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Abstract—The black-box nature of clouds introduces a lack
of trusts in clouds. Since provenance can provide a complete
history of an entity, trustworthy provenance management for
data, application, or workflow can make the cloud more account-
able. Current research on cloud provenance mainly focuses on
collecting provenance records and trusting the cloud providers
in managing the provenance records. However, a dishonest cloud
provider can alter the provenance records, as the records are
stored within the control of the cloud provider. To solve this
problem, we first propose CloProv – a provenance model to
capture the complete provenance of any type of entities in the
cloud. We analyze the threats on the CloProv model considering
collusion among malicious users and dishonest cloud providers.
Based on the threat model, we propose a secure data provenance
scheme – SECProv for cloud-based, multi-user, shared data
storage systems. We integrate SECProv with the object storage
module of an open source cloud framework – OpenStack Swift
and analyze the efficiency of the proposed scheme.

I. INTRODUCTION

The rise of cloud computing has changed the way of using

computing services and resources. Today, people are enjoying

various services provided by the cloud, such as Dropbox, Office

365, Netflix, Gmail, Google Calendar, and Amazon Elastic

Compute Cloud (EC2) instances. While cloud computing is

attractive as a cost-efficient and high-performing model, the

trustworthiness and accountability of cloud infrastructures have

become a rising concern as today’s cloud infrastructures often

suffer from security issues [1], [2], [3]. Cloud computing

appears as a black-box to the end users, which is beneficial to

a cloud service provider (CSP) for management and security

purposes. Unfortunately, the black-box nature introduces the

lack of transparency for cloud providers’ activities, which

results in distrust and lack of accountability of clouds.

Since provenance information provides the complete history

of an entity, i.e., history of the ownership of an entity

and the actions performed on that entity [4], incorporating

secure provenance as a fundamental property of the cloud

can establish trust and accountability of the cloud. Secure

provenance tracking can make the cloud compliant with several

data protection laws and regulations, such as Sarbanes-Oxley

(SOX) [5], Health Insurance Portability and Accountability Act

(HIPAA) [6], and Gramm-Leach-Bliley act [7]. Provenance can

be also helpful in digital forensics investigation involving clouds

for tracking a suspect’s activities and establishing a proper chain

of custody [8]. By utilizing provenance information, scientists

can reason about the origin of data creation, evolution, and

flaws in the experiments executed on the cloud.

Past research on cloud provenance mainly focused on

modeling, collecting, and querying provenance, leaving security

unexplored [9], [10], [11]. State-of-the-art secure provenance

schemes [12], [13], [14] cannot be applied in clouds when

the CSP is dishonest. The existing works on secure cloud

provenance [15], [16] rely on the trustworthiness of CSPs

and protect provenance information from external adversaries.

However, the honesty of the CSPs cannot be guaranteed. A

CSP in its entirety or an employee of the CSP can be dishonest.

A cloud is considered as untrusted in contemporary research

works [17], [18], [19], [20], [21], [22], [23]. Since all the data

and the access histories are under the control of a CSP, a

dishonest CSP can always tamper with the provenance records.

Moreover, from the provenance data, an attacker can learn

confidential information about the data stored in the cloud.

Our Contributions. In this paper, we address the threats of

trustworthy provenance management in clouds and propose

efficient and secure provenance models while considering that

a dishonest CSP can collude with malicious users to alter the

provenance information. More specifically, the contributions

of this work are the following:

1. We present a novel provenance model – CloProv to

capture the provenance of any type of entities in clouds.

The model complies with the provenance data model (PROV-

DM) proposed by W3C [24]. We introduce the notion of

provenance block and system provenance to efficiently manage

the provenance records of an entity. The proposed model

can motivate researchers to invent secure schemes for various

representations of entities.

2. We analyze the threats on CloProv considering the CSPs as

malicious and collusion between dishonest CSPs and malicious

users. Based on this threat model, we then propose a secure

data provenance scheme – SECProv, which ensures the required

security properties. To ensure the integrity of provenance

records and chronological ordering of the provenance records,

we use the concept of secure provenance chain, introduced in

[13] and apply the aggregate signature scheme [25] to efficiently

manage the provenance chain. By securely constructing the

system provenance using accumulators and publishing the

proofs of system provenance to the Internet at the end of

every epoch, we can preserve the integrity of the provenance

even when the CSP is dishonest.

4. SECProv ensures stronger security properties than a state-of-

the-art secure provenance scheme – SProv [13]. In SProv, users





• Intruder: An intruder can be any malicious person including

insiders from the CSP who wants to reveal confidential

information of a document from the provenance records or to

tamper with the provenance information.

• Auditor: The role of an auditor is to verify the integrity of

the provenance information. The auditor is considered as a

trusted entity.

1) Attackers’ Capabilities: Unlike the previous works of

secure provenance in the cloud [15], [16], we do not consider

cloud providers as honest. We also consider that cloud users

can be malicious and can collude with the CSP to manipulate

the provenance information. Considering the collusion model,

attackers are capable to modify provenance records, provenance

chains, provenance blocks, and system provenance.

2) Possible Attacks: Below, we present several possible

attacks on CloProv model in the data provenance domain.

Attacks on Provenance Records and Provenance Chain.

Attackers can manipulate information of the provenance records,

such as the agent’s information, time of an activity, etc.

Attackers can also insert a fake provenance record, remove

a provenance record, and can reorder the provenance records

from a provenance chain. Additionally, all the provenance

information of one document can be tagged to another

document. The agent of the altered, fake, or deleted provenance

record can be the malicious user or other honest users who

have access to the document. A malicious user can reorder

his/her provenance records, or the provenance records of other

honest users.

Repudiation. A dishonest user can repudiate the provenance

records where he/she is the agent of the provenance record. A

malicious CSP can also repudiate a published proof of system

provenance of an epoch.

Attacks on Provenance Blocks and Block Chain. Attackers

can remove provenance blocks from the provenance block

chain. The order of the provenance blocks in the provenance

block chain can also be altered with or without manipulating

the provenance chain of the block.

Privacy Violation. A provenance record of a document

contains information about the changes to the document, which

can leak confidential information for sensitive documents.

However, an auditor needs to access the provenance records

to verify the integrity of the provenance. Hence, a malicious

entity can get access to the confidential provenance information

through unauthorized access to the verification procedure.

Additionally, since the proofs of system provenance are publicly

available on the Internet, an adversary can acquire the published

proofs and try to retrieve confidential information from the

proofs.

3) System Property: Considering the aforementioned attack

scenarios, we argue that a secure data provenance scheme

for CloProv should ensure the following integrity (I) and

confidentiality (C) properties.

I1: One or more malicious users whether acting alone or

colluding with the CSP cannot tamper with the provenance

records of the malicious user or the provenance records of the

other non-colluding honest users.

I2: One or more malicious users whether acting alone or

colluding with the CSP cannot plant a fake provenance record

in the provenance chain, where the agent in the fake provenance

record is one of the malicious user or a non-colluding honest

user.

I3: One or more malicious users whether acting alone or

colluding with the CSP cannot remove a provenance record

from the provenance chain, where the agent of the deleted

provenance record is one of the malicious user or a non-

colluding honest user.

I4: One or more malicious users whether acting alone or

colluding with the CSP cannot reorder the provenance records

in the provenance chain, where the agents in those provenance

records are the malicious users or other non-colluding honest

users

I5: Provenance records of one document cannot be claimed as

the provenance records of another document.

I6: A user cannot repudiate provenance chain information.

A CSP cannot repudiate any published proof of system

provenance.

I7: A malicious CSP cannot tamper with the order of the prove-

nance blocks or cannot remove a block from the provenance

block chain.

C1: Adversaries cannot recover any confidential information

from the provenance records, provenance chain, and published

proofs of system provenance.

III. SECPROV: A SECURE DATA PROVENANCE SCHEME

FOR CLOPROV

A. Building Blocks

Provenance Record. Considering the current state of the

document Di is Si, a provenance record PRi for the document

Di can be represented as described in Algorithm 1 using W3C

PROV Ontology [26].

Algorithm 1 Representation of a Provenance Record

1: :document Di

2: a prov:Entity
3: prov:wasAttributedTo :Ui

4: prov:wasGeneratedBy :documentWriteActivity;
5: prov:value Hash(Si)
6: :Ui

7: a foaf:Person, prov:Agent;
8: foaf:openid ”Unique ID of Ui”;
9: :documentWriteActivity

10: a prov:Activity;
11: prov:startedAtTime Ti xsd:dateTime;
12: wasAssociatedWith :Ui

13: :changeInfo
14: a prov:Entity
15: prov:value EncKi

(CSi)
16: prov:wasDerivedFrom :document Di

17: :sessionKey
18: a prov:Entity
19: prov:value EncPKA

(Ki)



In Algorithm 1, Hash(Si) is a collision-resistance, one-way

hash of the current state of the document Di. Ui is the identity

of the actor who is responsible for the change of state of Di

from Si�1 to Si. EncKi
(CSi) denotes the encrypted CSi

using the session key Ki, where CSi describes the changes

in the document from the previous state to the current state,

such as file difference, the difference in the value of database

tuples, etc. Ti is the time when the state of the document is

changed from Si�1 to Si. EncPKA
(Ki) is the encryption of

the session key Ki using the public key of the auditor PKA.

Aggregate Signature. Using the aggregate signature scheme,

we can create a secure provenance chain with a single data

structure. An aggregate signature scheme is a digital signature

that supports aggregation of signatures on a set of distinct

messages. Let us assume, there are n users and user Ui has

private key SKi and public key PKi. A user Ui signs a

message Mi to generate a signature �i. The aggregate signature

algorithm merges all the signatures �i (1 ≤ i ≤ n) and

produces a single short signature �. The aggregation procedure

can be also incremental. The verification procedure can decide

whether the aggregated signature � is valid using the public

keys of the users’ PK1, PK2, . . .PKn, the M distinct message

M1, M2, . . .Mn, and the aggregated signature �.

B. Provenance Chain Construction

In the SECProv design, the provenance chain for the

provenance records of a provenance block is represented by

the aggregated signature, �. To maintain the order of the

provenance records while creating the provenance chain, we

add the most recent value of hash-chain of the provenance

records, HC, with the provenance block. We maintain the

chronological ordering of the provenance blocks of a document

by adding another item in the provenance block – a hash of

the previous block, BC. The complete provenance block for

SECProv scheme is illustrated in Figure 2.
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0 PRε
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1 PRε
0

n1. . .

Provenance Chain: Aggregate Signature σ

Provenance Block (PBε
0)

Current Hash-Chain ValueHash of Previous BlockBlock ID

Set of Provenance Records

Fig. 2: A Provenance Block for SECProv

The chain construction scheme is a tuple of interactive

PPT algorithms ConstructChain = (Setup, InitProtocol, Prep-

ProvRecord, GenHashChain, Sign, AppendtoProvChain), such

that:

• Setup(g1, g2): Let G1 and G2 are two (multiplicative) cyclic

groups of prime order p which form the bilinear map for the

aggregate signature scheme. g1 is a generator of G1, g2 is a

generator of G2. The setup procedure creates a public key and

private key for the users. The key generation process works as

follows: A user Uj picks a random xj
R
←− Zp, and compute

vj ← g
xj

2 . The private key of user Uj is xj✏Zp and the public

key of the user Uj is vj✏G2.

• InitProtocol : This algorithm first set up a session key Ki

between a user and the CSP using the Diffie-Hellman key

exchange protocol. Additionally, if the provenance record

is the first record of the provenance block in an epoch,

it creates a new provenance block. The provenance block

can be the first provenance block for the document. In

this case, the value of BC0 is set to the hash of the first

provenance record PR0 of the block. If there are already one

or more provenance blocks for the document, then the value

of BCk for the kth provenance block, PBk, is generated as:

BCk ← Hash(PBk�1), where k ≥ 1
While generating a new provenance block, the value of

current hash chain, HC, is set to the value of BC.

• PRi ← PrepProvRecord(Uj , Si, CSi,Ki, PKA): When the

state of a document is changed from its previous state Si�1

to Si, this algorithm generates the provenance record PRi

according to the Algorithm 1. The confidential information is

encrypted using the session key Ki and the session key Ki

is encrypted using the public key of the auditor PKA. We

assume that the public-private key pair PKA, SKA are known

to all the auditors. However, to selectively disclose the records

to auditors, we can use broadcast encryption technique [27].

• HCi ← GenHashChain (PRi, HCi−1) : This algorithm

generates the hash-chain of the provenance records. For a

provenance record PRi, the hash-chain HCi is generated as

follows:

HCi ← Hash(PRi|HCi�1), where i ≥ 1 (1)

The provenance block stores only the most recent value of

the hash-chain.

• σi ← Sign(HCi, xj): This algorithm creates a signature of

the hash-chain value, HCi, where user Uj is the actor in the

provenance record, PRi. To sign a message, the algorithm first

computes hi ← H(HCi), where hi ✏ G1, and �i ← hxj . The

signature �i ✏ G1.

• σ ← AppendtoProvChain(σ,σi, HCi, g2, vj): This algorithm

first verifies the signature �i on HCi using the public key vj
of the user Uj . To verify, the algorithm first computes hi ←

H(HCi) and accepts the signature �i if e(�i, g2) = e(hi, vj)
is true.

After the verification of the signature �i, the �i is appended

with the signature � as follows:

� ← � × �i, where i ≥ 1 (2)

For the first provenance record of a provenance block, where

i=0, � ← �i

C. System Provenance Construction

To prepare the system provenance for an epoch, we used an

accumulator scheme – Bloom filter, which is used to check

whether an item is a member of a set or not [28]. The system

provenance construction algorithm works as follows:

• SystemProvenance ← GenSystemProvBloom(Hash of all the

provenance blocks of the epoch): The algorithm generates k bit

positions for each of the input hash of provenance block by



hashing the item with k different hash functions. The calculated

k bit positions of a bit array will be set with 1. The algorithm

returns the bit array after inserting the membership information

of all the provenance blocks. The bit array is the system

provenance SPe, of an epoch, e.

Proof of System Provenance. We create a proof of the system

provenance, PSPe, for the system provenance, SPe, as follows;

PSPe =< SPe, Tp, SigSKC
(SPe, Tp) >, (3)

Here, Tp is the time of publishing proof, SigSKC
(SPe, Tp)

is the signature over (SPe, Tp) using the private key of the

CSP, SKC . The signature is included to ensure the non-

repudiation. The proofs will be published to the Internet and

can be available by RSS feed to protect it from manipulation

by the CSP after publishing the proofs. A blockchain-based

technology (commonly associated with modern cryptocurrency

[29]) can also be used to ensure the integrity of the proofs

since blockchain technology aims to provide a distributed and

unalterable ledger of information.

D. Verification

To verify the provenance of a document, an auditor is

provided with the provenance blocks generated in the epochs of

interest. The provenance records that an auditor wants to verify

can be in a single provenance block, in multiple consecutive

blocks, or in multiples dispersed blocks.

1) Block Verification: The first step of the overall verification

process is block verification. The block verification process

first runs the following VerifyProof algorithm:

Result ← VerifyProof(PSPe,PKC ): Using the public key of the

CSP, PKC , this algorithm verifies the signature of published

PSPe. If the signature is valid, the SPe and Tp included

with the PSPe are valid and Result ← True; otherwise,

Result ← False.

If VerifyProof returns True, the block verification process

then runs the following IntegrityBloom algorithm:

• Result ← IntegrityBloom (PBi,SPe): The algorithm first

generates HPBi = Hash(PBi) and then calculates the k

bit positions of the Bloom filter by hashing the HPBi with k

different hash functions. These bit positions are then compared

with the published SPe. If all the calculated bit positions are set

in the published Bloom filter SPe, Result ← True; otherwise,

Result ← False.

2) Provenance Chain Verification: The provenance chain

verification algorithm, VerifyProvChain, verifies the chronologi-

cal ordering of the provenance records of a provenance block,

which works as follows:

• Result ← VerifyProvChain (ProvenanceBlock, HPBprev, σ,

g2):

The algorithm first retrieves n number of provenance records

PR0, . . . PRn of the given provenance block. Then it verifies

the block chain using BC. If there are no previous provenance

blocks for the document, BC should be equal to Hash(PR0),
otherwise, BC will be equal to HPBprev . If the comparison is

invalid, Result ← False, otherwise the algorithm continues.

The algorithm then creates the value of hash chain

HC1, HC2, . . . HCn for the provenance records

PR1, PR2, . . . PRn according to Equation 1 and HC0 ←

BC. Later for all HCi (0 ≤ i ≤ n), it computes

hi ← H(HCi).
While creating the hash chain values, this algorithm traverses

all the provenance records and creates a map between the public

key of the user and the hi values where the user is the actor in

PRi. The set of hi values for user Uj is denoted as Sj and the

ith value of this set is denoted as Sji, where Sji ✏ {h0, . . . hn}.

Now, if m users are the actors of n provenance records in a

provenance block, where 1 ≤ m ≤ n, the verification result

is computed as follows:

Result ←

(

True, e(�, g2) =
Qm

j=1
e(vj ,

Qnuj

i=1
Sji)

False, Otherwise
(4)

Here, vj is the public key of user Uj and nuj is the number

of provenance records, where Uj is the actor of the provenance

records.

3) Provenance Block Chain Verification: When the prove-

nance records that need to be verified are in dispersing epochs,

an auditor can verify provenance block chain of the intermediate

epochs using the following VerifyBlockChain algorithm:

• Result ← VerifyBlockChain (List of provenance blocks, PKC ):

This algorithm takes all the provenance blocks of a document

which are generated between the start and end epoch. For

each block, the algorithm first runs the VerifyProof and

then IntegrityBloom algorithm to ensure the integrity of the

provenance block. Then for each block, the algorithm checks,

whether the BC value of the block is equal to the hash of its

previous block. If the chain maintains for all the blocks, we

then run the VerifyProvenanceChain algorithm for only those

blocks, which holds the provenance records to be verified.

IV. SECURITY ANALYSIS

In this section, we discuss how the SECProv scheme ensures

the security properties mentioned in the Section II-B3.

I1: If an adversary has altered a provenance record PRi to PR0

i

of a provenance block PBj , this will change the provenance

block from PBj to PB0

j . Algorithm IntegrityBloom can detect

that HPB0

j (HPB0

j ← Hash(PB0

j)) does not exist in the

published system provenance.

I2: Let us assume that an adversary wants to add a fake

provenance record PRf between PRi and PRi+1 of the

provenance chain, where the adversary is the actor of PRf .

To plant PRf , the adversary runs following procedures:

• Calculate HCf ← Hash(PRf |HCi) and HC 0

i+1 ← Hash

(PRi+1|HCf )

• Sign HCf and HC 0

i+1

• Since the adversary colludes with the CSP, the CSP can

append the signatures on HCf and HC 0

i+1 with �.

There can be two different scenarios:

The actor of PRi+1 is an honest user Uh: The provenance

chain � holds the signature of Uh on HCi+1. The aggregate









our work is proposed by Boneh et al. [25], which does not

require user-to-user communication and any TTP. Therefore,

we find this scheme best suited to design SECProv.

VII. CONCLUSIONS AND FUTURE WORKS

Ensuring the trustworthiness of provenance in clouds is

challenging because of the possibility of the cloud providers

being malicious and colluding with other stakeholders. In

this paper, we propose a cloud provenance model CloProv to

represent the complete provenance of clouds. Using CloProv,

we propose SECProv – a secure provenance scheme for a

multi-users, shared, cloud-based data storage system consid-

ering the collusion between users and cloud providers. The

proposed scheme can ensure the required security properties

of trustworthy provenance management in a strong adversarial

scenario. We integrated SECProv with OpenStack Swift storage

and present the efficiency of the scheme. Integrating such a

scheme can make clouds more accountable and can attract

customers from the business, healthcare, and other sectors that

are reluctant in moving towards clouds for trust issue.

In this work, we integrated SECProv with OpenStack Swift

storage. In future, we plan to incorporate SECProv with SQL

interfaces and more complex, distributed data management

systems, such as DataFlow. The proposed CloProv is an abstract

model to represent provenance in the cloud, which we use to

propose a concrete scheme for a shared data storage model. In

the future, we plan to use the CloProv model to develop secure

provenance schemes for other domains, such as provenance

for the state of VMs, and location of data stored in clouds.
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