
Safe and Nested Subgame Solving for

Imperfect-Information Games

Noam Brown
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15217
noamb@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15217

sandholm@cs.cmu.edu

Abstract

In imperfect-information games, the optimal strategy in a subgame may depend
on the strategy in other, unreached subgames. Thus a subgame cannot be solved
in isolation and must instead consider the strategy for the entire game as a whole,
unlike perfect-information games. Nevertheless, it is possible to first approximate
a solution for the whole game and then improve it in individual subgames. This
is referred to as subgame solving. We introduce subgame-solving techniques that
outperform prior methods both in theory and practice. We also show how to adapt
them, and past subgame-solving techniques, to respond to opponent actions that
are outside the original action abstraction; this significantly outperforms the prior
state-of-the-art approach, action translation. Finally, we show that subgame solving
can be repeated as the game progresses down the game tree, leading to far lower
exploitability. These techniques were a key component of Libratus, the first AI to
defeat top humans in heads-up no-limit Texas hold’em poker.

1 Introduction
Imperfect-information games model strategic settings that have hidden information. They have a
myriad of applications including negotiation, auctions, cybersecurity, and physical security.

In perfect-information games, determining the optimal strategy at a decision point only requires
knowledge of the game tree’s current node and the remaining game tree beyond that node (the
subgame rooted at that node). This fact has been leveraged by nearly every AI for perfect-information
games, including AIs that defeated top humans in chess [7] and Go [29]. In checkers, the ability to
decompose the game into smaller independent subgames was even used to solve the entire game [27].
However, it is not possible to determine a subgame’s optimal strategy in an imperfect-information
game using only knowledge of that subgame, because the game tree’s exact node is typically unknown.
Instead, the optimal strategy may depend on the value an opponent could have received in some other,
unreached subgame. Although this is counter-intuitive, we provide a demonstration in Section 2.

Rather than rely on subgame decomposition, past approaches for imperfect-information games
typically solved the game as a whole upfront. For example, heads-up limit Texas hold’em, a relatively
simple form of poker with 1013 decision points, was essentially solved without decomposition [2].
However, this approach cannot extend to larger games, such as heads-up no-limit Texas hold’em—the
primary benchmark in imperfect-information game solving—which has 10161 decision points [16].

The standard approach to computing strategies in such large games is to first generate an abstraction
of the game, which is a smaller version of the game that retains as much as possible the strategic
characteristics of the original game [24, 26, 25]. For example, a continuous action space might
be discretized. This abstract game is solved and its solution is used when playing the full game
by mapping states in the full game to states in the abstract game. We refer to the solution of an
abstraction (or more generally any approximate solution to a game) as a blueprint strategy.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

In heavily abstracted games, a blueprint strategy may be far from the true solution. Subgame solving
attempts to improve upon the blueprint strategy by solving in real time a more fine-grained abstraction
for an encountered subgame, while fitting its solution within the overarching blueprint strategy.

2 Coin Toss

In this section we provide intuition for why an imperfect-information subgame cannot be solved in
isolation. We demonstrate this in a simple game we call Coin Toss, shown in Figure 1a, which will
be used as a running example throughout the paper.

Coin Toss is played between players P1 and P2. The figure shows rewards only for P1; P2 always
receives the negation of P1’s reward. A coin is flipped and lands either Heads or Tails with equal
probability, but only P1 sees the outcome. P1 then chooses between actions “Sell” and “Play.” The
Sell action leads to a subgame whose details are not important, but the expected value (EV) of
choosing the Sell action will be important. (For simplicity, one can equivalently assume in this
section that Sell leads to an immediate terminal reward, where the value depends on whether the
coin landed Heads or Tails). If the coin lands Heads, it is considered lucky and P1 receives an EV of
$0.50 for choosing Sell. On the other hand, if the coin lands Tails, it is considered unlucky and P1

receives an EV of −$0.50 for action Sell. (That is, P1 must on average pay $0.50 to get rid of the
coin). If P1 instead chooses Play, then P2 may guess how the coin landed. If P2 guesses correctly,
then P1 receives a reward of −$1. If P2 guesses incorrectly, then P1 receives $1. P2 may also forfeit,
which should never be chosen but will be relevant in later sections. We wish to determine the optimal
strategy for P2 in the subgame S that occurs after P1 chooses Play, shown in Figure 1a.

Figure 1: (a) The example game of Coin Toss. “C” represents a chance node. S is a Player 2 (P2) subgame.
The dotted line between the two P2 nodes means that P2 cannot distinguish between them. (b) The public game
tree of Coin Toss. The two outcomes of the coin flip are only observed by P1.

Were P2 to always guess Heads, P1 would receive $0.50 for choosing Sell when the coin lands Heads,
and $1 for Play when it lands Tails. This would result in an average of $0.75 for P1. Alternatively,
were P2 to always guess Tails, P1 would receive $1 for choosing Play when the coin lands Heads,
and −$0.50 for choosing Sell when it lands Tails. This would result in an average reward of $0.25 for
P1. However, P2 would do even better by guessing Heads with 25% probability and Tails with 75%
probability. In that case, P1 could only receive $0.50 (on average) by choosing Play when the coin
lands Heads—the same value received for choosing Sell. Similarly, P1 could only receive −$0.50 by
choosing Play when the coin lands Tails, which is the same value received for choosing Sell. This
would yield an average reward of $0 for P1. It is easy to see that this is the best P2 can do, because
P1 can average $0 by always choosing Sell. Therefore, choosing Heads with 25% probability and
Tails with 75% probability is an optimal strategy for P2 in the “Play” subgame.

Now suppose the coin is considered lucky if it lands Tails and unlucky if it lands Heads. That is,
the expected reward for selling the coin when it lands Heads is now −$0.50 and when it lands Tails
is now $0.50. It is easy to see that P2’s optimal strategy for the “Play” subgame is now to guess
Heads with 75% probability and Tails with 25% probability. This shows that a player’s optimal
strategy in a subgame can depend on the strategies and outcomes in other parts of the game. Thus,
one cannot solve a subgame using information about that subgame alone. This is the central challenge
of imperfect-information games as opposed to perfect-information games.

2

3 Notation and Background

In a two-player zero-sum extensive-form game there are two players, P = {1, 2}. H is the set of
all possible nodes, represented as a sequence of actions. A(h) is the actions available in a node and
P (h) ∈ P ∪ c is the player who acts at that node, where c denotes chance. Chance plays an action
a ∈ A(h) with a fixed probability. If action a ∈ A(h) leads from h to h′, then we write h · a = h′. If
a sequence of actions leads from h to h′, then we write h @ h′. The set of nodes Z ⊆ H are terminal
nodes. For each player i ∈ P , there is a payoff function ui : Z → < where u1 = −u2.

Imperfect information is represented by information sets (infosets). Every node h ∈ H belongs
to exactly one infoset for each player. For any infoset Ii, nodes h, h′ ∈ Ii are indistinguishable to
player i. Thus the same player must act at all the nodes in an infoset, and the same actions must be
available. Let P (Ii) and A(Ii) be such that all h ∈ Ii, P (Ii) = P (h) and A(Ii) = A(h).

A strategy σi(Ii) is a probability vector over A(Ii) for infosets where P (Ii) = i. The probability of
action a is denoted by σi(Ii, a). For all h ∈ Ii, σi(h) = σi(Ii). A full-game strategy σi ∈ Σi defines
a strategy for each player i infoset. A strategy profile σ is a tuple of strategies, one for each player.
The expected payoff for player i if all players play the strategy profile 〈σi, σ−i〉 is ui(σi, σ−i), where
σ−i denotes the strategies in σ of all players other than i.

Let πσ(h) =
∏

h′·avh σP (h′)(h
′, a) denote the probability of reaching h if all players play according

to σ. πσ
i (h) is the contribution of player i to this probability (that is, the probability of reaching h if

chance and all players other than i always chose actions leading to h). πσ
−i(h) is the contribution of

all players, and chance, other than i. πσ(h, h′) is the probability of reaching h′ given that h has been
reached, and 0 if h 6@ h′. This papers focuses on perfect-recall games, where a player never forgets
past information. Thus, for every Ii, ∀h, h

′ ∈ Ii, π
σ
i (h) = πσ

i (h
′). We define πσ

i (Ii) = πσ
i (h) for

h ∈ Ii. Also, I ′i @ Ii if for some h′ ∈ I ′i and some h ∈ Ii, h
′
@ h. Similarly, I ′i · a @ Ii if h′ · a @ h.

A Nash equilibrium [22] is a strategy profile σ∗ where no player can improve by shifting to a different
strategy, so σ∗ satisfies ∀i, ui(σ

∗
i , σ

∗
−i) = maxσ′

i
∈Σi

ui(σ
′
i, σ

∗
−i). A best response BR(σ−i) is a

strategy for player i that is optimal against σ−i. Formally, BR(σ−i) satisfies ui(BR(σ−i), σ−i) =
maxσ′

i
∈Σi

ui(σ
′
i, σ−i). In a two-player zero-sum game, the exploitability exp(σi) of a strategy σi is

how much worse σi does against an opponent best response than a Nash equilibrium strategy would
do. Formally, exploitability of σi is ui(σ

∗)− ui(σi, BR(σi)), where σ∗ is a Nash equilibrium.

The expected value of a node h when players play according to σ is vσi (h) =
∑

z∈Z

(

πσ(h, z)ui(z)
)

.
An infoset’s value is the weighted average of the values of the nodes in the infoset, where a node

is weighed by the player’s belief that she is in that node. Formally, vσi (Ii) =
∑

h∈Ii

(

πσ

−i
(h)vσ

i
(h)

)

∑
h∈Ii

πσ

−i
(h)

and vσi (Ii, a) =
∑

h∈Ii

(

πσ

−i
(h)vσ

i
(h·a)

)

∑
h∈Ii

πσ

−i
(h) . A counterfactual best response [21] CBR(σ−i) is a best

response that also maximizes value in unreached infosets. Specifically, a counterfactual best re-
sponse is a best response σi with the additional condition that if σi(Ii, a) > 0 then vσi (Ii, a) =
maxa′ vσi (Ii, a

′). We further define counterfactual best response value CBV σ−i(Ii) as the value
player i expects to achieve by playing according to CBR(σ−i), having already reached infoset Ii.

Formally, CBV σ−i(Ii) = v
〈CBR(σ−i),σ−i〉
i (Ii) and CBV σ−i(Ii, a) = v

〈CBR(σ−i),σ−i〉
i (Ii, a).

An imperfect-information subgame, which we refer to simply as a subgame in this paper, can in
most cases (but not all) be described as including all nodes which share prior public actions (that is,
actions viewable to both players). In poker, for example, a subgame is uniquely defined by a sequence
of bets and public board cards. Figure 1b shows the public game tree of Coin Toss. Formally, an
imperfect-information subgame is a set of nodes S ⊆ H such that for all h ∈ S, if h @ h′, then
h′ ∈ S, and for all h ∈ S and all i ∈ P , if h′ ∈ Ii(h) then h′ ∈ S. Define Stop as the set of
earliest-reachable nodes in S. That is, h ∈ Stop if h ∈ S and h′ 6∈ S for any h′

@ h.

4 Prior Approaches to Subgame Solving

This section reviews prior techniques for subgame solving in imperfect-information games, which we
build upon. Throughout this section, we refer to the Coin Toss game shown in Figure 1a.

As discussed in Section 1, a standard approach to dealing with large imperfect-information games is
to solve an abstraction of the game. The abstract solution is a (probably suboptimal) strategy profile

3

in the full game. We refer to this full-game strategy profile as the blueprint. The goal of subgame
solving is to improve upon the blueprint by changing the strategy only in a subgame.

Figure 2: The blueprint strategy we refer to in the game of Coin Toss. The Sell action leads to a subgame that is
not displayed. Probabilities are shown for all actions. The dotted line means the two P2 nodes share an infoset.
The EV of each P1 action is also shown.

Assume that a blueprint strategy profile σ (shown in Figure 2) has already been computed for Coin
Toss in which P1 chooses Play 3

4 of the time with Heads and 1
2 of the time with Tails, and P2 chooses

Heads 1
2 of the time, Tails 1

4 of the time, and Forfeit 1
4 of the time after P1 chooses Play. The details

of the blueprint strategy in the Sell subgame are not relevant in this section, but the EV for choosing
the Sell action is relevant. We assume that if P1 chose the Sell action and played optimally thereafter,
then she would receive an expected payoff of 0.5 if the coin is Heads, and −0.5 if the coin is Tails.
We will attempt to improve P2’s strategy in the subgame S that follows P1 choosing Play.

4.1 Unsafe Subgame Solving

We first review the most intuitive form of subgame solving, which we refer to as Unsafe subgame
solving [1, 12, 13, 10]. This form of subgame solving assumes both players played according to the
blueprint strategy prior to reaching the subgame. That defines a probability distribution over the
nodes at the root of the subgame S, representing the probability that the true game state matches that
node. A strategy for the subgame is then calculated which assumes that this distribution is correct.

In all subgame solving algorithms, an augmented subgame containing S and a few additional nodes
is solved to determine the strategy for S. Applying Unsafe subgame solving to the blueprint strategy
in Coin Toss (after P1 chooses Play) means solving the augmented subgame shown in Figure 3a.

Specifically, the augmented subgame consists of only an initial chance node and S. The initial chance

node reaches h ∈ Stop with probability
πσ(h)∑

h′∈Stop
πσ(h′) . The augmented subgame is solved and its

strategy for P2 is used in S rather than the blueprint strategy.

Unsafe subgame solving lacks theoretical solution quality guarantees and there are many situations
where it performs extremely poorly. Indeed, if it were applied to the blueprint strategy of Coin Toss
then P2 would always choose Heads—which P1 could exploit severely by only choosing Play with
Tails. Despite the lack of theoretical guarantees and potentially bad performance, Unsafe subgame
solving is simple and can sometimes produce low-exploitability strategies, as we show later.

We now move to discussing safe subgame-solving techniques, that is, ones that ensure that the
exploitability of the strategy is no higher than that of the blueprint strategy.

(a) Unsafe subgame solving (b) Resolve subgame solving
Figure 3: The augmented subgames solved to find a P2 strategy in the Play subgame of Coin Toss.

4

4.2 Subgame Resolving

In subgame Resolving [6], a safe strategy is computed for P2 in the subgame by solving the augmented
subgame shown in Figure 3b, producing an equilibrium strategy σS . This augmented subgame differs
from Unsafe subgame solving by giving P1 the option to “opt out” from entering S and instead
receive the EV of playing optimally against P2’s blueprint strategy in S.

Specifically, the augmented subgame for Resolving differs from unsafe subgame solving as follows.
For each htop ∈ Stop we insert a new P1 node hr, which exists only in the augmented subgame,
between the initial chance node and htop. The set of these hr nodes is Sr. The initial chance node
connects to each node hr ∈ Sr in proportion to the probability that player P1 could reach htop if P1

tried to do so (that is, in proportion to πσ
−1(htop)). At each node hr ∈ Sr, P1 has two possible actions.

Action a′S leads to htop, while action a′T leads to a terminal payoff that awards the value of playing
optimally against P2’s blueprint strategy, which is CBV σ2(I1(htop)). In the blueprint strategy of

Coin Toss, P1 choosing Play after the coin lands Heads results in an EV of 0, and 1
2 if the coin is

Tails. Therefore, a′T leads to a terminal payoff of 0 for Heads and 1
2 for Tails. After the equilibrium

strategy σS is computed in the augmented subgame, P2 plays according to the computed subgame
strategy σS

2 rather than the blueprint strategy when in S. The P1 strategy σS
1 is not used.

Clearly P1 cannot do worse than always picking action a′T (which awards the highest EV P1 could
achieve against P2’s blueprint). But P1 also cannot do better than always picking a′T , because P2

could simply play according to the blueprint in S, which means action a′S would give the same EV to
P1 as action a′T (if P1 played optimally in S). In this way, the strategy for P2 in S is pressured to be
no worse than that of the blueprint. In Coin Toss, if P2 were to always choose Heads (as was the case
in Unsafe subgame solving), then P1 would always choose a′T with Heads and a′S with Tails.

Resolving guarantees that P2’s exploitability will be no higher than the blueprint’s (and may be
better). However, it may miss opportunities for improvement. For example, if we apply Resolving to
the example blueprint in Coin Toss, one solution to the augmented subgame is the blueprint itself, so
P2 may choose Forfeit 25% of the time even though Heads and Tails dominate that action. Indeed,
the original purpose of Resolving was not to improve upon a blueprint strategy in a subgame, but
rather to compactly store it by keeping only the EV at the root of the subgame and then reconstructing
the strategy in real time when needed rather than storing the whole subgame strategy.

Maxmargin subgame solving [21], discussed in Appendix A, can improve performance by defin-

ing a margin MσS

(I1) = CBV σ2(I1) − CBV σS

2 (I1) for each I1 ∈ Stop and maximizing

minI1∈Stop
MσS

(I1). Resolving only makes all margins nonnegative. However, Maxmargin does
worse in practice when using estimates of equilibrium values as discussed in Appendix C.

5 Reach Subgame Solving
All of the subgame-solving techniques described in Section 4 only consider the target subgame in
isolation, which can lead to suboptimal strategies. For example, Maxmargin solving applied to S
in Coin Toss results in P2 choosing Heads with probability 5

8 and Tails with 3
8 in S. This results in

P1 receiving an EV of − 1
4 by choosing Play in the Heads state, and an EV of 1

4 in the Tails state.
However, P1 could simply always choose Sell in the Heads state (earning an EV of 0.5) and Play in
the Tails state and receive an EV of 3

8 for the entire game. In this section we introduce Reach subgame
solving, an improvement to past subgame-solving techniques that considers what the opponent could
have alternatively received from other subgames.1 For example, a better strategy for P2 would be
to choose Heads with probability 3

4 and Tails with probability 1
4 . Then P1 is indifferent between

choosing Sell and Play in both cases and overall receives an expected payoff of 0 for the whole game.

However, that strategy is only optimal if P1 would indeed achieve an EV of 0.5 for choosing Sell
in the Heads state and −0.5 in the Tails state. That would be the case if P2 played according to the
blueprint in the Sell subgame (which is not shown), but in reality we would apply subgame solving to
the Sell subgame if the Sell action were taken, which would change P2’s strategy there and therefore
P1’s EVs. Applying subgame solving to any subgame encountered during play is equivalent to
applying it to all subgames independently; ultimately, the same strategy is played in both cases. Thus,
we must consider that the EVs from other subgames may differ from what the blueprint says because
subgame solving would be applied to them as well.

1Other subgame-solving methods have also considered the cost of reaching a subgame [31, 15]. However,
those approaches are not correct in theory when applied in real time to any subgame reached during play.

5

Figure 4: Left: A modified game of Coin Toss with two subgames. The nodes C1 and C2 are public chance
nodes whose outcomes are seen by both P1 and P2. Right: An augmented subgame for one of the subgames
according to Reach subgame solving. If only one of the subgames is being solved, then the alternative payoff
for Heads can be at most 1. However, if both are solved independently, then the gift must be split among the
subgames and must sum to at most 1. For example, the alternative payoff in both subgames can be 0.5.

As an example of this issue, consider the game shown in Figure 4 which contains two identical
subgames S1 and S2 where the blueprint has P2 pick Heads and Tails with 50% probability. The Sell
action leads to an EV of 0.5 from the Heads state, while Play leads to an EV of 0. If we were to solve
just S1, then P2 could afford to always choose Tails in S1, thereby letting P1 achieve an EV of 1
for reaching that subgame from Heads because, due to the chance node C1, S1 is only reached with
50% probability. Thus, P1’s EV for choosing Play would be 0.5 from Heads and −0.5 from Tails,
which is optimal. We can achieve this strategy in S1 by solving an augmented subgame in which the
alternative payoff for Heads is 1. In that augmented subgame, P2 always choosing Tails would be a
solution (though not the only solution).

However, if the same reasoning were applied independently to S2 as well, then P2 might always
choose Tails in both subgames and P1’s EV for choosing Play from Heads would become 1 while the
EV for Sell would only be 0.5. Instead, we could allow P1 to achieve an EV of 0.5 for reaching each
subgame from Heads (by setting the alternative payoff for Heads to 0.5). In that case, P1’s overall
EV for choosing Play could only increase to 0.5, even if both S1 and S2 were solved independently.

We capture this intuition by considering for each I1 ∈ Stop all the infosets and actions I ′1 · a
′
@ I1

that P1 would have taken along the path to I1. If, at some I ′1 · a
′
@ I1 where P1 acted, there was a

different action a∗ ∈ A(I ′1) that leads to a higher EV, then P1 would have taken a suboptimal action
if they reached I1. The difference in value between a∗ and a′ is referred to as a gift. We can afford
to let P1’s value for I1 increase beyond the blueprint value (and in the process lower P1’s value in
some other infoset in Stop), so long as the increase to I1’s value is small enough that choosing actions
leading to I1 is still suboptimal for P1. Critically, we must ensure that the increase in value is small
enough even when the potential increase across all subgames is summed together, as in Figure 4.2

A complicating factor is that gifts we assumed were present may actually not exist. For example, in
Coin Toss, suppose applying subgame solving to the Sell subgame results in P1’s value for Sell from
the Heads state decreasing from 0.5 to 0.25. If we independently solve the Play subgame, we have
no way of knowing that P1’s value for Sell is lower than the blueprint suggested, so we may still
assume there is a gift of 0.5 from the Heads state based on the blueprint. Thus, in order to guarantee a
theoretical result on exploitability that is as strong as possible, we use in our theory and experiments
a lower bound on what gifts could be after subgame solving was applied to all other subgames.

Formally, let σ2 be a P2 blueprint and let σ−S
2 be the P2 strategy that results from applying sub-

game solving independently to a set of disjoint subgames other than S. Since we do not want

to compute σ−S
2 in order to apply subgame solving to S, let bgσ

−S

2 (I ′1, a
′)c be a lower bound of

CBV σ
−S

2 (I ′1)− CBV σ
−S

2 (I ′1, a
′) that does not require knowledge of σ−S

2 . In our experiments we

2In this paper and in our experiments, we allow any infoset that descends from a gift to increase by the size
of the gift (e.g., in Figure 4 the gift from Heads is 0.5, so we allow P1’s value for Heads in both S1 and S2

to increase by 0.5). However, any division of the gift among subgames is acceptable so long as the potential
increase across all subgames (multiplied by the probability of P1 reaching that subgame) does not exceed the
original gift. For example in Figure 4 if we only apply Reach subgame solving to S1, then we could allow the
Heads state in S1 to increase by 1 rather than just by 0.5. In practice, some divisions may do better than others.
The division we use in this paper (applying gifts equally to all subgames) did well in practice.

6

use bgσ
−S

2 (I ′1, a
′)c = maxa∈Az(I′

1
)∪{a′} CBV σ2(I ′1, a) − CBV σ2(I ′1, a

′) where Az(I
′
1) ⊆ A(I ′1)

is the set of actions leading immediately to terminal nodes. Reach subgame solving modifies the
augmented subgame in Resolving and Maxmargin by increasing the alternative payoff for infoset

I1 ∈ Stop by
∑

I′

1
·a′vI1|P (I′

1
)=P1

bgσ
−S

2 (I ′1, a
′)c. Formally, we define a reach margin as

MσS

r (I1) = MσS

(I1) +
∑

I′

1
·a′vI1|P (I′

1
)=P1

bgσ
−S

2 (I ′1, a
′)c (1)

This margin is larger than or equal to the one for Maxmargin, because bgσ
−S

2 (I ′, a′)c is nonnegative.
We refer to the modified algorithms as Reach-Resolve and Reach-Maxmargin.

Using a lower bound on gifts is not necessary to guarantee safety. So long as we use a gift value

gσ
′

(I ′1, a
′) ≤ CBV σ2(I ′1) − CBV σ2(I ′1, a

′), the resulting strategy will be safe. However, using
a lower bound further guarantees a reduction to exploitability when a P1 best response reaches
with positive probability an infoset I1 ∈ Stop that has positive margin, as proven in Theorem 1. In

practice, it may be best to use an accurate estimate of gifts. One option is to use ĝσ
−S

2 (I ′1, a
′) =

˜CBV
σ2

(I ′1)−
˜CBV

σ2

(I ′1, a
′) in place of bgσ

−S

2 (I ′1, a
′)c, where ˜CBV

σ2

is the closest P1 can get to
the value of a counterfactual best response while P1 is constrained to playing within the abstraction
that generated the blueprint. Using estimates is covered in more detail in Appendix C.

Theorem 1 shows that when subgames are solved independently and using lower bounds on gifts,
Reach-Maxmargin solving has exploitability lower than or equal to past safe techniques. The theorem
statement is similar to that of Maxmargin [21], but the margins are now larger (or equal) in size.

Theorem 1. Given a strategy σ2 in a two-player zero-sum game, a set of disjoint subgames S,
and a strategy σS

2 for each subgame S ∈ S produced via Reach-Maxmargin solving using lower
bounds for gifts, let σ′

2 be the strategy that plays according to σS
2 for each subgame S ∈ S, and σ2

elsewhere. Moreover, let σ−S
2 be the strategy that plays according to σ′

2 everywhere except for P2

nodes in S, where it instead plays according to σ2. If π
BR(σ′

2
)

1 (I1) > 0 for some I1 ∈ Stop, then

exp(σ′
2) ≤ exp(σ−S

2)−
∑

h∈I1
πσ2

−1(h)M
σS

r (I1).

So far the described techniques have guaranteed a reduction in exploitability over the blueprint by
setting the value of a′T equal to the value of P1 playing optimally to P2’s blueprint. Relaxing this
guarantee by instead setting the value of a′T equal to an estimate of P1’s value when both players
play optimally leads to far lower exploitability in practice. We discuss this approach in Appendix C.

6 Nested Subgame Solving

As we have discussed, large games must be abstracted to reduce the game to a tractable size. This is
particularly common in games with large or continuous action spaces. Typically the action space is
discretized by action abstraction so that only a few actions are included in the abstraction. While
we might limit ourselves to the actions we included in the abstraction, an opponent might choose
actions that are not in the abstraction. In that case, the off-tree action can be mapped to an action that
is in the abstraction, and the strategy from that in-abstraction action can be used. For example, in an
auction game we might include a bid of $100 in our abstraction. If a player bids $101, we simply
treat that as a bid of $100. This is referred to as action translation [14, 28, 8]. Action translation is
the state-of-the-art prior approach to dealing with this issue. It has been used, for example, by all the
leading competitors in the Annual Computer Poker Competition (ACPC).

In this section, we develop techniques for applying subgame solving to calculate responses to
opponent off-tree actions, thereby obviating the need for action translation. That is, rather than simply
treat a bid of $101 as $100, we calculate in real time a unique response to the bid of $101. This can
also be done in a nested fashion in response to subsequent opponent off-tree actions. Additionally,
these techniques can be used to solve finer-grained models as play progresses down the game tree.

We refer to the first method as the inexpensive method.3 When P1 chooses an off-tree action a,
a subgame S is generated following that action such that for any infoset I1 that P1 might be in,
I1 · a ∈ Stop. This subgame may itself be an abstraction. A solution σS is computed via subgame

solving, and σS is combined with σ to form a new blueprint σ′ in the expanded abstraction that now
includes action a. The process repeats whenever P1 again chooses an off-tree action.

3Following our study, the AI DeepStack used a technique similar to this form of nested subgame solving [20].

7

To conduct safe subgame solving in response to off-tree action a, we could calculate CBV σ2(I1, a)
by defining, via action translation, a P2 blueprint following a and best responding to it [4]. However,
that could be computationally expensive and would likely perform poorly in practice because, as we
show later, action translation is highly exploitable. Instead, we relax the guarantee of safety and use
˜CBV

σ2

(I1) for the alternative payoff, where ˜CBV
σ2

(I1) is P1’s counterfactual best response value
in I1 when constrained to playing in the blueprint abstraction (which excludes action a). In this case,

exploitability depends on how well ˜CBV
σ2

(I1) approximates CBV σ∗

2 (I1), where σ∗
2 is an optimal

P2 strategy (see Appendix C).4 In general, we find that only a small number of near-optimal actions

need to be included in the blueprint abstraction for ˜CBV
σ2

(I1) to be close to CBV σ∗

2 (I1). We can
then approximate a near-optimal response to any opponent action, even in a continuous action space.

The “inexpensive” approach cannot be combined with Unsafe subgame solving because the probability
of reaching an action outside of a player’s abstraction is undefined. Nevertheless, a similar approach
is possible with Unsafe subgame solving (as well as all the other subgame-solving techniques) by
starting the subgame solving at h rather than at h · a. In other words, if action a taken in node h is
not in the abstraction, then Unsafe subgame solving is conducted in the smallest subgame containing
h (and action a is added to that abstraction). This increases the size of the subgame compared to the
inexpensive method because a strategy must be recomputed for every action a′ ∈ A(h) in addition to
a. We therefore call this method the expensive method. We present experiments with both methods.

7 Experiments

Our experiments were conducted on heads-up no-limit Texas hold’em, as well as two smaller-scale
poker games we call No-Limit Flop Hold’em (NLFH) and No-Limit Turn Hold’em (NLTH). The
description for these games can be found in Appendix G. For equilibrium finding, we used CFR+ [30].

Our first experiment compares the performance of the subgame-solving techniques when applied
to information abstraction (which is card abstraction in the case of poker). Specifically, we solve
NLFH with no information abstraction on the preflop. On the flop, there are 1,286,792 infosets for
each betting sequence; the abstraction buckets them into 200, 2,000, or 30,000 abstract ones (using a
leading information abstraction algorithm [9]). We then apply subgame solving immediately after the
flop community cards are dealt. We experiment with two versions of the game, one small and one
large, which include only a few of the available actions in each infoset. We also experimented on
abstractions of NLTH. In that case, we solve NLTH with no information abstraction on the preflop or
flop. On the turn, there are 55,190,538 infosets for each betting sequence; the abstraction buckets
them into 200, 2,000, or 20,000 abstract ones. We apply subgame solving immediately after the
turn community card is dealt. Table 1 shows the performance of each technique when using 30,000
buckets (20,000 for NLTH). The full results are presented in Appendix E. In all our experiments,
exploitability is measured in the standard units used in this field: milli big blinds per hand (mbb/h).

Small Flop Holdem Large Flop Holdem Turn Holdem

Blueprint Strategy 91.28 41.41 345.5
Unsafe 5.514 396.8 79.34
Resolve 54.07 23.11 251.8
Maxmargin 43.43 19.50 234.4
Reach-Maxmargin 41.47 18.80 233.5
Reach-Maxmargin (no split) 25.88 16.41 175.5
Estimate 24.23 30.09 76.44
Estimate+Distributional 34.30 10.54 74.35
Reach-Estimate+Distributional 22.58 9.840 72.59
Reach-Estimate+Distributional (no split) 17.33 8.777 70.68

Table 1: Exploitability of various subgame-solving techniques in three different games.

Estimate and Estimate+Distributional are techniques introduced in Appendix C. We use a normal
distribution in the Distributional subgame solving experiments, with standard deviation determined
by the heuristic presented in Appendix C.1.

Since subgame solving begins immediately after a chance node with an extremely high branching
factor (1, 755 in NLFH), the gifts for the Reach algorithms are divided among subgames inefficiently.

4We estimate CBV σ
∗

2 (I1) rather than CBV σ
∗

2 (I1, a) because CBV σ
∗

2 (I1)− CBV σ
∗

2 (I1, a) is a gift that
may be added to the alternative payoff anyway.

8

Many subgames do not use the gifts at all, while others could make use of more. In the experiments
we show results both for the theoretically safe splitting of gifts, as well as a more aggressive version
where gifts are scaled up by the branching factor of the chance node (1, 755). This weakens the
theoretical guarantees of the algorithm, but in general did better than splitting gifts in a theoretically
correct manner. However, this is not universally true. Appendix F shows that in at least one case,
exploitability increased when gifts were scaled up too aggressively. In all cases, using Reach subgame
solving in at least the theoretical safe method led to lower exploitability.

Despite lacking theoretical guarantees, Unsafe subgame solving did surprisingly well in most games.
However, it did substantially worse in Large NLFH with 30,000 buckets. This exemplifies its
variability. Among the safe methods, all of the changes we introduce show improvement over
past techniques. The Reach-Estimate + Distributional algorithm generally resulted in the lowest
exploitability among the various choices, and in most cases beat unsafe subgame solving.

The second experiment evaluates nested subgame solving, and compares it to action translation. In
order to also evaluate action translation, in this experiment, we create an NLFH game that includes 3
bet sizes at every point in the game tree (0.5, 0.75, and 1.0 times the size of the pot); a player can also
decide not to bet. Only one bet (i.e., no raises) is allowed on the preflop, and three bets are allowed on
the flop. There is no information abstraction anywhere in the game. We also created a second, smaller
abstraction of the game in which there is still no information abstraction, but the 0.75× pot bet is
never available. We calculate the exploitability of one player using the smaller abstraction, while
the other player uses the larger abstraction. Whenever the large-abstraction player chooses a 0.75×
pot bet, the small-abstraction player generates and solves a subgame for the remainder of the game
(which again does not include any subsequent 0.75× pot bets) using the nested subgame-solving
techniques described above. This subgame strategy is then used as long as the large-abstraction player
plays within the small abstraction, but if she chooses the 0.75× pot bet again later, then the subgame
solving is used again, and so on.

Table 2 shows that all the subgame-solving techniques substantially outperform action translation.
We did not test distributional alternative payoffs in this experiment, since the calculated best response
values are likely quite accurate. These results suggest that nested subgame solving is preferable to
action translation (if there is sufficient time to solve the subgame).

mbb/h

Randomized Pseudo-Harmonic Mapping 1,465
Resolve 150.2
Reach-Maxmargin (Expensive) 149.2
Unsafe (Expensive) 148.3
Maxmargin 122.0
Reach-Maxmargin 119.1

Table 2: Exploitability of the various subgame-solving techniques in nested subgame solving. The performance
of the pseudo-harmonic action translation is also shown.

We used the techniques presented in this paper to develop Libratus, an AI that competed against four
top human professionals in heads-up no-limit Texas hold’em [5]. Heads-up no-limit Texas hold’em
has been the primary benchmark challenge for AI in imperfect-information games. The competition
involved 120,000 hands of poker and a prize pool of $200,000 split among the humans to incentivize
strong play. The AI decisively defeated the human team by 147 mbb / hand, with 99.98% statistical
significance. This was the first, and so far only, time an AI defeated top humans in no-limit poker.

8 Conclusion

We introduced a subgame-solving technique for imperfect-information games that has stronger
theoretical guarantees and better practical performance than prior subgame-solving methods. We
presented results on exploitability of both safe and unsafe subgame-solving techniques. We also
introduced a method for nested subgame solving in response to the opponent’s off-tree actions, and
demonstrated that this leads to dramatically better performance than the usual approach of action
translation. This is, to our knowledge, the first time that exploitability of subgame-solving techniques
has been measured in large games.

Finally, we demonstrated the effectiveness of these techniques in practice in heads-up no-limit Texas
Hold’em poker, the main benchmark challenge for AI in imperfect-information games. We developed
the first AI to reach the milestone of defeating top humans in heads-up no-limit Texas Hold’em.

9

9 Acknowledgments

This material is based on work supported by the National Science Foundation under grants IIS-
1718457, IIS-1617590, and CCF-1733556, and the ARO under award W911NF-17-1-0082, as well
as XSEDE computing resources provided by the Pittsburgh Supercomputing Center. The Brains vs.
AI competition was sponsored by Carnegie Mellon University, Rivers Casino, GreatPoint Ventures,
Avenue4Analytics, TNG Technology Consulting, Artificial Intelligence, Intel, and Optimized Markets,
Inc. We thank Kristen Gardner, Marcelo Gutierrez, Theo Gutman-Solo, Eric Jackson, Christian Kroer,
Tim Reiff, and the anonymous reviewers for helpful feedback.

References

[1] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-theoretic optimal strategies for full-
scale poker. In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

[2] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, January 2015.

[3] Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning
for regret minimization. In AAAI Conference on Artificial Intelligence (AAAI), pages 421–429,
2017.

[4] Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding in
games. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2015.

[5] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, page eaao1733, 2017.

[6] Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games
using decomposition. In AAAI Conference on Artificial Intelligence (AAAI), pages 602–608,
2014.

[7] Murray Campbell, A Joseph Hoane, and Feng-Hsiung Hsu. Deep Blue. Artificial intelligence,
134(1-2):57–83, 2002.

[8] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with large
action spaces: axioms, paradoxes, and the pseudo-harmonic mapping. In Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence, pages 120–128. AAAI
Press, 2013.

[9] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

[10] Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
37–45, 2015.

[11] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with O(ln(1/ε))
convergence for ε-equilibrium in two-person zero-sum games. Mathematical Programming,
133(1–2):279–298, 2012. Conference version appeared in AAAI-08.

[12] Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via au-
tomated abstraction and real-time equilibrium computation. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 1007–1013, 2006.

[13] Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect
information games, with application to Texas Hold’em poker. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1168–1175, 2007.

10

[14] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit texas
hold’em poker player: discretized betting models and automatically generated equilibrium-
finding programs. In Proceedings of the Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 911–918. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2008.

[15] Eric Jackson. A time and space efficient algorithm for approximately solving large imperfect
information games. In AAAI Workshop on Computer Poker and Imperfect Information, 2014.

[16] Michael Johanson. Measuring the size of large no-limit poker games. Technical report,
University of Alberta, 2013.

[17] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract
strategies in extensive-form games. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pages 1371–1379. AAAI Press, 2012.

[18] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Theoretical
and practical advances on smoothing for extensive-form games. In Proceedings of the ACM
Conference on Economics and Computation (EC), 2017.

[19] Nick Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

[20] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 2017.

[21] Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen Gaukrodger. Refining
subgames in large imperfect information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2016.

[22] John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36:48–49, 1950.

[23] Yurii Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal of
Optimization, 16(1):235–249, 2005.

[24] Tuomas Sandholm. The state of solving large incomplete-information games, and application
to poker. AI Magazine, pages 13–32, Winter 2010. Special issue on Algorithmic Game Theory.

[25] Tuomas Sandholm. Abstraction for solving large incomplete-information games. In AAAI
Conference on Artificial Intelligence (AAAI), pages 4127–4131, 2015. Senior Member Track.

[26] Tuomas Sandholm. Solving imperfect-information games. Science, 347(6218):122–123, 2015.

[27] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):1518–1522, 2007.

[28] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state translation in
extensive games with large action sets. In Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence, pages 278–284, 2009.

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[30] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
texas hold’em. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 645–652, 2015.

[31] Kevin Waugh, Nolan Bard, and Michael Bowling. Strategy grafting in extensive games. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2009.

[32] Martin Zinkevich, Michael Johanson, Michael H Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), pages 1729–1736, 2007.

11

