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ABSTRACT
Large scientific facilities provide researchers with instrumentation,
data, and data products that can accelerate scientific discovery.
However, increasing data volumes coupled with limited local com-
putational power prevents researchers from taking full advantage
of what these facilities can offer. Many researchers looked into
using commercial and academic cyberinfrastructure (CI) to pro-
cess this data. Nevertheless, there remains a disconnect between
large facilities and cyberinfrastructure that requires researchers to
be actively part of the data processing cycle. The increasing com-
plexity of cyberinfrastructure and data scale necessitates new data
delivery models, those that can autonomously integrate large-scale
scientific facilities and cyberinfrastructure to deliver real-time data
and insights. In this paper, we present our initial efforts using the
Ocean Observatories Initiative project as a use case. In particular,
we present a subscription-based data streaming service for data
delivery that leverages the Apache Kafka data streaming platform.
We also show how our solution can automatically integrate large-
scale facilities with cyberinfrastructure services for automated data
processing.

KEYWORDS
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vatories initiative; stream processing

1 INTRODUCTION
Open, large-scale scientific facilities are an essential part of the
science and engineering enterprise. These facilities provide shared-
use infrastructure, instrumentation, and data products that are
openly accessible to a broad community of researchers and educa-
tors. For example, current experimental and observations facilities
provide increasing volumes of data and data products that have
the potential to deliver new insights in a wide range of science
and engineering domains. However, while these facilities provide
reliable and pervasive access to the data and data products, users
typically have to download the data of interest and then process
them, typically using local resources. Consequently, transforming
these data and data products into insights requires local access to
powerful computing, storage, and networking resources. These re-
quirements can significantly limit the impact of the data, especially
for researchers, educators, and students who do not have access
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to such capabilities. We are currently experiencing this limitation
in the case of the Ocean Observatories Initiative (OOI) [13]. OOI
currently serves data from 57 stable platforms and 31 mobile assets,
carrying 1,227 instruments (∼850 deployed), providing over 25,000
science data sets and over 100,000 scientific and engineering data
products. OOI raw data and data products, such as high-definition
video and hydrophone data, are rapidly growing in size and even
modest queries can result in significant latencies for end users and
can overwhelm their local storage and computing capabilities.

To address limited local computational power, users looked into
using commercial and academic advanced cyberinfrastructure (ACI)
services (e.g., Chameleon, XSEDE JetStream, AWS, etc.). ACI is play-
ing an increasingly important role as platforms for computational
and data-enabled science and engineering and can provide the nec-
essary capabilities to allow a broad user community to process
the data from large facilities effectively. However, despite clearly
complementing each other, many large scientific facilities (for ex-
ample, OOI) and advanced cyberinfrastructure remain largely dis-
connected. As a result, users are forced to actively be part of the
process that queries and moves data from large facilities to compu-
tational services, which limits the potential utility of both the data
and the facilities.

In this paper, we explore more effective data delivery mecha-
nisms that can better integrate large facilities with cyberinfrastruc-
ture services. We present the architecture, implementation, and
performance of a subscription-based data streaming service for
data delivery of the OOI project and its integration with public
CI services for automated data processing. Specifically, we enable
users to create and manage query-based data streams and con-
nect workflows with streams and stream-related events that when
triggered can seamlessly orchestrate the entire data-to-discovery
pipeline. Such a pipeline involves (i) executing the queries on the
OOI CI; (ii) streaming the data to appropriate CI services – possi-
bly using high-bandwidth interconnects (such as Internet2); (iii)
staging the data close to computing and analytics resources (e.g.,
XSEDE JetStream [26]); (iv) launching the modeling and analysis
processes to transform such data into insights; and (v) publishing
results to the users. The proposed framework, named submarine,
leverages state-of-the-art enterprise data streaming and processing
solutions, namely, Apache Kafka [8], which provides robust and
scalable solutions for data management. We also show how approx-
imation techniques can be used to address network limitations and
associated latencies.
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Themain contribution of this work is to enable users with limited
local computing, storage, and network capabilities to subscribe
to data of interest and automatically process it (while it moves
from observatories toward the users) using advanced infrastructure.
Our proposed unified software stack, which has not been explored
in prior works, relies on Real-time Delivery, Data Processing and
Workflow Description. The latter provides users with mechanisms to
describe the desired data (e.g., types and ranges), the computation
(e.g., processing tools), the mechanisms for automated queries (e.g.,
feature detection), and the minimum acceptable quality of results
(QoR).

The remainder of this paper is organized as follows. Section 2
presents the overall architecture of our system. A summary of
the OOI project and motivating use case scenarios are presented in
Section 3. A Kafka-based implementation of the system is presented
in Section 4 followed by an experimental evaluation in Section 5.
An overview of related work is presented in Section 6. Finally, the
paper concludes in Section 7 outlining future work.

2 SUBMARINE SYSTEM ARCHITECTURE
The overall architecture of our system is depicted in Figure 1, and
the main components are described below.
(i) Messaging System. The main component of our system is a mes-
saging system, which can provide real-time access to data streams.
The messaging system can also provide subscription-based data
delivery and transfer mechanisms for users or other components
of the system. Agents can be used to fetch the desired data from
large facilities and publish them to the messaging system.

Figure 1: Overall System Architecture.

(ii) Data processing using ACI. Advanced cyberinfrastructure ser-
vices can be used to process the data in real-time. Control/Management
services and data probes can be used to subscribe to data of interest
and use high-speed connections to transfer the data and store it
locally. Computing resources are then provisioned on-demand to
process the data, and the results are published back to themessaging
system.
(iii) Content Delivery Network. To provide users with faster access to
data, a subscription-based content delivery network can be instanti-
ated by using network appliances that are within close proximity to
the users. These appliances are connected to the messaging system
using high-speed connections, can subscribe and replicate data, and
deliver it to the users.
(iv) Broker.A broker is required to orchestrate the overall execution
of the workflow. The broker takes as input the workflow description
from the user and provisions the proper services to execute it.
The broker can also redirect users to network appliances that are
close to them. Finally, the broker can also select the proper tools
necessary to deliver a solution to the user within a given QoR based
on their network capacity. This can be achieved by leveraging
approximation techniques to provide multiple resolutions of the
desired data (e.g., using different sampling rates).

3 DRIVING APPLICATION
3.1 Ocean Observatories Initiative
The NSF Ocean Observatories Initiative (OOI) [12, 13, 18] is a net-
worked ocean research observatory with arrays of instrumented wa-
ter column moorings and buoys, profilers, gliders, and autonomous
underwater vehicles (AUV) within different open ocean and coastal
regions. OOI infrastructure also includes a cabled array of instru-
mented seafloor platforms and water column moorings on the
Juan de Fuca tectonic plate. This networked system of instruments,
moored and mobile platforms, and arrays provide ocean scientists,
educators, and the public the means to collect sustained, time-series
data sets to enable the examination of complex, interlinked physical,
chemical, biological, and geological processes operating throughout
the coastal regions and open ocean. The OOI has been built with
an expectation of operation for 25 years.

OOI implements a geographically distributed, secure, highly
available CI that is responsible for data acquisition and collection,
data storage and processing, and on-demand delivery of data and
data products to scientists and application developers. The core of
the OOI CI software ecosystem (uFrame-based OOINet) is based
on a Service Oriented Architecture (SOA), a set of datasets, instru-
ments, platform drivers, and data product algorithms, which plug
into the uFrame framework. uFrame is implemented using a com-
bination of scalable and highly available open source distributed
data management technologies (e.g., Apache Cassandra [10], Rab-
bitMQ [23], Qpid [14], etc.) and custom development (e.g., parsers
and drivers).

Data is gathered from both cabled and wireless instruments lo-
cated across multiple research stations in the Pacific and Atlantic
oceans. Once acquired, the raw data (consisting mostly of tables of
raw instrument values) is transmitted to one of three operations
centers. The data from the operations centers is then transferred
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to the OOI CI for processing, storage, and dissemination. Two pri-
mary CI centers operated by the Rutgers Discovery Informatics
Institute (RDI2) are dedicated to OOI data management: the West
Coast CI in Portland, OR, and the East Coast CI, at Rutgers Univer-
sity. Data from the Cabled Array components are initially received
at the Shore Station in Washington. Then they are further pro-
cessed using the East Coast CI that houses the primary computing
servers, data storage and backup, and front-facing CI portal ac-
cess point. The setup is then mirrored to the West Coast CI over
a high-bandwidth Internet2 network link provisioned by MAGPI
(Mid-Atlantic GigaPOP in Philadelphia) on the east coast and PN-
WGP (Pacific-Northwest GigaPOP) on the west coast. The data
stores at the operational management centers are continuously
synchronized with the data repositories located at the East and
West Coast CI sites.

The OOI CI software ecosystem (OOINet) employs the uFrame
software framework that processes the raw data and presents it
in visually meaningful and comprehensible ways in response to
user queries, which is accessible over the Internet through the CI
web-based portal access point. A machine-to-machine (M2M) API
provides programmatic access to OOINet through a RESTful API. In
addition to the portal and API, OOI CI provides other data delivery
methods such as a THREDDS server, a raw data archive, and an
Alfresco server for cruise data. OOI CI software ecosystem permits
24/7 connectivity to bring sustained ocean observing data to a user
anytime and any place. Anyone with an Internet connection can
create an account or use CILogon and access the OOI data. Detailed
architecture of the OOI CI network can be found online in [19].

The OOI CI design and implementation principles are based
on industry best practices for the different aspects of the CI. The
approach is based on a decentralized but coordinated architecture,
which is driven by requirements, e.g., data storage capabilities,
system load, security, etc. For example, the system is based on a
multi-tier security approach with dedicated and redundant (highly
available) firewall appliances at the CI perimeter. In addition to
implementing industry best practices, the OOI CI cyber-security
effort includes a comprehensive cyber-security program based on
engagement with the NSF Center for Trustworthy Scientific Cyber-
Infrastructure [11].

3.2 Use Case Scenarios
To support various use case scenarios, we define two different
usage modes for scientists and end-users based on the architecture
presented in Section 2. They are as follows:

(a) Manual Query and Processing of Data. Users issue a query for
certain data/data-products and associate an analytics workflow
with the query for processing the data. The query then triggers
data staging resources to be provisioned in the Cloud or CI facility
(e.g., at AWS or XSEDE’s JetStream), the query to be executed using
the OOI web services interface, and the resulting data streamed
to the provisioned resources. Computational resources are then
provisioned at the CI service, and the analytics workflow is executed
to process the streamed data. Finally, the results of the analytics are
made available to the users through a separate channel that they
can subscribe to.

(b) Subscription to a Specific Data Stream. Users request real-time
delivery of certain data/data products at a predefined sampling
rate. The system then creates a streaming channel, which users
can subscribe to, and publishes the desired data at the specified
sampling rate to this channel. Using this delivery method, data is
pushed to the user in near real-time instead of having users pull
the data streams from OOINet.

In this paper, we have selected two representative instruments
available in the OOI network as driving use cases: Bottom Pressure
Tilt (BOTPT) and Digital Still Camera (CAMDS). While CAMDS
allows us to explore different objectives and scenarios, BOTPT helps
us conduct a performance evaluation of the streaming engine.

(1) OOI Bottom Pressure Tilt: The OOI Bottom Pressure Tilt
(BOTPT) Instruments are deployed on the seafloor of the Axial
Volcano caldera, approximately 300 miles west of the Oregon Coast.
The onboard high-resolution (nano-resolution) pressure sensors
sample sea floor (bottom) pressure at 20 S/sec and can effectively
provide millimeter resolution of water depth. Currently, BOTPT
instruments transmit the pressure data via the OOI submarine cable
to the shore, and the real-time data are subsequently stored by the
OOI CI. The pressure data are subsequently processed to create
various derived products describing seafloor elevation changes,
and rates thereof, associated with inflation/deflation of the magma
chamber below the Axial volcano. Real-time access to such data
products by the seismic and submarine volcano communities is
critical for (i) detecting volcanic eruptions at Axial, (ii) monitoring
pre- and post-eruption processes, (iii) and planning rapid responses,
i.e., research cruises after event detection. This pressure data can
also be used for tsunami early detection/warning, and so it is critical
that it be made available for easy access by such organizations as the
Pacific Tsunami Warning Center. The current OOI CI is not optimal
for real-time processing, quality control/evaluation, event detection,
and distribution of this high sample rate data to interested scientists
and organizations. The ability to store and process this type of data
in real-time and push these data products to multiple users on a
subscription basis quickly and efficiently is a key requirement.

(2) OOI Digital Still Camera: We aim to provide ways for on-
line processing of images from Digital Still Cameras, which are cam-
eras with strobe lights for capturing high-resolution still imagery
of water column biology, vents, diffuse flow, seeps, and macrofauna.
We have developed an algorithm for object detection to implement
data-driven (e.g., content-based) workflows with online analytics,
which allows us to disregard dark images or images without regions
of interest. OOI deploys multiple digital still cameras (Kongsberg) to
provide real-time information on linkages between seismic activity
and fluid flow as part of the Cabled Array. The Cabled Array, which
includes 900 km of a modified telecommunications cable, provides
unprecedented power (10 kV, 8 kW), bandwidth (10 GbE), and two-
way communication to scientific sensor arrays on the seafloor and
throughout the water column. As the first U.S. ocean observatory
to span a tectonic plate, the OOI Cabled Array provides a constant
stream of near real-time data from the seafloor and through the
water column across the Juan de Fuca plate.
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4 IMPLEMENTATION

In order to achieve the real-time data delivery required by the

previously described scenarios, we implemented a solution that

integrates large-scale scientific facilities with cyberinfrastructure

services by leveraging state-of-the-art stream processing platforms

(i.e., Apache Kafka). The overall architecture of our implementation

is depicted in Figure 2. The main components of the system are

described below.

(1) Data Streaming. The first step in our approach is to provide OOI

data as real-time streams. This is achieved by using services that

communicate with the OOI M2M interface to fetch the specified

data at a predefined sampling rate. This data is then pushed to

corresponding topics on an Apache Kafka installation. Kafka is

installed on top of fast network appliances, which are optimized

for storing, forwarding, or directly using large amounts of data, to

provide fast access to the data streams. End-users can subscribe to

topics created from the published data.

(2) Subscription-based Data Transfer. The data is also transferred

to the cyberinfrastructure (e.g., JetStream or S3 Storage) using a

Kafka client (running on a separate Virtual Machine - VM), which

subscribes to the desired topic and stores the data locally at the

corresponding site or zone.

(3) Data Processing. Once the desired data is fully transferred to the

cyberinfrastructure. The system provisions on-demand computing

resources to run the desired workflow (e.g., analytics) on the data.

The processed data are then published to a new topic, which users

can subscribe to, to receive the processed data.

(4) Workflow Description.A user interface is provided to allow users

to issue queries to create new topics, subscribe to existing topics,

or process data.

(5) Subscription-based Content Delivery. The system can also be

extended by using multiple geographically distributed network

appliances that are connected using high-speed connections (e.g.,

Internet2), which can enable a Content Delivery Network [25]

that optimizes the data delivery based on the user location. The

additional appliances can subscribe to desired streams based on user

requests and replicate/synchronize the available data accordingly.
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Figure 2: Kafka-based Implementation of the Submarine

Framework.
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Figure 3: Performance evaluation results using BOTPT data.

5 EXPERIMENTAL EVALUATION

5.1 Performance Evaluation

In this section, we evaluate the performance of our framework using

the OOI BOTPT data. We conducted our experiments using a cluster

at Rutgers University. The cluster contained seven nodes, where

each node had an Intel Xeon 2.4 GHz processor with eight cores,

7200 RPM SAS drive, 24GB of RAM, and 1Gb Ethernet. We used

three nodes for the Kafka cluster, one node for Zookeeper, and three

nodes for load testing. The experiments evaluated the performance

of producing BOTPT data from OOI to the Kafka cluster as well as

consuming data from the Kafka cluster. We measured the latency

and raw throughput (MB/sec) by producing 50 million messages,

where each message is 100 bytes (a total of ∼5GB) for the following
scenarios:

1p0r1pt: one producer with no replication and one partition.

1p0r6pt: one producer with no replication and six partitions.

1p3sr6pt: one producer with level 3 synchronous replication and

six partitions. In this scenario, the partition master waits for an

acknowledgment from the replicas before responding back to the

producer.

1p3ar6pt: one producer with level 3 asynchronous replication and

six partitions. In this scenario, the partition master does not wait
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for an acknowledgment from the replicas before responding back
to the producer.
3p3ar6pt3b: three producers with level 3 asynchronous replication
and six partitions. The producers communicate with three different
Kafka brokers.
3p3ar6pt1b: three producers with level 3 asynchronous replication
and six partitions. The producers communicate with one Kafka
broker.
1prod1cons: In all of the previous scenarios, we ran producers and
no consumers, so all messages were persisted but not read. In this
scenario, we run one producer and one consumer at the same time.

The results of these experiments are shown in Figure 3. Figure 3b
show that 1p0r1pt has the highest latency (2,456.17 milliseconds)
and lowest throughput (19.24 MB/sec), which is expected given that
this scenario does not take advantage of the full cluster. The results
also show that 1p0r6pt has the lowest latency (91.91 milliseconds)
and highest throughput (73.80 MB/sec), which is also expected since
no replication was required and therefore less data was transferred
between brokers. We also evaluated the data production by in-
creasing the message size from 10 bytes to 100,000 bytes. Figure 3b
shows that the throughput increases as we increase the message
size, which reaches its peak at 10,000 bytes for a throughput of 90.68
MB/sec. The throughput is slightly degraded for the largest message
size (88.48 MB/sec), as we reach the hardware limits for the NIC and
the hard drive. We also measured the latency and throughput when
increasing the message size from 5 million to 50 million messages to
see if there is any performance degradation. The latency decreased
from 443.57 milliseconds to 159.66 milliseconds with an average
throughput of 53.46 MB/sec. Finally, we evaluated the performance
of consuming data by measuring the throughput and time taken
to consume 50 million messages, where each message is 100 bytes
(a total of ∼5GB) using a topic with six partitions and level 3 asyn-
chronous replication. The average throughput was 76.18 MB/sec
and the average time taken was 63.8 secs. These results establish
that the proposed framework is a viable solution that supports the
requirements of scientists in the OOI project.

5.2 Digital Still Camera
In this section, we experimentally evaluate several scenarios for the
Digital Still Camera data streaming (CAMDS) use case. First, we
show that the growth in the number of streams, size of input data,
and data generation rate imposes several limitations on general
data streaming approaches. Afterwards, three new approaches are
introduced to address these limitations.

In our experiments, we use a high-resolution digital camera,
which is installed on the Pacific Ocean seabed, as our data producer
device. The camera captures high-resolution digital images (one
every seven seconds) and sends the images to a dedicated streaming
engine. We use a total of 50 images as our input data set. Potential
consumers (e.g., scientists interested in the data) subscribe the
streaming engine to receive the images.

Figure 5 shows a simple streaming approach, which is used as our
baseline. The image resolution and size are substantial, therefore, to
reduce unnecessary overhead on the streaming engine, each image
is sliced into smaller pieces before being sent to the streaming
engine (image slicing step in Figure 5). Similarly, on the consumer

(a) Input Image (b) Output Image

Figure 4: Input raw image captured by Digital Still Camera
vs. processed image.

Figure 5: A Simple Workflow Implemented Using the
Streaming Platform (Basic Streaming).
side, the image slices are stitched back together to form the original
image (image reconstruction step in Figure 5). Finally, to detect the
available objects in the reconstructed images, an object detection
algorithm is applied to each image (object detection step in Figure 5).
Figure 4a illustrates one of the images that was captured by the
camera and Figure 4b shows the processed image, which shows
that an object (i.e., a fish) has been detected in the lower right side
of the picture.

As mentioned in Section 3, infrastructure within large obser-
vatories are usually connected using high-speed network links.
However, compared to the network connection between observa-
tory infrastructure, the network bandwidth is substantially lower
on the consumer side. Hence, to characterize the latency of stream-
ing data for different network bandwidths and its overall impact
on streaming performance, we used a Hierarchical Token Bucket
(HTB) [5] tool to control the bandwidth between the consumer site
and the streaming engine. In these experiments, latency represents
the amount of time it takes for all slices of an image to get from the
producer site to the consumer site. We used four distinctive band-
widths (1MB, 2MB, 5MB, and 10MB) for the connection between
the consumer and the streaming engine. The latency results for the
input image sequence are shown in Figure 6.

Figure 6 shows that in the case of high bandwidth connections
between the consumer and the streaming engine (e.g., 5MB and
10MB), the latency remains within a boundary and the consumer
can keep up with the producer’s data generation rate. However, if
the consumer is connected to the streaming engine using a low net-
work bandwidth connection, the data transfer between the engine
and the consumer becomes a bottleneck. Consequently, in these
cases, the consumption rate is less than the production rate. Figure 6
also shows that in the case of low bandwidth connections, there is a
linear increase in the latency for a sequence of consecutive images.
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This can be attributed to the use of the streaming engine, which
functions here as a buffer with its inputs greater than its output.
As a result, as the input/output rate remains constant, the size of
the data in the buffer grows and the queue time for new input data
increases. It is easy to see that the latency accumulation can be
worse (i.e., latency grows at a higher rate) if, for example, the cam-
era capture rate or the image resolution/size increases. Moreover,
this accumulation can also appear in high bandwidth connections
when the input data (e.g., the number of images) increases.
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Figure 6: Latency achieved for a sequence of images using
Basic Streaming.

To resolve this latency accumulation problem, we moved the
computation from the consumer’s site to the streaming engine to
create a streaming and processing engine. This approach has many
advantages. First, it allows the data to be processed as it moves
toward the consumer. Moreover, this technique allows the data
to be delivered to the consumer based on its content (i.e., if the
data content is not interesting to the consumer it can be discarded).
The early filtering of the content before it reaches the system’s
bottleneck helps reduce the load on the streaming engine, which
partially resolves the latency accumulation problem. The overall
flow of this technique is shown in Figure 7.

Figure 8 shows the latency results for this approach. Zero latency
means that the image was discarded and not streamed to the user
(i.e., there were no fish detected in the image). This technique is
beneficial in the case where the input data does not contain useful
information. In this experiment, 15 out of the 50 images contained
at least one object, and the rest of the images (35) were discarded.
Figure 8 shows that the latency accumulation was resolved and
only the processed data was delivered to the consumer. However,
due to the several extra processing stages at the streaming engine
(i.e., Image Reconstruction, Object Detection, and Image Slicing),
the overall latency of the delivered data is slightly higher than the
basic streaming approach. Furthermore, this approach cannot solve
the latency accumulation issue when all of the input data contain
valuable information, (i.e., should be delivered to the consumer).
This can be seen in Figure 8, where several successive images con-
tain one or more objects (image 39 to 42) and should be received
by the consumer. In this situation, if the consumer’s connection
bandwidth is low the latency starts to grow.

Another approach that we developed to address the latency
accumulation issue is to continuously monitor the latency and use
up-to-date latency information for future images. The general flow
of this approach is presented in Figure 9. The main component of
this approach is a decision-making step that compares the latency

Figure 7: Early detection approach using a streaming and
processing platform.
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Figure 8: Latency achieved for each image using the pro-
posed early detection approach.

Figure 9: Content approximation approach using a stream-
ing and processing platform.

information of the latest image delivered to a consumer with a
predefined threshold. If the latency is more than the threshold, then
the streaming engine will reduce the image resolution and send
a low-resolution image to the consumer instead. Otherwise, the
original high-quality image is delivered to the consumer.

The results of this approximation approach are presented in
Figure 10. For high bandwidth consumers connections (i.e., 5MB
and 10MB), the latency is always less than the threshold, and the
latency accumulation problem never happens. However, for low
bandwidth connections (i.e., 1MB and 2MB), approximation and
resolution reduction solve the latency accumulation problem. In the
1MB and 2MB cases, figure 10 shows that the resolution reduction
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Figure 10: Latency achieved for each image using the pro-
posed approximation approach.

Figure 11: A hybrid early detection and approximation ap-
proach using a streaming and processing platform.
can decrease the amount of latency and keep it within a reasonable
boundary. When the latency falls below the threshold, the origi-
nal image quality is delivered to the consumer, which makes the
latency grow again. It is also clear that reducing the image qual-
ity/resolution decreases the size of data that needs to be transferred,
which reduces the pressure on the bottleneck connection.

Finally, we considered a hybrid approach that combines the early
detection and the approximation approaches. Figure 11 demon-
strates the flow of this hybrid approach. In this approach, we added
a component to decide between low-resolution and high-resolution
images. The decision for this component is based on the outcome
of the object detection algorithm. If at least one object is found in
the picture, a high-resolution image is delivered to the consumer.
Otherwise, a low-resolution is delivered. The goal of this approach
is to ensure that all images are delivered to the consumer while
trying to address the latency accumulation problem. Similar to the
early detection approach, this approach is beneficial in the case
where most of the input data do not contain valuable information
for the consumer.

Figure 12 collects the latency results of this hybrid approach. It
can be observed that the latency gradually goes down when the
image does not contain any objects. Moreover, in low bandwidth
conditions, if several consecutive images contain useful information,
the latency increases with almost a constant rate.

6 BACKGROUND AND RELATEDWORK
The work presented in this paper is complementary to efforts such
as GeoSciCloud [4], which explores how cloud services can support
the core functionality provided by facilities, and Globus Software as
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Figure 12: Latency achieved for each image using the pro-
posed hybrid early detection and approximation approach.

a Service [2], which focuses on the transfer, sharing, and publishing
of data. Farcas et al. [3] discussed requirements for service compo-
sition in large-scale software systems using OOI as a potential use
case for their proposed architecture. The authors envisioned that a
central data management system that ingests data and serves them
to users on a query basis could be complemented with a highly
distributed set of capabilities to facilitate a range of tasks ocean sci-
entists would engage in. However, the implemented models based
on subscription and stream processing platforms described in this
paper were not envisioned at that time.

Processing large amount of data using heterogeneous resources
connected to each other through wide area networks has been
discussed in several papers which are complementary to our work.
Vulimiri et al. [24] have presented the concept of wide area big
data (WABD) and have argued that processing a large amount
of data using distributed resource generates substantial network
traffic which limits the overall performance of the system. Their
proposed system which is called WANalytics explores how to push
computation toward the edge to reduce network traffic. A similar
concept has been discussed by Kloudas et al. [7] who explore how
to map tasks to resources to reduce network traffic. Pu et al. [16]
have explored minimizing latency in wide area analytics. They
proposed a greedy heuristic optimization technique to find the
best data and task placement. Our previous work [27, 28] proposed
a computational model to extract waiting/queuing time of over-
provisioned destination data centers and use network resources to
process data at in-transit nodes during waiting time.

There are several streaming systems available such as Bore-
alis [1], Storm [21] and Heron [9] that have been developed to run
within one single data center. However, our streaming engine (i.e.,
the messaging system) that we described in section 2 is designed to
run across distributed resources and data centers. In this paper, we
specifically use Kafka [8], which is a distributed messaging system
and a streaming platform. Kafka is mainly used for either real-time
streaming of data pipelines between systems or applications or for
building data-driven applications that can react to real-time data.

Stream processing/analytics was the main focus of several other
research papers. Tudoran et al. [22] talked about a stream of events
across data centers. Their proposed architecture monitors the avail-
able bandwidth between data centers and reacts accordingly to
increase data transfer rate. Rabkin et al. [17] presented a streaming
engine called Jetstream that addresses wide area stream queries
with latency bound requirements and deals with network band-
width limitations. Santos et al. [20] described the advantages of
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distributed stream processing. They showed in their paper that
filtering and preprocessing functions at edge clouds can reduce the
impact of bandwidth limitations in distributed processing. Further-
more, in [6], replication based stream processing has been proposed
over wide area network nodes to process downstream and react to
events at the earliest time. Pietzuch et al. [15] have considered push-
ing distributed stream processing operators to network node auto-
matically. Their proposed solution reduces the streaming latency
and improves network utilization. However, aside from stream pro-
cessing and analytics, our approach tries to provision processing
resources at the proper location and utilizes approximation and
content delivery techniques to overcome network limitations in
delivering processed or raw data to the consumers.

7 CONCLUSION AND FUTURE WORK
This paper presented our initial efforts and experiences that com-
plement our work in the OOI project, to explore more effective data
delivery mechanisms, based on subscription-based data stream-
ing, and to better integrate large facilities with cyberinfrastruc-
ture services. We presented the architecture, implementation, and
performance of submarine, a subscription-based data streaming
framework for OOI data delivery, and its integration with public CI
services for automated data processing. The overarching objective
of this effort is to improve the accessibility of data and the way
scientists interact with both data sources and computational infras-
tructures, as well as the overall effectiveness and impact of current
open, experimental, and observational facilities.

The presented work specifically targeted the end-to-end deliv-
ery and processing of the high-resolution pressure data and de-
rived products from the OOI BOTPT instruments to users as well
as CAMDS images, and leveraged enterprise data streaming and
data processing technologies such as Apache Kafka to implement
subscription-based data delivery and automated data processing. An
experimental evaluation of the solution was also presented. Future
work includes leveraging experiences with this solution to imple-
ment similar data delivery mechanisms for OOI high-bandwidth
seismic (i.e., high-resolution tilt) data and acoustic data (e.g., hy-
drophones), as well as lower temporal resolution OOI seafloor pres-
sure sensor data, to multiple users and data repositories.
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