PB;, this will change the provenance
block from PB; to PBJ’-. Algorithm IntegrityBloom can detect
that HP B} (HPBj « Hash(PB)) does not exist in the
published system provenance.

12: Let us assume that an adversary wants to add a fake
provenance record PRy between PR; and PR;; of the
provenance chain, where the adversary is the actor of PR;.
To plant PRy, the adversary runs following procedures:

e Calculate HCy < Hash(PRy|HC;) and HC], | < Hash
(PRi41|HCY)

e Sign HCy and HC}

e Since the adversary colludes with the CSP, the CSP can
append the signatures on HCy and HCj , with 0.

There can be two different scenarios:

The actor of PR;; is an honest user Up: The provenance
chain ¢ holds the signature of U, on HC),1. The aggregate

signature scheme supports that the adversary cannot forge the
aggregate signature of Uy, for message HC],, and prepare a
o', where ¢/ = o.

The actor of PR, is one of the adversaries: In this case, it
is possible for an adversary, colluding with the CSP, to build
a valid aggregate signature ¢’ and place it in a provenance
block. However, this will change the provenance block from
PB; to PB; and the IntegrityBloom algorithm can detect that
H PB} does not exist in the published system provenance.

I3: Let us assume that PR, 1, PR;, PR;; are three consec-
utive provenance records in the provenance chain and a set of
colluding adversaries removed a provenance record PR; from
the provenance chain. To hide the removal of PR; from the
auditor, adversaries run following procedures:

e Calculate HC} | +— Hash(PR;1|HC; 1)
e Sign HC} 4
e Since the adversary colludes with the CSP, the CSP can

append the signatures on HCj,, with 0.
There can be two different scenarios:

The actor of PR, 1 is an honest user Up: While generating the
provenance chain, the actual HC;; was calculated as follows
HCZ'+1 «— H(lSh(PR7,+1|HC7,) Hence, Hci+1 7£ HC7,{+1'
Moreover, according to the scheme HCj, | needs to be signed
by a user, Uy. However, it is not possible for an adversary to
forge a signature of Uy, for message HCj, ;.

The actor of PR, is one of the colluding adversaries: In this
case, an adversary can provide a valid signature on HC;_ ; and
CSP replaces o by o’. Replacing the actual o will generate a
provenance block that does not exist in the published system
provenance. Hence, an auditor can detect such removal.

14: Let us assume that PR, 1, PR;, PR;; are three consec-
utive provenance records in the provenance chain and the
adversaries changed the order to PR;, PR; 1, PR;y;. To
hide the trace of this reordering, the adversaries need to
change all the HC;_;, HC;, and HC;; and the signatures
oi—1,0;, and oi + 1. If the actors of these three provenance
records are honest, adversaries cannot forge the signatures. If
all the actors are malicious and collude with the CSP, they
can produce o,_,,0}, and ci+ 1’, which can be aggregated
to o’. However, replacing o by ¢’ in the provenance block
will produce a provenance block, which does not exist in the
system provenance. Hence, such reordering can be detected by
an auditor.

I5: The construction of provenance records (Algorithm 1)
includes the hash of current state of a document Hash(S;),
which is collision-resistant. Therefore, a provenance record of
one document cannot be claimed as the provenance record of
another document.

16: The provenance chain is constructed using the aggregate
signature scheme, which requires a user to use the secret key to
sign the hash-chain values. Therefore, a user cannot repudiate
the provenance chain information. The system provenance is
signed by the CSP using the secret key SK¢. Therefore, a
CSP cannot deny the published proof of system provenance.

17: The published proof of system provenance can protect
removal or re-ordering of provenance blocks from provenance
block chain. The provenance block chain BC' is calculated
from the hash of the previous block. Removing or reordering
of provenance blocks needs altering the value of BC'. For
example, let us assume PBy, PB;, and PB; are three
consecutive provenance blocks and the adversary changed the
order to PBy, PBy, and PB,. To alter the blocks’ order, the
block chain value of all the provenance blocks need to be
changed. In this case, BC| < Hash(First PR of PBy),
BC{, < Hash(PBy), and BCy < Hash(PBy). However,
the original values were: BCy <— Hash (First PR of PBy),
BCy < Hash(PBy), and BCy < Hash (PB;). Changing
the value of BC's will change the provenance blocks and
these modified provenance blocks do not exist in the system
provenance. Therefore, an auditor can detect any removal or
reordering of provenance blocks.

C1: SECProv encrypts confidential information with the session
key and the session key is encrypted using the public key
of the auditor. Therefore, only the auditor can retrieve the
session key and will be able to decrypt C'S. The provenance
chain is generated from the hash-chain values HC, where
the HC' values are generated using Equation 1. The one-
way property of the hash-function and the secrecy of the
user’s private key ensure that no adversary can extract any
confidential information from the provenance chain. Since
no confidential information can be leaked from provenance
records and provenance chain, an adversary cannot recover any
confidential information from the proofs of system provenance.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

Figure 3 illustrates the system design for integrating SECProv
with the Swift object storage. All the communication between
users and the Swift storage occur through a provenance gateway.
A user sends a file upload/delete request to the provenance
gateway using REST API provided by the gateway. The gateway
is comprised of following five modules:

Provenance Gateway

Provenance
Handler

Provenance
Database

Eroct Blocks

Epoch
System Provenance
“ Manager

API Request Handler
y

Message Queue

SM Thread

5
1
8
4

£

=
=

7

l Forward PUT/DELETE Request

Swift Storage

Fig. 3: Integration of SECProv with Swift Storage

API Request Handler. The API request handler receives a
file upload/delete request from users according to the specified
API and sends the request to the provenance handler. The API
complies with the existing Swift API.

Provenance Handler. The provenance handler module is
responsible for creating the provenance records and the
provenance chain according to the scheme presented in Section
1II-B.

Message Queue. The message queue is used to design
asynchronous communication between provenance handler and
system provenance manager module. After the end of an epoch,
the provenance handler sends the epoch information to the
message queue. The message is finally dispatched to a system
provenance manager upon request.

System Provenance Manager. After the end of each epoch, the
system provenance manager (SM) module creates the system
provenance and proofs of system provenance and publishes the
proofs to the Internet. All of these procedures are encapsulated
in a thread. The system provenance manager always listens

for a new message (epoch information) in the message queue.

When a new epoch information is found in the message queue,
the SM module retrieves the provenance blocks for that epoch
and prepares the system provenance and proof of provenance
according to the scheme presented in Section III-C. This
design provides the flexibility of integrating multiple system
provenance managers with a provenance handler.
Provenance Database. The provenance database is managed
by a relational database management systems (in our case,
it was MySQL) and it stores all the required information to
maintain our proposed system: provenance records, provenance
blocks, and system provenance.

1) System Configuration: We set up the OpenStack Swift
storage in an Amazon EC2 [30] m4.large instance (two Intel
Xeon processors of 2.40 GHz and 8GB RAM with 30MB
cache). We implemented the provenance gateway using JDK
1.8 and MySQL Community Server version 14.14. The API
request handler, provenance handler, Swift storage, and the
provenance database reside in the same m4.large instance.

We set up the system provenance manager in a separate
Amazon EC2 m1.medium instance (one Intel Xeon(R) CPU
of 2.40GHz and 3.7GB RAM with 12MB cache). We used
Amazon Simple Queuing Service (SQS) [31] for the message
queue, which handles the communication between the two
instances.

As a client, we used a MacBook Air having 1.7 GHz
Intel Core i5 processor and 4 GB RAM. Other than the
aggregate signature, we used RSA (2048 bit) for encryption and

signature generation and SHA-256 hash functions for hashing.

The Bloom filter was constructed with 0.01% false positive
probability for 1000 expected number of items.

B. Evaluation

Since SProv [13] is the closest to our work, we compared the
performance of SECProv with SProv. We used the same security
parameters, such as RSA (2048), SHA-256 for implementing
SProv.

“ss Epochimin <=~ Epoch4min
[}] S— Epoch2min . SProv

wl.| *—* Bloomfilter

o

50000 LT S
Duration of Epoch (Seconds)

.
v

s

i
y

% Overhead

Eyd g

101-.:. ot

Verification Time (Seconds)

0 10000 20000 30000 40000
File Size (KB)

(a) Overhead for new file upload (b) Provenance verification

Fig. 4: Performance analysis of SECProv for various duration
of an epoch

Overhead for Uploading a New File. To identify the overhead,
we first uploaded 1000 files to the Swift storage without
preserving any provenance information and measured the time
for each file. The file size was uniformly distributed between
50 KB and 50,000 KB. Then, we uploaded the files to the
Swift storage while preserving the provenance information
using SECProv and measured the time of each file. From the
difference of these two calculated times, we identified the
percentage overhead with respect to clients for uploading new
files. From Figure 4a, we notice that the overhead decreases
with the increase in file size and does not vary much with the
change of epoch-duration. The reason for such behavior is that
the required time for transferring larger files is high, which
reduces the overall overhead. The average overhead varies from
1.84% to 2.04% for the different duration of the epoch. As we
notice from Figure 4a, the overhead for using SECProv is less
than the overhead caused by SProv. The overhead for SProv
varies from 1.9% to 46.5% and the average overhead is 5.7%.

Overhead for Updating an Existing File. To measure
the performance of updating an existing file, we randomly
selected a file of size 600 KB and updated the file for 100,
500, 1000, and 2000 times for different epoch-duration. The
average overhead for each epoch-duration is approximately
5.6%. However, this overhead is slightly higher compared to
the 3.4% average overhead introduce by SProv.

Performance of Provenance Verification. One of the motiva-
tions of proposing block-wise provenance management is that
the provenance chain verification should perform better when
the provenance records are highly dispersed. The experimental
results, presented in Figure 4b, justify this assumption. To
generate the provenance information, we first updated an
existing file 2000 times by varying the duration of the epoch (10,
20, 40, 80, 160, and 320 seconds). To measure the performance
of provenance chain verification, we assume that the auditor
needs to verify the chronological order of first two provenance
records and last two provenance records, which gives us the
worst-case scenario of disperse verification. As illustrated in
Figure 4b, the verification time increases significantly with the
increase in epoch-duration.

With smaller epoch-duration, the number of provenance
records in a provenance block gets reduced. Conversely, for
longer epoch duration, the number of provenance records in
a block gets higher and can eventually turn into one single
large block with all the provenance records if the duration

of an epoch is extremely long. Therefore, for short epoch-
duration, we can run the VerifyProvenanceChain algorithm for
two small, starting and ending provenance blocks and verify
the intermediate provenance blocks using VerifyBlockChain
algorithm. Therefore, for disperse provenance chain verification,
the shorter epoch-duration performs better than longer epoch-
duration.

CPU Overhead. We measured the CPU overhead of the two
Amazon EC2 instances for different duration of the epoch. The
CPU overhead was determined from the CPU performance
information of SysBench [32].

First, we measured the CPU performance of the m4.large
instance, where the API request handler, provenance handler,
provenance database, and the swift storage were running. We
first identified the CPU information of the instance when it
did not generate any provenance record. Later, we identified
the CPU performance of the instance when it served users’
requests for updating an existing file with provenance and
calculated the overhead. In the same approach, we measured
the CPU overhead of the m1.medium instance, where the
system provenance manager module was running. We ran
the experiment for different duration of epochs to identify the
effect of epoch-duration on CPU overhead. The results for
CPU overhead are presented in Figure 5b.

As we notice from the Figure 5b, CPU overhead of the
m4.large instance does not vary significantly for different epoch
duration and the average CPU overhead is 2.16%. However,
for m1.medium instance, we notice a downward trend of CPU
overhead with the change in epoch duration. It indicates that
the CPU overhead of the m1.medium instance (running the
system provenance manager module) slowly reduces with the
increase in epoch-duration. Increasing the length of epoch-
duration reduces the required number of epochs for the same
set of files, which also reduces the number of provenance
blocks for one file. Therefore, the number of concurrent system
provenance manager threads at a certain time gets reduced with
the increase in epoch-duration, which justifies the behavior of
CPU overhead for the m1.medium instance.

The CPU overhead results also reveal that the system
provenance generation and proof publications consume high
CPU power. This behavior justifies our design of segregating the
system provenance manager module in a separate instance and
providing the flexibility of adding multiple system provenance
managers as needed.

Storage Overhead. We compared the storage overhead of
SECProv with the storage overhead of SProv scheme and the
results are illustrated in Figure 5a. To measure the storage
requirement of SECProv, we first identified the number of
blocks required to update an existing file for 100, 500, 1000,
and 2000 times. For each block, the required storage for
SECProv is 3004.75 bytes (size of one epoch, one block, and
system provenance are 46 bytes, 399 bytes, and 2559.75 bytes
respectively). Whereas in SProv, we need to add a signature of
344 bytes (for RSA 2048) with each of the provenance records,
which is not needed in SECProv. As we notice from Figure

»

)

n

s 3
8 8
»

_

»
S
[N

N
3

o

100 500 1000 2000
Number of Operations

N Epoch 1 min

I Epoch 2 min

=)

1 min 2 min 4 min

Epoch Duration
‘I:I m1.medium | m4.|arge|

Ratio of Storage Overhead SProv/SECProv
3
% Overhead
w

N Epoch 4 min

(a) Comparison of storage (b) CPU overhead of the two Ama-
overhead between SECProv and zon EC2 instances
SProv[13]

Fig. 5: CPU and storage overhead analysis

5a, SECProv gets more storage-efficient with the increase in
epoch-duration for the same number of update operations.

VI. RELATED WORKS

Hasan ef al. first introduced secure data provenance [33] and
later they proposed a secure data provenance scheme — SProv
[13]. They proposed an efficient architecture for capturing
provenance information from the application layer. SProv uses
an incremental chained signature technique, which can be used
by the auditors to verify the integrity. It also ensures that only
the authorized auditors can read a provenance record from
the chain. The end-to-end provenance system (EEPS) [14]
ensures the trustworthiness of the provenance by using trusted
provenance monitor. To ensure the trustworthiness of system
provenance, Bates et al. propose Linux provenance module
(LPM) built on top of Linux security modules [12]. These works
also do not consider the cloud-base storage while designing the
solution. Zhou et al. proposed secure network provenance (SNP)
[34] for securely constructing network provenance graphs in
untrusted environments with Byzantine faults. One of the major
assumptions of this work is that the system answer provenance
queries observable by at least one correct node. This assumption
does not comply with the threat model considered in this paper,
when the CSP is dishonest.

Provenance for cloud computing is first proposed by
Muniswamy-Reddy er al. [9]. The same research group
proposed a solution for gathering provenance data from Xen
Hypervisor [35]. However, none of the works mentioned above
address secure provenance for the cloud where the provenance
records are under the control of malicious CSPs. Lu et al. first
introduced the concept of secure provenance in the cloud [16].
Their scheme provides the provenance of data ownership and
process history. The two important stakeholders in the scheme
are a trusted system manager (SM) and a trusted CSP. However,
a trusted third party, in this case, the SM increases the attack
surface and introduces a single point of failure. Moreover,
due to the insider attack from a malicious employee, or for
incentives, the CSP can also be malicious.

Researchers have proposed various aggregate signature
schemes to ensure data integrity [36], [25], [37], [38], [39].
Most of these models depend on user-to-user communication
or need TTP. The aggregate signature scheme that we use in

our work is proposed by Boneh et al. [25], which does not
require user-to-user communication and any TTP. Therefore,
we find this scheme best suited to design SECProv.

VII. CONCLUSIONS AND FUTURE WORKS

Ensuring the trustworthiness of provenance in clouds is
challenging because of the possibility of the cloud providers
being malicious and colluding with other stakeholders. In
this paper, we propose a cloud provenance model CloProv to
represent the complete provenance of clouds. Using CloProv,
we propose SECProv — a secure provenance scheme for a
multi-users, shared, cloud-based data storage system consid-
ering the collusion between users and cloud providers. The
proposed scheme can ensure the required security properties
of trustworthy provenance management in a strong adversarial
scenario. We integrated SECProv with OpenStack Swift storage
and present the efficiency of the scheme. Integrating such a
scheme can make clouds more accountable and can attract
customers from the business, healthcare, and other sectors that
are reluctant in moving towards clouds for trust issue.

In this work, we integrated SECProv with OpenStack Swift
storage. In future, we plan to incorporate SECProv with SQL
interfaces and more complex, distributed data management
systems, such as DataFlow. The proposed CloProv is an abstract
model to represent provenance in the cloud, which we use to
propose a concrete scheme for a shared data storage model. In
the future, we plan to use the CloProv model to develop secure
provenance schemes for other domains, such as provenance
for the state of VMs, and location of data stored in clouds.

ACKNOWLEDGEMENTS

This research was supported by the National Science
Foundation CAREER Award CNS-1351038, ACI-1642078,
and DGE-1723768.

REFERENCES

[1] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A
security analysis of amazon’s elastic compute cloud service,” in The 27th
ACM SAC, 2012, pp. 1427-1434.

J. Brodkin, “Gartner: Seven cloud-computing security risks,” Infoworld,
pp- 1-3, 2008.

B. R. Kandukuri, V. R. Paturi, and A. Rakshit, “Cloud security issues,”
in IEEE SCC’09., 2009, pp. 517-520.

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The open provenance
model core specification (v1. 1),” Future Generation Computer Systems,
vol. 27, no. 6, pp. 743-756, 2011.

Congress of the United States, “Sarbanes-Oxley Act,” http://thomas.loc.
gov, 2002, [Accessed July 5th, 2016].

Centers for Medicare and Medicaid Services, “The health insurance
portability and accountability act of 1996 (hipaa),” http://www.cms.hhs.
gov/hipaa/, 1996, [Accessed July Sth, 2016].

Congress of the United States, “Gramm-leach-bliley financial services
mod-ernization act. public law no. 106-102, 113 stat. 1338,” 1999.

Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM Sigmod Record, vol. 34, no. 3, pp. 31-36, 2005.
K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Making a cloud
provenance-aware,” in the Ist USENIX TaPP, 2009.

——, “Provenance for the cloud,” in The 8th USENIX FAST, 2010, pp.
15-14.

K. Muniswamy-Reddy and M. Seltzer, “Provenance as first class cloud
data,” ACM SIGOPS Operating Systems Review, vol. 43, no. 4, pp. 11-16,
2010.

[2]
[3]
[4]

[5

[6

=

[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]
(27]
(28]
[29]
(30]
[31]
(32]
[33]
[34]
[35]

[36]

(37]

(38]

[39]

A. Bates, D. Tian, K. Butler, and T. Moyer, “Trustworthy whole-system
provenance for the linux kernel,” in the 24th USENIX Security Symposium,
2015.

R. Hasan, R. Sion, and M. Winslett, “The case of the fake Picasso:
Preventing history forgery with secure provenance,” in the 7th USENIX
FAST, 2009, pp. 1-12.

P. McDaniel, K. R. Butler, S. E. McLaughlin, R. Sion, E. Zadok, and
M. Winslett, “Towards a secure and efficient system for end-to-end
provenance.” in TaPP, 2010.

A. Bates, B. Mood, M. Valafar, and K. Butler, “Towards secure
provenance-based access control in cloud environments,” in the 3rd
ACM CODASPY, 2013.

R. Lu, X. Lin, X. Liang, and X. Shen, “Secure provenance: The essential
of bread and butter of data forensics in cloud computing,” in the 5th
ACM ASIACCS, 2010, pp. 282-292.

X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for secure
outsourcing of modular exponentiations,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 9, pp. 2386-2396, 2014.

C. Erway, A. Kiipcii, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in the 16th ACM CCS, 2009, pp. 213-222.
X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix
inversion computation to a public cloud,” IEEE Transactions on Cloud
Computing, vol. 1, no. 1, pp. 1-1, 2013.

K. Y. Oktay, M. Gomathisankaran, M. Kantarcioglu, S. Mehrotra, and
A. Singhal, “Towards data confidentiality and a vulnerability analysis
framework for cloud computing,” in Secure Cloud Computing. Springer,
2014, pp. 213-238.

Z. Xu, C. Wang, K. Ren, L. Wang, and B. Zhang, “Proof-carrying cloud
computation: The case of convex optimization,” IEEE Transactions on
Information Forensics and Security, vol. 9, no. 11, pp. 1790-1803, 2014.
S. Zawoad, A. K. Dutta, and R. Hasan, “SecLaaS: Secure logging-as-a-
service for cloud forensics,” in the 8th ACM ASIACCS, 2013.

S. Zawoad, R. Hasan, and J. W. Grimes, “Lincs: Towards building
a trustworthy litigation hold enabled cloud storage system,” Digital
Investigation, vol. 14, pp. S55-S67, 2015.

“Prov-dm: The prov data model,” https://www.w3.0org/TR/2013/
REC-prov-dm-20130430/, 2013, [Accessed July 14th, 2016].

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably
encrypted signatures from bilinear maps,” in Advances in cryptology,
EUROCRYPT 2003. Springer, 2003, pp. 416-432.

“Prov-o: The prov ontology,” https://www.w3.org/TR/2013/
REC-prov-0-20130430/, 2013, [Accessed July 14th, 2016].

A. Fiat and M. Naor, “Broadcast encryption,” in Advances in Cryptology,
CRYPTO93. Springer, 1994, pp. 480—491.

B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422426, 1970.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
[Accessed July 14th, 2016].

Amazon EC2, “Amazon elastic compute cloud (amazon ec2),” http:
/laws.amazon.com/ec2/, [Accessed July Sth, 2016].

Amazon, “Amazon simple queue service (amazon sqs),” http://aws.
amazon.com/sqs/, [Accessed August 5th, 2016].

SysBench, “Sysbench: a system performance benchmark,” http://sysbench.
sourceforge.net/, [Accessed July 14th, 2016].

R. Hasan, R. Sion, and M. Winslett, “Introducing secure provenance:
problems and challenges,” in ACM StorageSS '07, 2007, pp. 13-18.
W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure network provenance,” in the 23rd ACM SOSP, 2011, pp. 295-310.
M. Seltzer, P. Macko, and M. Chiarini, “Collecting provenance via the
xen hypervisor,” in the 3rd USENIX TaPP, 2011.

A. Bagherzandi and S. Jarecki, “Identity-based aggregate and multi-
signature schemes based on rsa,” in Public Key Cryptography—PKC 2010.
Springer, 2010, pp. 480—498.

C. Gentry and Z. Ramzan, “Identity-based aggregate signatures,” in
Public Key Cryptography-PKC 2006. Springer, 2006, pp. 257-273.

S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential
aggregate signatures and multisignatures without random oracles,” in
Advances in Cryptology-EUROCRYPT 2006. Springer, 2006, pp. 465—
485.

A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, “Sequential
aggregate signatures from trapdoor permutations,” in Advances in

Cryptology-Eurocrypt 2004. Springer, 2004, pp. 74-90.

