Strategy Representation and Compression for Influence Diagrams

Jinchuan Shi and Eric A. Hansen
Dept. of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762
jinchuanshi86 @ gmail.com, hansen @cse.msstate.edu

Abstract

Influence diagrams are graphical models used to represent
and solve decision-making problems under uncertainty. The
solution of an influence diagram, a strategy, is traditionally
represented by tables that map histories to actions; it can also
be represented by an equivalent strategy tree. We show how
to compress a strategy tree into an equivalent and more com-
pact strategy graph, making strategies easier to interpret and
understand. We also show how to compress a strategy graph
further in exchange for bounded-error approximation.

Introduction

An influence diagram (Howard and Matheson 1981; Jensen
and Nielsen 2011) is a compact graphical representation of
a decision problem under uncertainty that shows the de-
pendencies among problem variables more clearly than an
equivalent decision tree. While the size of a decision tree
grows exponentially in the number of variables of the prob-
lem, the size of an influence diagram increases no more than
quadratically in the number of variables.

Although an influence diagram (ID) provides a compact
representation of a decision problem, it does not provide a
similarly compact representation of a solution, called a strat-
egy. The traditional representation of a strategy is a mapping
from histories to decisions, where a history is an instantia-
tion of decision and observation variables; the mapping is
stored in a table, with one table for each decision variable.
A drawback is that the size of these tables grows exponen-
tially in the number of decision and observation variables,
which reflects the no-forgetting property of IDs.

It is also possible to represent a strategy as a tree, called
a strategy tree. This representation has a long history that
dates back to methods for solving an ID by unfolding it into
an equivalent decision tree: a strategy tree is a subtree of the
decision tree that only includes the best action for each de-
cision node. Compared to representing a strategy by tables,
a strategy tree can make it easier to understand and explain
a strategy, which is especially important in domains such as
medical decision making (Segal and Shahar 2009; Luque,
Dez, and Disdier 2016). It is also possible to compress a
strategy tree by only including branches that are reachable
with positive probability, and by eliminating nodes that are
not relevant given the values of ancestors of the node in the
strategy tree (Luque, Arias, and Diez 2017).

In this paper, we consider a complementary approach to
strategy compression that leverages the fact that a strategy
tree that contains repeated subtrees can be represented more
compactly — typically, much more compactly — by an equiv-
alent graph, which we call a strategy graph. Representing a
strategy as a graph has the advantage that it makes the strat-
egy much easier to understand and analyze, which can help
make IDs more accessible and useful in practice.

We introduced the concept of a strategy graph in a recent
paper that proposed using techniques for solving partially
observable Markov decision processes (POMDPs) to im-
prove the scalability of algorithms for solving IDs (Hansen,
Shi, and Khaled 2016). The concept of a strategy graph was
inspired by the concept of a policy graph as a representa-
tion of a policy for a POMDP (Kaelbling, Littman, and Cas-
sandra 1998). Our earlier paper focused on POMDP tech-
niques for solving IDs, however, and did not describe how
to modify a traditional algorithm for solving IDs so that it
constructs a strategy graph. In this paper, we generalize the
concept of a strategy graph in a way that better fits IDs,
and describe in detail how a traditional algorithm for solv-
ing IDs — we consider variable elimination — can construct
a solution that takes the more compact form of a strategy
graph. We also propose an approach to approximation that
allows further compression of a strategy graph in exchange
for bounded-error approximation. Although adoption of this
representation of a strategy does not speed up algorithms for
solving IDs, it can make the solution constructed by these
algorithms easier to interpret and understand.

Background

In describing IDs, we adopt the following notation. Variables
are denoted by capital letters, sometimes followed by a sub-
script, e.g., X;. Values taken by variables are represented by
a lower-case letter, e.g., z; is a value of X;. Sets of vari-
ables { X1, ..., X, } are represented by a bold capital letter,
e.g., X. Configurations of X, where each variable X; takes
on a value x;, are represented by a lower-case bold letter,
such as x. We assume that all variables have a finite state
space, where sp(X) denotes the set of possible values of a
variable X. By extension, for a set of variables X, we have
sp(X) = [I,ex sp(X), which is the Cartesian product of
the individual state spaces.

Influence diagrams

An ID is defined on a directed acyclic graph with three
kinds of nodes, as illustrated by the example in Figure 4.
Chance nodes, drawn as circles, represent random (or
chance) variables, C = {C4,...,C,,}, as in a Bayesian
network. Decision nodes, drawn as rectangles, represent de-
cision variables, D = {D,..., D,}. Value nodes, V. =
{Vi,..., Vq}, drawn as diamonds, represent the preferences
of the decision maker, and have no children.

Each chance variable C; € C is associated with a condi-
tional probability distribution, P(C;|pa(C;)), where pa(C;)
denotes the set of parent variables of C; in the graph. Each
value node V; € V is associated with a utility function
U;(pa(V;)) that assigns a scalar value to each instantiation
of the parent variables pa(V;). Given multiple value nodes,
we assume that the total utility is their sum.

Each decision variable D), € D has a parent set pa(Dy,),
denoting the variables whose values are observed before the
decision is made. We assume that IDs are regular and no-
forgetting, which means there is a temporal ordering of the
decision variables, denoted D+, Do, ..., D,,, and a decision
node and its parents are parents of all subsequent decision
nodes. We let Iy C C denote the set of chance variables
observed before the first decision D;. Similarly, I, C C
denotes the set of chance variables observed between deci-
sions Dy and Dy 1, and I,, C C denotes the set of chance
variables that are never observed. Thus there is a partial tem-
poral ordering: Iy < D1 <I; < ... < D, <1,.

An ID is solved by finding a strategy that has maximum
expected utility (MEU), which is equal to

rrll)aix. .. rrll);ixz (H P(Ci\pa(Ci))Z Uj(Pa(Vj))) €))

I 1, \i=1

The traditional representation of a strategy for an ID is a
list of decision rules A = (41,...,d,), one for each deci-
sion variable D; € D, where a decision rule is a mapping,
d; = sp(pa(D;)) — sp(D;), that prescribes an action for
each instantiation of the parent variables. By definition, any
chance variable that is a parent of a decision variable is ob-
servable, which means its value is known at the time the
decision is made; from now on, we call observable chance
variables observation variables.

Variable elimination

The approach to strategy representation we propose can be
used by any algorithm for solving IDs. We illustrate its use in
a variable elimination (VE) algorithm. VE evaluates Equa-
tion (1) by progressively eliminating variables and replacing
probability and utility functions that mention these variables
with equivalent functions that do not (Jensen and Nielsen
2007; Koller and Friedman 2009; Dechter 2000).

In order to simplify the operations needed to evaluate
Equation (1), VE algorithms reformulate Equation (1) us-
ing so-called “potentials.” A probability potential is denoted
¢ : sp(dom(¢)) — [0, 1], where dom(¢) denotes the set of
all variables involved in the potential ¢. Similarly, a utility
potential denoted by) is a mapping 9 : sp(dom(¢))) — R.

The probability and utility functions given in the initial spec-
ification of an ID can themselves be viewed as potentials.
For each chance variable X; € C, the conditional probabil-
ity distribution P(X;|pa(X;)) is equivalent to a probability
potential ¢ : sp({X;} U pa(X;)) — [0, 1]. For each value
node V;, the corresponding utility function Uj is equivalent
to a utility potential that is denoted ¢ : sp(pa(V;)) — R.

When the original conditional probability functions and
utility functions are viewed as potentials, Equation (1) can
be reformulated as follows,

MEU = %;r%%x. ..r%zigg (H Y \If)))

where ® denotes the set of probability potentials, ¥ denotes
the set of utility potentials, and the expression [[®(>_ ¥)
is the product of all probability potentials multiplied by the
sum of all utility potentials. Each time the VE algorithm
eliminates a variable from this expression, the sets of proba-
bility and utility functions are replaced by equivalent sets of
potentials that do not depend on the eliminated variable.
The pseudocode for VE is given by Algorithm 1. It pro-
gressively eliminates variables from Equation (2) using two
operators: sum-marginalization, which eliminates chance
variables, and max-marginalization, which eliminates deci-
sion variables. For convenience, we let {X;,...,X,} =
C U D denote the set of all variables. The variables must be
eliminated in reverse order of the partial ordering imposed
by the information constraints, which is called a strong elim-
ination order. That is, VE first sum-marginalizes I,,, then
max-marginalizes D,,, then sum-marginalizes I,,_1, etc.
After a variable X; is selected for elimination, the rele-
vant potentials are identified and combined, where a poten-
tial is relevant if the selected variable X; is in its domain.
Probability potentials are combined by element-wise mul-
tiplication; utility potentials are combined by element-wise
addition, normalized by the probability component. The se-
lected variable is eliminated by summation for a chance vari-
able, and by maximization for a decision variable. Elimina-
tion of a variable creates one new probability potential and
one new utility potential. The notation X; = z; in lines 31
and 40 means the maximizing decision z; € X; in line 30 is
used to compute the new potentials. When the last variable
is eliminated, the VE algorithm returns a potential with no
arguments (i.e., a constant) that is the value of Equation (2).
The pseudocode of Algorithm 1 differs from the standard
VE algorithm only in the way it represents and constructs a
strategy. We explain this difference in the rest of the paper.

Strategy representation and compression

Recall that the traditional representation of a strategy is a
list of decision rules, A = (dy,...,d,), one for each de-
cision variable D; € D, where each rule is a mapping,
0; = sp(pa(D;)) — sp(D;), that assigns a decision to each
instantiation of the parent variables. Typically, each decision
rule is represented by a table, where the dimensionality of
the table is equal to the number of parent variables of the cor-
responding decision node. A table that represents a decision
rule is created each time VE eliminates a decision variable.

Algo

rithm 1: Variable elimination with strategy graph

construction

o LN N R W N

BB R B W W W W W W W W W W NN RN NN NN NN D e e e e e e e e e e
W N =S 8 AN R W NS e 0 AN R WN =SS NN RWN =D

44

45
46

Input: An influence diagram and a strong elimination

order of its variables: X = {X1, Xo,..., X}

Output: An optimal strategy graph and MEU
1 // Initialize sets of probability and utility potentials
® + {P(Cilpa(C;))|C; € C}
U {U(pa(V;)|V; € V}
DecisionVariableEliminated <— false
for i «+ p downto 1 do // eliminate variable X

end

/I Get potentials that depend on X;
Dy, + {¢ € D|X; € dom(¢)}
Uy, + {¢ € U|X; € dom(y)}
/I combine potentials
ox, + [[®x, // joint probability
Yx, < [[®x, (> ¥x,) // expected utility
if X, is a chance variable then
// eliminate X; by sum marginalization
Y + dom(¢x,)\X; // input variables for ¢ x;,
foreach y of Y do
U, (y) ¢ 2x, ¥x,(Xiyy)
if DecisionVariableEliminated then
/I save strategy graph
6Xi (Y) =0
foreach z; of X; do
| 0x.y) < ox.(¥)U{ (@i, 0,42, ¥)}
end
/I N is nodes of current strategy graph

dx,(y) < Compress(dx, (y),N)

end

¢/Xl — ZXi ¢Xi

else if X; is a decision variable then

/l eliminate X; by max marginalization

Y + dom(¢x,)\X; // input variables for ¢ x,

foreach y of Y do

T < argmaxy;, in (Xza Y)

%{1 (y) — x,=a; (Xia Y)

/I save strategy graph

if DecisionVariableEliminated then

| 0x,(y) {(@i, 6,1 (0,)}

else
ox,(y) < {(@i,nil)}
DecisionVariableEliminated < true

dx,(y) - Compress(dx;, (y), N)

end

¢th — ¢)X,i:w1,

// update sets of potentials
O (P\Px,) U{d, }

U (W\Ty,) U

i
)
X

// return strategy graph and MEU
return { 6X1,1/)3(1}

Strategy graph representation

We propose to represent a strategy as a graph, called a strat-
egy graph. A strategy tree is a special case of a strategy
graph, of course, and so the following definition applies to
both strategy trees and strategy graphs.

Definition 1. A strategy graph represents a strategy for an
influence diagram in the form of a rooted directed acyclic
graph with two kinds of nodes:

1. A decision node corresponds to a decision variable of the
ID, and has a single outgoing arc labeled by the choice of
an action. The outgoing arc leads to a successor node, or
to nil if it does not have a successor.

2. An observation node corresponds to an observation vari-
able of the ID, and each of its outgoing arcs is labeled by
a non-empty subset of the states of the variable (i.e., the
observations), where each state labels at most one arc.

A strategy graph specifies a strategy, as follows. Beginning
from the root of the graph, a path from the root to a leaf
is followed based on the observed state of each observation
node along the path, and the sequence of actions taken is
determined by the labels on the outgoing arcs from the deci-
sion nodes on the path.

Examples of strategy graphs are shown in Figures 5 and 6.
Note that the ordering of variables is the same on every path
from the root to a leaf; it is the reverse of the order in which
the variables are eliminated in solving the ID. However, it is
not necessary for every path from the root to a leaf to include
a node for every decision and observation variable of the ID.
Note also that every path from the root to a leaf ends at an
artificial nil node, which is the only type of node that does
not have a successor. The nil node has no function but to
serve as a placeholder so that the outgoing edge from the last
decision node can have a successor node. It could easily be
left out of a display of the strategy graph to improve clarity.

Algorithm 1 shows the pseudocode for a variable elimina-
tion algorithm that has been modified to construct a strategy
graph, with the part of the pseudocode related to strategy
graph construction highlighted. The strategy graph is con-
structed recursively from its leaves to its root, as the problem
is solved. Note that the algorithm does not begin to construct
a strategy graph until a decision variable has been elimi-
nated, since the set I,, of chance variables eliminated before
the first decision variable is eliminated are unobservable, and
a strategy is not conditioned on them.

In the traditional VE algorithm, a strategy is represented
as a mapping from histories to actions. That is, for each
decision variable X, there is a mapping, 0x, : sp(Y) —
sp(X;), that prescribes an action x; € X; for each instantia-
tion y of the parent variables Y of X in the ID. By contrast,
for each decision and observation variable X; of an ID, we
let 0x, : sp(Y) — N represent a mapping from each in-
stantiation y of Y to a node of a strategy graph, where N’
denotes the set of nodes of the strategy graph. Note that dif-
ferent instantiations can map to the same node of a strategy
graph; in that way, there can be compression. Note also that
each node of a strategy graph is the root of a subgraph that
itself can be viewed as a strategy graph, since the definition
of a strategy graph is recursive.

Figure 1: On the left is a strategy graph just after node S5 has
been added; on the right is the compressed strategy graph.

In the pseudocode of Algorithm 1, especially lines 19 -
22, 34, and 36, we represent a node of the strategy graph
by a set of ordered pairs, with one pair for each state of the
corresponding variable. The first element of a pair represents
a state of the variable (and thus an outgoing edge from the
node), and the second represents the successor node for this
state/edge, itself represented by a set of ordered pairs. (For a
leaf node of the strategy graph, the successor could be nil.)

Initially, a new node of the strategy graph is created for
each instantiation y of the input variables Y of the utility po-
tential ¢ x, for a variable X;. As the result of compression,
however, dx, (y) can point to the same node of the strategy
graph for different instantiations y of Y, as we next explain.

Strategy compression

The VE algorithm begins to construct the strategy graph af-
ter the unobservable chance variables I,, have been elimi-
nated. From that point, a new node is created each time the
utility of an instantiation y of the variables Y is computed
for the variable X; currently being eliminated.

Each newly-created node of the strategy graph has outgo-
ing edges that lead to previously-created nodes of the strat-
egy graph, or else to nil. After a node is added to the graph,
a procedure is invoked, called Compress in the pseudocode,
that attempts to compress the strategy graph. The details of
the procedure are shown in Algorithm 2.

Algorithm 2 uses two kinds of rules to compress a strat-
egy graph. The first kind, consisting of rules 1(a) through
1(c), plus rule 2(a), considers only the newly-added node,
its outgoing edges, and their successor nodes in the strat-
egy graph. Note that rules 1(a) through 1(c) are also used
by Luque, Arias, and Diez (2017) to compress a strategy
tree. These rules leverage reachability by removing zero-
probability branches; they also leverage context-specific in-
dependence (Boutilier et al. 1996) to remove nodes that are
conditionally irrelevant on one path, but not others. These
rules can transform a strategy tree into a compressed strat-
egy tree, but they cannot transform a tree into a graph.

The second kind of rule, consisting of rules 1(d) and 2(b),
transforms a strategy tree into a strategy graph; this form of
compression is the primary contribution of our paper. These
rules consider not only the newly-added node, its outgoing
edges, and their successor nodes in the strategy graph; they
also consider all of the other nodes of the strategy graph. A
newly-created node is merged with an existing node of the
strategy graph if they have the same outgoing edges, and the
same successor nodes for each edge. Essentially, a new node

Figure 2: On the left, nodes s4 and s5 have zero-probability
branches that are not shown, allowing them to be merged.

Algorithm 2: Strategy graph compression.

Input: For variable X; and instantiation y of ancestor
variables Y, the input is (a) a newly-created
node n of a strategy graph, and (b) all the other
nodes, NV, of the strategy graph.

Output: Compressed representation of the strategy

graph rooted at node n.

1. If X is an observation variable:

(a) (Remove zero-probability branches): For the
newly-created node n, remove an observation z; and
corresponding branch if it has zero probability given
instantiation y of Y.

(b) (Merge branches with the same predecessor and
successor nodes): If two outgoing edges from the
newly-created node n have the same successor node,
they can be replaced by a single outgoing edge that is
labeled by the labels of both original edges, with the
interpretation that this edge is followed if either of the
conditions corresponding to the labels are true.

(¢) (Remove irrelevant observation nodes): If the
newly-created node n has only one outgoing edge,
then the corresponding observation is irrelevant in this
context, and the node can be removed and replaced by
a pointer to its successor node.

(d) (Merge isomorphic subgraphs): If the newly-created
node n corresponding to observation variable X is
identical to a node n’ already in the strategy graph, in
the sense that for every outgoing edge labeled by the
same state z; of X; for both n and n’, the successor
node is the same, then nodes n and n’ can be merged.
The merged node has every outgoing edge and
successor node that is part of either n or n'.

2. Else if X; is a decision variable:

(a) (Remove no-op actions): If the newly-created decision
node n is a no-op, as could be the case if the utility of
every action is worse than the utility of doing nothing,
then it can be removed and replaced by a pointer to the
successor node of its outgoing edge.

(b) (Merge isomorphic subgraphs): If the newly-created
decision node n has the same action for its outgoing
edge, and the same successor node, as another node n’
in the strategy graph, the two nodes can be merged.

(191) o

@9

S e
lest f ort] ast
)

=

R e Y B

4 5 6 7 8 9 10 11 12

Figure 3: (a) Maze for ten-stage maze navigation problem and (b) optimal strategy graph.

is merged into an existing node of the strategy graph when
the two nodes represent identical subgraphs of the strategy
graph. But it is important to note that entire subgraphs do not
need to be compared; the subgraphs are identical if the two
nodes have the same outgoing edges and successor nodes.

Figure 1 illustrates the application of rule 2(d); it shows
a newly-added node that is merged with an equivalent node
already in the strategy graph. Figure 2 illustrates the interac-
tion of this rule with rule 1(a), which prunes zero-probability
branches. Because utility is not affected by the successor
node of a zero-probability branch, a zero-probability branch
can play the role of a “wildcard” that can be matched to any-
thing, allowing additional compression.

It is obvious that the compression rules of Algorithm 2
preserve the equivalence of a strategy. They can also lead
to dramatic compression, as the results presented later in
the paper show. But the degree of compression is problem-
dependent, and often depends on other factors too.

For example, variable ordering matters. If there are sev-
eral observation variables between one decision variable and
the next, then the order in which they are eliminated by the
VE algorithm can affect the size of the strategy graph. A
similar effect is well-known for ordered binary decision dia-
grams, where variable ordering can have a significant effect
on the the size of a decision diagram, that is, its degree of
compression (Bollig and Wegener 1996).

Elimination-ordering heuristics for VE algorithms typi-
cally focus on improving the efficiency with which an ID is
solved. But if it is also desirable to minimize the size of the
resulting strategy graph, the effect of the elimination order
on the size of the strategy graph may also need to be con-
sidered. For IDs that are easily solved, it may be useful to
solve the ID with several different elimination orders, in the
attempt to find one that leads to the smallest strategy graph.

The degree of compression can also depend on tie-
breaking issues, although these effects are more subtle. Con-
sider the possibility of adding two different nodes to a strat-
egy graph that have the same utility for the same instanti-
ation y of Y, and variable X;. Further, suppose that when
a choice must be made of which of these nodes to add to
the strategy graph, neither one matches a node already in
the strategy graph, but one turns out to match a node that is
later added to the strategy graph, and one does not. In this
case, the tie has to be broken without knowing which way of
breaking the tie will lead to greater compression.

Bounded-error approximation

A strategy graph created by the compression procedure of
Algorithm 2 may be compressed even further in exchange
for bounded-error approximation. We next describe a very
simple implementation of this idea.

When eliminating a decision variable X;, consider the
possibility of selecting a sub-optimal action for an instanti-
ation y of Y, where the sub-optimality is bounded by some
threshold € > 0. If the sub-optimal action creates a new
node for the strategy graph that can be merged into an ex-
isting node, and the optimal action does not, then choosing
the sub-optimal action will result in additional compression
of the strategy graph, in exchange for bounded-error approx-
imation. The threshold € could be used to derive a subopti-
mality bound. However, a much tighter bound can usually be
found by simply comparing the expected utility computed
by VE when this approach to approximation is used, and the
optimal expected utility.

Unlike other approaches to bounded-error approximation,
the motivation for this technique is not to speed up com-
putation, or improve scalability, since it does neither. (Im-
portantly, it does not incur extra overhead either.) Instead,
the tradeoff this approach offers between approximation and
compression of the strategy graph may be useful as a form
of sensitivity analysis, or as an approach to solving IDs with
imprecise parameters. For example, it can be used for sensi-
tivity analysis by showing how a strategy can be compressed
with limited loss of utility; the part of the strategy graph that
is eliminated by simplification can be viewed as the less im-
portant part of the strategy graph.

This approach could also be useful for IDs with impre-
cise parameters. For example, to model such problems, Ca-
banas et al. (2017) consider interval-valued IDs where the
probabilities and utilities of an ID are not represented ex-
actly; instead, they are represented by intervals that bound
the uncertainty about the exact values of the parameters. In
this framework, the value of an ID cannot be determined ex-
actly; instead, it is represented by an interval. As a result,
a VE algorithm for interval-valued IDs may only find a set
of potentially optimal strategies, instead of a single strategy,
and a secondary criterion may be needed to choose a strat-
egy from this set. Our approach could be used to select the
strategy from this set that is most compact, and easiest to
understand.

Examples and analysis

We consider some examples that illustrate the benefits of
compressing a strategy tree into a strategy graph.

Maze navigation Figure 3(a) shows a partially observable
navigation problem introduced in previous work on limited-
memory IDs (Nilsson and Hohle 2001). For a randomly
placed robot, the objective is to reach a goal state marked by
a star within ten steps. At each step, the robot receives one of
12 possible observations that are shown in the lower right of
Figure 3(b), where each observation represents a different
configuration of the surrounding walls. After receiving an
observation, the robot moves to a neighboring cell in one of
the 4 possible directions of the compass, which means there
are 4 possible actions. It follows that there are 481 different
possible histories over ten stages!

This huge number of possible histories makes it impos-
sible to solve this problem using a traditional algorithm
for IDs. But the problem is easily solved by an exact
POMDP solver, or by an ID solver that uses POMDP tech-
niques (Hansen, Shi, and Khaled 2016). The POMDP ap-
proach finds an optimal strategy (policy) graph that takes
the relatively simple form shown in Figure 3(b). The pri-
mary reason for showing this strategy graph in this paper is
that it illustrates how dramatic the degree of compression
can be; in this case, a strategy tree with 48'° nodes has been
compressed into an equivalent graph with only 44 nodes!

In the POMDP framework, the convention is that each
node of a policy graph represents both a decision (which is
the label of the node) and a subsequent observation, where
the possible observations are represented by the labels on the
outgoing edges from the node. The policy graph shown in
Figure 3(b) reflects this convention. It makes sense to follow
this convention when representing a policy for a POMDP,
since the POMDP model assumes that each action is imme-
diately followed by an observation. For the IDs considered
in the rest of this section, however, we create strategy graphs

CO2 Report

Grunting Report

Xray Report

n: Normal

o: Oligae

p: Plethoric
g: Grd_Glass
a: Asy_patch

Lower Body O2

LVH Report

Age

Figure 5: Optimal strategy graph for the Child influence
diagram.

that have distinct decision and observation nodes. This al- Strategy Tree Strategy
ternat.ive repre§enFation, which is the strategy representation All | Reach. | Compr. graph
explained eayher in the paper, makes it easier to allow sev- COZReport 5 3 5 il
eral observation nodes between successive decision nodes. GruntingReport a a Z >
RUQO2 12 12 4 4
@ @ ity T XrayReport 60 60 8 4
™| ™ LowerBodyO2 180 180 17 1
PFC_| 100 | 20 LVH _Report 360 360 17 1
/’-‘@ o R Age 7,080 | 1,080 37 1
”VP"*'““ o2 s T 0 T 00 Treatment 2,160 | 1,080 34 2
TAPVD | 20 | 100 | Total [3,858 [2,778] 120 | 17 |
.Binh Asphyxia Lung 0 100

Treatment

Disease

Utility

Figure 4: Influence diagram for diagnosis/treatment problem
based on the CHILD belief network, with utility table.

Table 1: Comparison of the number of nodes in the strategy
trees, and equivalent strategy graph, for the CHILD influ-
ence diagram. The column A/l shows the number of nodes in
the strategy tree before any compression; the column Reach.
shows the number of reachable nodes under an optimal strat-
egy; the column Compr. shows the number of nodes in a
fully-compressed strategy tree (with many irrelevant nodes
removed based on context-specific independence); and the
last column shows the number of nodes in the strategy graph.

BMI
—— 10
— - yes

Diabetes
—— absent
- - - present

Antibiotic Allergy
— Nno
— = Yes
Implant prosthesis
—p N0
- - yes

Knee motion
— >65
o <=65

Ischemia
— <=90
——> >90

Drained CC wesssssseseersssss
—— not 800-1000
~ = 800-1000

C reactive protein s
— <=10

-== >10

ESR

— <=30
-==> >30

Make scintigraphy
— NO

——» yes
Sequential Ga67_Tc99
—— negative
— - positive

Make synovial biopsy
— no
- - yes

Frozen section PMN
— <=5
- >5

Remove prosthesis

— N0
- == yes

Figure 6: Bounded-suboptimal strategy graph for Arthronet influence diagram.

Child diagnosis/treatment problem We next consider
an ID that is based on a Bayesian network for diagnos-
ing congenital heart disease in a newborn baby with as-
phyxia (Spiegelhalter and Cowell 1992). This Bayesian net-
work, named the CHILD network, is well-known in the
graphical models community, especially as a test case for
learning Bayesian networks. As in the original network, we
assume the chance variable for birth asphyxia is always set
to true. We transform this Bayesian network into an ID by
adding a decision variable that represents a choice of two
possible treatments, as well as a utility node that is a func-
tion of both the underlying disease and the treatment. The
ID, with utility table, is shown in Figure 4. The decision and
utility nodes we added are not intended to be medically real-
istic; they were added simply to create a useful test problem.

We solved this ID using the variable elimination algo-
rithm, modified to construct a strategy graph. Table 1 com-
pares the sizes of three different strategy trees, and the equiv-
alent strategy graph. First shown is the original strategy
tree before any compression. The “reachable” strategy tree
includes only nodes and edges that are reachable by fol-
lowing optimal actions and positive-probability observations
(edges). (For this ID, there are no zero-probability obser-

vations.) The fully-compressed strategy tree is the result of
merging outgoing edges from a node that have the same suc-
cessor node (rule 1b), and removing observations that are
conditionally irrelevant (rule 1c). This compressed strategy
tree is the same strategy tree that would be found by the
algorithm of Luque, Arias, and Diez (2017). For this ID,
compression based on conditional irrelevance dramatically
reduces the size of the strategy tree.

The last column of Table 1 shows the size of the strategy
graph after isomorphic subgraphs are merged. The results
show how more compression is achieved by transforming a
strategy tree into an equivalent strategy graph. The optimal
strategy graph is shown in Figure 5, and has 17 nodes and 27
edges. Note that Table 1 shows the number of nodes in each
level of the tree/graph, as well as the total number of nodes.

Arthronet problem The last ID we consider represents a
realistic model of medical decision making for total knee
arthroplasty (Le6n 2011). Named Arthronet, it has eleven
chance variables (ten of them are observable), four decision
nodes, and four utility nodes. The ID and its parameters are
available in the software package OpenMarkov.'

'www.probmodelxml.org/networks/

Strategy tree Strat.

Variable All | Reach. | Comp. | graph
BMI 2 2 2 1
Diabetes 4 4 4 2
Antibiotic allergy 8 8 8 4
Implant prosthesis 16 8 8 8
Knee motion 48 16 16 8
Ischemia 144 32 32 16
Drained CC 288 64 64 32
C reactive protein 576 128 115 37
ESR 1,152 256 146 19
Make scintigraphy 2,304 256 146 8
Seq. Ga67 Tc99 6,912 430 201 2
Synovlal blopsy 13,824 430 201 3
Froz. section PMN 41,472 514 402 1
Remove prosthesis 82,944 514 402 2
3

| Total nodes

[149,694 | 2,662 | 1,747 | 143 |

Table 2: Comparison of number of nodes in the strategy
trees, and equivalent strategy graph, for the Arthronet influ-
ence diagram. The column All shows the number of nodes
in the strategy tree before any compression; the column
Reach. shows the number of reachable nodes under an op-
timal strategy, with zero-probability branches also removed;
the column Comp. shows the number of nodes in a fully-
compressed strategy tree; and the last column shows the
number of nodes in the strategy graph.

One reason for using this ID as a test problem is
that Luque, Arias, and Diez (2017) report that the strategy
tree for this ID found by their algorithm has too many nodes
to be easily understood by a user; our results show that even
a compressed strategy tree has 1,747 nodes. By contrast, our
algorithm finds a strategy graph that is more than an order of
magnitude smaller, with only 143 nodes. These compression
results are shown in Table 2.

In fact, the strategy graph can be compressed even fur-
ther using bounded-error approximation. Figure 6 shows
the strategy graph that results from using a suboptimality
bound of 0.2 when choosing an action for a decision node; in
this approach, the bounded-suboptimal action is chosen that
leads to the most compression. The resulting strategy graph
has only 76 nodes, and yet its utility is 2.05655, which is
very close to the optimal utility of 2.05668.

Conclusion

We have introduced an approach to strategy representation
for influence diagrams that compresses a strategy tree into
a simpler and easier-to-understand strategy graph. The mo-
tivation for this approach is in keeping with the original
motivation for influence diagrams, which is to facilitate un-
derstanding and communication with users. We have also
shown that a strategy graph can be further compressed in
exchange for bounded-error approximation, making it pos-
sible to perform a sensitivity analysis that tests which parts
of a strategy can be omitted without significantly affecting
performance, as well as simplifying the strategy further.

References

Bollig, B., and Wegener, I. 1996. Improving the variable
ordering of OBDDs is NP-complete. IEEE Transactions on
Computers 45(9):993-1002.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in Bayesian networks.
In Proc. of the 12th Conference on Uncertainty in Artificial
Intelligence, 115-123.

Cabanas, R.; Antonucci, A.; Cano, A.; and Gomez-Olmedo,
M. 2017. Evaluating interval-valued influence diagrams.
International Journal of Approximate Reasoning 80:393 —
411.

Dechter, R. 2000. A new perspective on algorithms for
optimizing policies under uncertainty. In Proc. of the 5th
International Conf. on Al Planning Systems (AIPS-2000),
72-81.

Hansen, E.; Shi, J.; and Khaled, A. 2016. A POMDP ap-
proach to influence diagram evaluation. In Proc. of the 25th
International Joint Conf. on Artificial Intelligence (IJCAI-
16),3124-3132. AAAI Press.

Howard, R., and Matheson, J. 1981. Influence diagrams.
In Howard, R., and Matheson., J., eds., The Principles and
Applications of Decision Analysis, 719-762.

Jensen, F., and Nielsen, T. 2007. Bayesian Networks and
Decision Graphs. New York: Springer, 2nd edition.

Jensen, F. V., and Nielsen, T. D. 2011. Probabilistic de-
cision graphs for optimization under uncertainty. 40R - A
Quarterly Journal of Operations Research 9(1):1-28.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99-134.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

Leén, D. 2011. A probabilistic graphical model for total
knee arthroplasty. Master’s thesis, Dept. Artificial Intelli-
gence, UNED, Madrid, Spain.

Luque, M.; Arias, M.; and Diez, F. 2017. Synthesis of strate-
gies in influence diagrams. In Proc. of the 33rd Conference
on Uncertainty in Artificial Intelligence (UAI-17).

Luque, M.; Dez, F.; and Disdier, C. 2016. Optimal sequence
of tests for the mediastinal staging of non-small cell lung
cancer. BMC Medical Informatics and Decision Making
16(9).

Nilsson, D., and Hohle, M. 2001. Computing bounds on
expected utilities for optimal policies based on limited infor-
mation. Technical Report 94, Danish Informatics Network
in the Agricultural Sciences.

Segal, 1., and Shahar, Y. 2009. A distributed system for
support and explanation of shared decision-making in the
prenatal testing domain. Journal of Biomedical Informatics
42(2):272-286.

Spiegelhalter, D. J., and Cowell, R. G. 1992. Learning in
probabilistic expert systems. In Bernardo, J.; Berger, J.;
Dawid, A.; and Smith, A., eds., Bayesian Statistics 4. Ox-
ford: Clarendon Press. 447-466.

