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Abstract

Iterative algorithms such as Counterfactual Regret

Minimization (CFR) are the most popular way

to solve large zero-sum imperfect-information

games. In this paper we introduce Best-Response

Pruning (BRP), an improvement to iterative algo-

rithms such as CFR that allows poorly-performing

actions to be temporarily pruned. We prove that

when using CFR in zero-sum games, adding BRP

will asymptotically prune any action that is not

part of a best response to some Nash equilibrium.

This leads to provably faster convergence and

lower space requirements. Experiments show that

BRP results in a factor of 7 reduction in space,

and the reduction factor increases with game size.

1. Introduction

Imperfect-information extensive-form games model strate-

gic multi-step scenarios between agents with hidden infor-

mation, such as auctions, security interactions (both physical

and virtual), negotiations, and military situations. Typically

in imperfect-information games, one wishes to find a Nash

equilibrium, which is a profile of strategies in which no

player can improve her outcome by unilaterally changing

her strategy. A linear program can find an exact Nash equi-

librium in two-player zero-sum games containing fewer

than about 108 nodes (Gilpin & Sandholm, 2007). For

larger games, iterative algorithms are used to converge to a

Nash equilibrium. There are a number of such iterative al-

gorithms (Heinrich et al., 2015; Nesterov, 2005; Hoda et al.,

2010; Pays, 2014; Kroer et al., 2015), the most popular of

which is Counterfactual Regret Minimization (CFR) (Zinke-

vich et al., 2007). CFR minimizes regret independently at

each decision point in the game. CFR+, a variant of CFR,
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was used to essentially solve Limit Texas Hold’em, the

largest imperfect-information game ever to be essentially

solved (Bowling et al., 2015).

Both computation time and storage space are difficult chal-

lenges when solving large imperfect-information games.

For example, solving Limit Texas Hold’em required nearly

8 million core hours and a complex, domain-specific stream-

ing compression algorithm to store the 262 TiB of uncom-

pressed data in only 10.9 TiB. This data had to be repeatedly

decompressed from disk into memory and then compressed

back to disk in order to run CFR+ (Tammelin et al., 2015).

In certain situations, pruning can be applied to speed up the

traversal of the game tree in iterative algorithms (Lanctot

et al., 2009; Brown & Sandholm, 2015a; Brown et al., 2017).

However, these past pruning techniques do not reduce the

space needed to solve a game and lack theoretical guarantees

for improved performance.

In this paper we introduce Best-Response Pruning (BRP)1,

a new form of pruning for iterative algorithms such as CFR

in large imperfect-information games. BRP leverages the

fact that in iterative algorithms we are typically interested in

performance against the opponent’s average strategy over all

iterations, and that the opponent’s average strategy cannot

change faster than a rate of 1
t
, where t is the number of iter-

ations conducted so far. Thus, if part-way through a run one

of our actions has done very poorly relative to other available

actions against the opponent’s average strategy, then after

just a few more iterations the opponent’s average strategy

cannot change sufficiently for the poorly-performing action

to now be doing well against the opponent’s updated average

strategy. In fact, we can bound how much an action’s perfor-

mance can improve over any number of iterations against

the opponent’s average strategy. So long as the upper bound

on that performance is still not competitive with the other

actions, then we can safely ignore the poorly-performing

action.

BRP provably reduces the computation time needed to solve

imperfect-information games. Additionally, a primary ad-

vantage of BRP is that in addition to faster convergence,

1Earlier versions of this paper referred to Best-Response Prun-
ing as Total Regret-Based Pruning (Total RBP)
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it also reduces the space needed over time. Specifically,

once pruning begins on a branch, BRP discards the memory

allocated on that branch and does not reallocate the memory

until pruning ends and the branch cannot immediately be

pruned again. In Section 3.1, we prove that after enough

iterations of CFR are completed, space for certain pruned

branches will never need to be allocated again. Specifi-

cally, we prove that when using BRP it is asymptotically

only necessary to store data for parts of the game that are

reached with positive probability in a best response to a

Nash equilibrium. This is extremely advantageous when

solving large imperfect-information games, which are often

constrained by space and in which the set of best response

actions may be orders of magnitude smaller than the size of

the game (Schmid et al., 2014).

While BRP still requires enough memory to store the entire

game in the early iterations, recent work has shown that

these early iterations can be skipped in CFR, and possibly

other iterative algorithms, by first solving a low-memory

abstraction of the game and then using its solution to warm

start CFR in the full game (Brown & Sandholm, 2016).

BRP’s reduction in space is also helpful to the Simulta-

neous Abstraction and Equilibrium Finding (SAEF) algo-

rithm (Brown & Sandholm, 2015b), which starts CFR with

a small abstraction of the game and progressively expands

the abstraction while also solving the game. SAEF’s space

requirements increase the longer the algorithm runs, and

may eventually exceed the constraints of a system. BRP

can counter this increase in space by eliminating the need

to store suboptimal paths of the game tree.

BRP shares some similarities to the earlier pruning algo-

rithm Regret-Based Pruning, which has shown empirical

evidence of improving the performance of CFR. In contrast,

this paper proves that CFR converges faster when using

BRP, because suboptimal paths in the game tree will only

need to be traversed O
(

ln(T )
)

times over T iterations. We

also prove that BRP uses asymptotically less space, while

Regret-Based Pruning does not reduce the space needed

to solve a game. Moreover, Best-Response Pruning eas-

ily generalizes to iterative algorithms beyond CFR such as

Fictitious Play (Heinrich et al., 2015).

The magnitude of the gains in speed and space that BRP

provides varies depending on the game. It is possible to

construct games where BRP provides no benefit. However,

if there are many suboptimal actions in the game—as is

frequently the case in large games—BRP can speed up

CFR by multiple orders of magnitude and require orders of

magnitude less space. Our experiments show an order of

magnitude space reduction already in medium-sized games,

and a reduction factor increase with game size.

2. Background

In a two-player zero-sum imperfect-information extensive-

form game there are two players, P = {1, 2}. Let H be

the set of all possible histories (nodes) in the game tree,

represented as a sequence of actions. The actions available

in a history is A(h) and the player who acts at that history

is P (h) ∈ P ∪ c, where c denotes chance. Chance plays

an action a ∈ A(h) with a fixed probability. The history h′

reached after action a in h is a child of h, represented by

h · a = h′, while h is the parent of h′. More generally, h′ is

an ancestor of h (and h is a descendant of h′), represented

by h′ @ h, if there exists a sequence of actions from h′ to h.

Z ⊆ H are terminal histories. For each player i ∈ P , there

is a payoff function ui : Z → < where u1 = −u2. Define

∆i = maxz∈Z ui(z)−minz∈Z ui(z) and ∆ = maxi∆i.

Imperfect information is represented by information sets for

each player i ∈ P by a partition Ii of h ∈ H : P (h) = i.

For any information set I ∈ Ii, all histories h, h′ ∈ I are

indistinguishable to player i, so A(h) = A(h′). I(h) is

the information set I where h ∈ I . P (I) is the player i

such that I ∈ Ii. A(I) is the set of actions such that for

all h ∈ I , A(I) = A(h). |Ai| = maxI∈Ii
|A(I)| and

|A| = maxi |Ai|. Define U(I) to be the maximum payoff

reachable from a history in I , and L(I) to be the minimum.

That is, U(I) = maxz∈Z,h∈I:hvz uP (I)(z) and L(I) =
minz∈Z,h∈I:hvz uP (I)(z). Define ∆(I) = U(I) − L(I)
to be the range of payoffs reachable from a history in I .

Similarly U(I, a), L(I, a), and ∆(I, a) are the maximum,

minimum, and range of payoffs (respectively) reachable

from a history in I after taking action a. Define D(I, a) to

be the set of information sets reachable by player P (I) after

taking action a. Formally, I ′ ∈ D(I, a) if for some history

h ∈ I and h′ ∈ I ′, h · a v h′ and P (I) = P (I ′).

A strategy σi(I) is a probability vector over A(I) for player

i in information set I . The probability of a particular action

a is denoted by σi(I, a). Since all histories in an information

set belonging to player i are indistinguishable, the strategies

in each of them must be identical. That is, for all h ∈ I ,

σi(h) = σi(I) and σi(h, a) = σi(I, a). Define σi to be a

probability vector for player i over all available strategies

Σi in the game. A strategy profile σ is a tuple of strategies,

one for each player. ui(σi, σ−i) is the expected payoff

for player i if all players play according to the strategy

profile 〈σi, σ−i〉. If a series of strategies are played over T

iterations, then σ̄Ti =
∑

t∈T σ
t
i

T
.

πσ(h) = Πh′→avhσP (h′)(h
′, a) is the joint probability of

reaching h if all players play according to σ. πσi (h) is the

contribution of player i to this probability (that is, the prob-

ability of reaching h if all players other than i, and chance,

always chose actions leading to h). πσ−i(h) is the contribu-

tion of all players other than i, and chance. πσ(h, h′) is the
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probability of reaching h′ given that h has been reached,

and 0 if h 6@ h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii,
πi(h) = πi(h

′). In this paper we focus on perfect-recall

games. Therefore, for i = P (I) define πi(I) = πi(h) for

h ∈ I . Moreover, I ′ @ I if for some h′ ∈ I ′ and some

h ∈ I , h′ @ h. Similarly, I ′ · a @ I if h′ · a @ h. The

average strategy σ̄Ti (I) for an information set I is defined

as σ̄Ti (I) =
∑

t∈T π
σt
i

i
(I)σt

i(I)
∑

t∈T π
σt

i
(I)

.

A best response to σ−i is a strategy σ∗
i such that

ui(σ
∗
i , σ−i) = maxσ′

i
∈Σi

ui(σ
′
i, σ−i). A Nash equilib-

rium σ∗ is a strategy profile where every player plays a

best response: ∀i, ui(σ∗
i , σ

∗
−i) = maxσ′

i
∈Σi

ui(σ
′
i, σ

∗
−i). A

Nash equilibrium strategy for player i as a strategy σi that

is part of any Nash equilibrium. In two-player zero-sum

games, if σi and σ−i are both Nash equilibrium strategies,

then 〈σi, σ−i〉 is a Nash equilibrium. An ε-equilibrium

as a strategy profile σ∗ such that ∀i, ui(σ∗
i , σ

∗
−i) + ε ≥

maxσ′

i
∈Σi

ui(σ
′
i, σ

∗
−i).

2.1. Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is a popular al-

gorithm for extensive-form games in which the strategy

vector for each information set is determined according to a

regret-minimization algorithm (Zinkevich et al., 2007). We

use regret matching (RM) (Hart & Mas-Colell, 2000) as the

regret-minimization algorithm, but the material presented in

this paper also applies to other regret minimizing algorithms

such as Hedge (Brown et al., 2017).

The analysis of CFR makes frequent use of counterfactual

value. Informally, this is the expected utility of an informa-

tion set given that player i tries to reach it. For player i at

information set I given a strategy profile σ, this is defined

as

vσ(I) =
∑

h∈I

(

πσ−i(h)
∑

z∈Z

(

πσ(h, z)ui(z)
)

)

(1)

The counterfactual value of an action a is

vσ(I, a) =
∑

h∈I

(

πσ−i(h)
∑

z∈Z

(

πσ(h · a, z)ui(z)
)

)

(2)

A counterfactual best response (Moravcik et al., 2016)

(CBR) is a strategy similar to a best response, except that

it maximizes counterfactual value even at information sets

that it does not reach due to its earlier actions. Specif-

ically, a counterfactual best response to σ−i is a strat-

egy CBR(σ−i) such that if CBR(σ−i)(I, a) > 0 then

v〈CBR(σ−i),σ−i〉(I, a) = maxa′ v
〈CBR(σ−i),σ−i〉(I, a′).

The counterfactual best response value CBV σ−i(I) is sim-

ilar to counterfactual value, except that player i = P (I)
plays according to a CBR to σ−i. Formally, CBV σ−i(I) =
v〈CBRi(σ−i),σ−i〉(I).

Let σt be the strategy profile used on iteration t. The in-

stantaneous regret on iteration t for action a in information

set I is rt(I, a) = vσ
t

(I, a) − vσ
t

(I) and the regret for

action a in I on iteration T is RT (I, a) =
∑

t∈T r
t(I, a).

Additionally, RT+(I, a) = max{RT (I, a), 0} and RT (I) =
maxa{RT+(I, a)}. Regret for player i in the entire game is

RTi = maxσ′

i
∈Σi

∑

t∈T
(

ui(σ
′
i, σ

t
−i)− ui(σ

t
i , σ

t
−i)

)

.

In regret matching, a player picks a distribution over actions

in an information set in proportion to the positive regret on

those actions. Formally, on each iteration T + 1, player i

selects actions a ∈ A(I) according to probabilities

σT+1(I, a) =







RT
+(I,a)

∑
a′∈A(I) R

T
+(I,a′)

, if
∑

a′ R
T
+(I, a

′) > 0

1
|A(I)| , otherwise

(3)

If a player plays according to RM on every iteration then on

iteration T , RT (I) ≤ ∆(I)
√

|A(I)|
√
T .

If a player plays according to CFR in every iteration then

RTi ≤ ∑

I∈Ii
RT (I). So, as T → ∞,

RT
i

T
→ 0. In

two-player zero-sum games, if both players’ average re-

gret
RT

i

T
≤ ε, their average strategies 〈σ̄T1 , σ̄T2 〉 form a 2ε-

equilibrium (Waugh et al., 2009). Thus, CFR constitutes

an anytime algorithm for finding an ε-Nash equilibrium in

zero-sum games.

2.2. Prior Approaches to Pruning

This section reviews forms of pruning that allow parts of the

game tree to be skipped in CFR. In vanilla CFR, the entire

game tree is traversed separately for each player history-

by-history. On each traversal, the regret for each action

of a history’s information set is updated based on the ex-

pected value for that action on that iteration, weighed by the

probability of opponents taking actions to reach the history

(that is, weighed by πσ
t

−i(h)). However, if a history h is

reached on iteration t in which πσ
t

−i(h) = 0, then from (1)

and (2) the strategy at h contributes nothing on iteration

t to the regret of I(h) (or to the information sets above

it). Moreover, any history that would be reached beyond h

would also contribute nothing to its information set’s regret

because πσ
t

−i(h
′) = 0 for every history h′ where h @ h′

and P (h′) = P (h). Thus, when traversing the game tree

for player i, there is no need to traverse beyond any history

h when πσ
t

−i(h) = 0. The benefit of this form of pruning,

which we refer to as partial pruning, varies depending on

the game, but empirical results show a factor of 30 improve-

ment in some games (Lanctot et al., 2009).

While partial pruning allows one to prune paths that an op-

ponent reaches with zero probability, Regret-Based Pruning

allows one to also prune paths that the traverser reaches
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with zero probability (Brown & Sandholm, 2015a). How-

ever, this pruning is necessarily temporary. Consider an

action a ∈ A(I) such that σt(I, a) = 0, and assume that it

is known action a will not be played with positive probabil-

ity until some far-future iteration t′ (in RM, this would be

the case ifRt(I, a) � 0). Since action a is played with zero

probability on iteration t, so from (1) the strategy played and

reward received following action a (that is, in D(I, a)) will

not contribute to the regret for any information set preceding

action a on iteration t. In fact, what happens in D(I, a) has

no bearing on the rest of the game tree until iteration t′ is

reached. So one could, in theory, “procrastinate” in deciding

what happened beyond action a on iteration t, t+1, ..., t′−1
until iteration t′.

However, upon reaching iteration t′, rather than individu-

ally making up the t′ − t iterations over D(I, a), one can

instead do a single iteration, playing against the average of

the opponents’ strategies in the t′ − t iterations that were

missed, and declare that strategy was played on all the t′− t
iterations. This accomplishes the work of the t′−t iterations

in a single traversal. Moreover, since player i never plays

action a with positive probability between iterations t and

t′, that means every other player can apply partial pruning

on that part of the game tree for iterations t′ − t, and skip

it completely. This, in turn, means that player i has free

rein to play whatever they want in D(I, a) without affecting

the regrets of the other players. In light of that, and of the

fact that player i gets to decide what is played in D(I, a)
after knowing what the other players have played, player

i might as well play a strategy that ensures zero regret for

all information sets I ′ ∈ D(I, a) in the iterations t to t′. A

CBR to the average of the opponent strategies on the t′ − t

iterations would qualify as such a zero-regret strategy.

Regret-Based Pruning only allows a player to skip travers-

ing D(I, a) for as long as σt(I, a) = 0. Thus, in

RM, if Rt0(I, a) < 0, we can prune the game tree

beyond action a from iteration t0 until iteration t1 so

long as
∑t0
t=1 v

σt

(I, a) +
∑t1
t=t0+1 π

σt

−i(I)U(I, a) ≤
∑t1
t=1 v

σt

(I).

3. Best-Response Pruning

This section describes the behavior of BRP. In particular

we focus on the case where BRP is applied to the most

popular family of iterative algorithms, CFR. BRP begins

pruning an action in an information set whenever playing

perfectly beyond that action against the opponent’s average

strategy (that is, playing a CBR) still does worse than what

has been achieved in the iterations played so far (that is,
∑T

t=1 v
σt

(I)). Pruning continues for the minimum number

of iterations it could take for the opponent’s average strategy

to change sufficiently such that the pruning starting condi-

tion (that is, playing a CBR beyond the action against the

opponent’s average strategy does worse than what has been

achieved in the iterations so far) no longer holds. When

pruning ends, BRP calculates a CBR in the pruned branch

against the opponent’s average strategy over all iterations

played so far, and sets regret in the pruned branch as if that

CBR strategy were played on every iteration played in the

game so far—even those that were played before pruning

began.

While using a CBR works correctly when applying BRP to

CFR, it is also sound to choose a strategy that is almost a

CBR (formalized later in this section), as long as that strat-

egy ensures
∑

a∈A(I)

(

RT+(I, a)
)2 ≤

(

∆(I)
)2|A(I)|T . In

practice, this means that the strategy is close to a CBR, and

approaches a CBR as T → ∞. We now present the theory

to show that such a near-CBR can be used. However, in

practice CFR converges much faster than the theoretical

bound, so the potential function is typically far lower than

the theoretical bound. Thus, while choosing a near-CBR

rather than an exact CBR may allow for slightly longer prun-

ing according to the theory, it may actually result in worse

performance. All of the theoretical results presented in this

paper, including the improved convergence bound as well

as the lower space requirements, still hold if only a CBR is

used, and our experiments use a CBR. Nevertheless, clever

algorithms for deciding on a near-CBR may lead to even

better performance in practice.

We define a strategy β(σ−i, T ) as a T -near counterfactual

best response (T -near CBR) to σ−i if for all I belonging to

player i

∑

a∈A(I)

(

v〈β(σ−i,T ),σ−i〉(I, a)−v〈β(σ−i,T ),σ−i〉(I)
)2

+
≤ xTI
T 2

(4)

where xTI can be any value in the range 0 ≤ xTI ≤
(

∆(I)
)2|A(I)|T . If xTI = 0, then a T -near CBR is

always a CBR. The set of strategies that are T -near

CBRs to σ−i is represented as Σβ(σ−i, T ). We also

define the T -near counterfactual best response value

as ψσ−i,T (I, a) = minσ′

i
∈Σβ(σ−i,T ) v

〈σ′

i,σ−i〉(I, a) and

ψσ−i,T (I) = minσ′

i
∈Σβ(σ−i,T ) v

〈σ′

i,σ−i〉(I).

When applying BRP to CFR, an action is pruned only if it

would still have negative regret had a T -near CBR against

the opponent’s average strategy been played on every itera-

tion. Specifically, on iteration T of CFR with RM, if

T
(

ψσ̄
T
−i,T (I, a)

)

≤
T
∑

t=1

vσ
t

(I) (5)
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then D(I, a) can be pruned for

T ′ =

∑T

t=1 v
σt

(I)− ψσ̄
T
−i,T (I, a)

U(I, a)− L(I)
(6)

iterations. After those T ′ iterations are over, we calculate

a T + T ′-near CBR in D(I, a) to the opponent’s average

strategy and set regret as if that T + T ′-near CBR had been

played on every iteration. Specifically, for each t ≤ T + T ′

we set2 vσ
t

(I, a) = ψσ̄
T+T ′

−i
,T+T ′

(I, a) so that

RT+T ′

(I, a) =
(

T+T ′)(ψσ̄
T+T ′

−i
,T+T ′

(I, a)
)

−
T+T ′

∑

t=1

vσ
t

(I)

(7)

and for every information set I ′ ∈ D(I, a) we

set vσ
t

(I ′, a′) = ψσ̄
T+T ′

−i
,T+T ′

(I ′, a′) and vσ
t

(I ′) =

ψσ̄
T+T ′

−i
,T+T ′

(I ′) so that

RT+T ′

(I ′, a′) =
(

T + T ′)(ψσ̄
T+T ′

−i
,T+T ′

(I ′, a′)− ψσ̄
T+T ′

−i
,T+T ′

(I ′)
)

(8)

Theorem 1 proves that if (5) holds for some action, then the

action can be pruned for T ′ iterations, where T ′ is defined

in (6). The same theorem holds if one replaces the T -near

counterfactual best response values with exact counterfac-

tual best response values. The proof for Theorem 1 draws

from recent work on warm starting CFR using only an aver-

age strategy profile (Brown & Sandholm, 2016). Essentially,

we warm start regrets in the pruned branch using only the

average strategy of the opponent and knowledge of T .

Theorem 1. Assume T iterations of CFR with RM have

been played in a two-player zero-sum game and assume

T
(

ψσ̄
T
−i,T (I, a)

)

≤ ∑T

t=1 v
σt

(I) where P (I) = i. Let

T ′ = b
∑T

t=1 v
σt

(I)−T
(

ψ
σ̄T
−i

,T
(I,a)

)

U(I,a)−L(I) c. If both players

play according to CFR with RM for the next T ′ itera-

tions in all information sets I ′′ 6∈ D(I, a) except that

σ(I, a) is set to zero and σ(I) is renormalized, then

(T + T ′)
(

ψσ̄
T+T ′

−i
,T+T ′

(I, a)
)

≤ ∑T+T ′

t=1 vσ
t

(I). More-

over, if one then sets vσ
t

(I, a) = ψσ̄
T+T ′

−i
,T+T ′

(I, a) for

each t ≤ T + T ′ and vσ
t

(I ′, a′) = ψσ̄
T+T ′

−i
,T+T ′

(I ′, a′)
for each I ′ ∈ D(I, a), then after T ′′ additional iterations

of CFR with RM, the bound on exploitability of σ̄T+T ′+T ′′

is no worse than having played T + T ′ + T ′′ iterations of

CFR with RM without BRP.

In practice, rather than check whether (5) is met for an

action on every iteration, one could only check actions that

2In practice, only the sums
∑

T

t=1
vσ

t

(I) and either
∑

T

t=1
vσ

t

(I, a) or RT (I, a) are stored.

have very negative regret, and do a check only once every

several iterations. This would still be safe and would save

some computational cost of the checks, but would lead to

less pruning.

Similar to Regret-Based Pruning, the duration of pruning in

BRP can be increased by giving up knowledge beforehand

of exactly how many iterations can be skipped. From (2)

and (1) we see that rT (I, a) ≤ πσ
t

−i(I)
(

U(I, a) − L(I)
)

.

Thus, if πσ
t

−i(I) is very low, then (5) would continue to hold

for more iterations than (6) guarantees. Specifically, we can

prune D(I, a) from iteration t0 until iteration t1 as long as

t0
(

ψσ̄
t0
−i
,t0(I, a)

)

+

t1
∑

t=t0+1

πσ
t

−i(I)U(I, a) ≤
t1
∑

t=1

vσ
t

(I)

(9)

3.1. Best-Response Pruning Requires Less Space

A key advantage of BRP is that setting the new regrets ac-

cording to (7) and (8) requires no knowledge of what the

regrets were before pruning began. Thus, once pruning

begins, all the regrets in D(I, a) can be discarded and the

space that was allocated to storing the regret can be freed.

That space need only be re-allocated once (9) ceases to hold

and we cannot immediately begin pruning again (that is,

(5) does not hold). Theorem 2 proves that for any infor-

mation set I and action a ∈ A(I) that is not part of a best

response to a Nash equilibrium, there is an iteration TI,a
such that for all T ≥ TI,a, action a in information set I

(and its descendants) can be pruned.3 Thus, once this TI,a
is reached, it will never be necessary to allocate space for

regret in D(I, a) again.

Theorem 2. In a two-player zero-sum game, if

for every opponent Nash equilibrium strategy σ∗
−P (I),

CBV σ
∗

−P (I)(I, a) < CBV σ
∗

−P (I)(I), then there exists a

TI,a and δI,a > 0 such that after T ≥ TI,a iterations of

CFR, CBV σ̄
T
−i(I, a)−

∑T
t=1 v

σt
(I)

T
≤ −δI,a.

While such a constant TI,a exists for any suboptimal action,

BRP cannot determine whether or when TI,a is reached.

Thus, it is still necessary to check whether (5) is satisfied

whenever (9) no longer holds, and to recalculate how much

longer D(I, a) can safely be pruned. This requires the algo-

rithm to periodically calculate a best response (or near-best

response) in D(I, a). However, this (near-)best response

calculation does not require knowledge of regret in D(I, a),

3If CFR converges to a particular Nash equilibrium, then this
condition could be broadened to any information set I and action
a ∈ A(I) that is not a best response to that particular Nash equi-
librium. While empirically CFR does appear to always converge
to a particular Nash equilibrium, there is no known proof that it
always does so.
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so it is still never necessary to store regret after iteration

TI,a is reached.

While it is possible to discard regrets in D(I, a) without

penalty once pruning begins, regret is only half the space

requirement of CFR. Every information set I also stores a

sum of the strategies played
∑T

t=1

(

πσ
t

i (I)σt(I)
)

which is

normalized once CFR ends in order to calculate σ̄T (I). For-

tunately, if action a in information set I is pruned for long

enough, then the stored cumulative strategy in D(I, a) can

also be discarded at the cost of a small increase in the dis-

tance of the final average strategy from a Nash equilibrium.

Specifically, if πσ̄
T

i (I, a) ≤ C√
T

, where C is some con-

stant, then setting σ̄T (I, a) = 0 and renormalizing σ̄T (I),
and setting σ̄T (I ′, a′) = 0 for I ′ ∈ D(I, a), can result in

at most
C|I|∆√

T
higher exploitability for the whole strategy

σ̄T . Since CFR only guarantees that σ̄T is a
2|I|∆

√
|A|√

T
-

Nash equilibrium anyway,
C|I|∆√

T
is only a constant factor

of the bound. If an action is pruned from T ′ to T , then
∑T

t=1

(

πσ
t

i (I)σt(I, a)
)

≤ T ′

T
. Thus, if an action is pruned

for long enough, then eventually
∑T

t=1

(

πσ
t

i (I)σt(I, a)
)

≤
C√
T

for any C, so
∑T

t=1

(

πσ
t

i (I)σt(I, a)
)

could be set to

zero (as well as all descendants of I · a), while suffering at

most a constant factor increase in exploitability. As more

iterations are played, this penalty will continue to decrease

and eventually be negligible. The constant C can be set by

the user: a higher C allows the average strategy to be dis-

carded sooner, while a lower C reduces the potential penalty

in exploitability.

We define IS as the set of information sets that are not guar-

anteed to be asymptotically pruned by Theorem 2. Specif-

ically, I ∈ IS if I 6∈ D(I ′, a′) for some I ′ and a′ ∈ A(I ′)
such that for every opponent Nash equilibrium strategy

σ∗
−P (I′), CBV

σ∗

−P (I′)(I ′, a′) < CBV
σ∗

−P (I′)(I ′). Theo-

rem 2 implies the following.

Corollary 1. In a two-player zero-sum game with some

threshold on the average strategy C√
T

for C > 0, after

a finite number of iterations CFR with BRP requires only

O
(

|IS ||A|
)

space.

Using a threshold of C
T

rather than C√
T

does not change the

theoretical properties of the corollary, and may lead to faster

convergence in some situations, but it may also result in a

slower reduction in the space used by the algorithm (though

the asymptotic space used is identical). In particular, if

BRP can be extended to first-order methods that converge to

an ε-Nash equilibrium in O( 1
ε
) iterations rather than O( 1

ε2
)

iterations, such as the Excessive Gap Technique (Hoda et al.,

2010; Kroer et al., 2017), then a threshold of C
T

may be more

appropriate when those algorithms are used. A threshold of
C
T

may also be preferable when using an algorithm which

empirically converges to an ε-Nash equilibrium in faster

than O( 1
ε2
) iterations, such as CFR+ on some games.

3.2. Best-Response Pruning Converges Faster

We now prove that BRP in CFR speeds up convergence to an

ε-Nash equilibrium. Section 3 proved that CFR with BRP

converges in the same number of iterations as CFR alone. In

this section, we prove that BRP allows each iteration to be

traversed more quickly. Specifically, if an action a ∈ A(I)
is not a CBR to a Nash equilibrium, then D(I, a) need only

be traversed O(ln(T )) times over T iterations. Intuitively,

as both players converge to a Nash equilibrium, actions that

are not a counterfactual best response will eventually do

worse than actions that are, so those suboptimal actions

will accumulate increasing amounts of negative regret. This

negative regret allows the action to be safely pruned for

increasingly longer periods of time.

Specifically, let S ⊆ H be the set of histories where h·a ∈ S

if h ∈ S and action a is part of some CBR to some Nash

equilibrium. Formally, S contains ∅ and every history h · a
such that h ∈ S and CBV σ

∗

−P (I)(I, a) = CBV σ
∗

−P (I)(I)
for some Nash equilibrium σ∗.

Theorem 3. In a two-player zero-sum game, if both players

choose strategies according to CFR with BRP, then conduct-

ing T iterations requires only O
(

|S|T + |H| ln(T )
)

nodes

to be traversed.

The definition of S uses properties of the Nash equilibria

of the game, and an action a ∈ A(I) not in S is only

guaranteed to be pruned by BRP after some TI,a is reached,

which also depends on the Nash equilibria of the game.

Since CFR converges to only an ε-Nash equilibrium, CFR

cannot determine with certainty which nodes are in S or

when TI,a is reached. Nevertheless, both S and TI,a are

fixed properties of the game.

4. Experiments

We compare the convergence speed of BRP to Regret-Based

Pruning, to only partial pruning, and to no pruning at all.

We also show that BRP uses less space as as more iterations

are conducted, unlike prior pruning algorithms. The exper-

iments are conducted on Leduc Hold’em (Southey et al.,

2005) and Leduc-5 (Brown & Sandholm, 2015a). Leduc

Hold’em is a common benchmark in imperfect-information

game solving because it is small enough to be solved but

still strategically complex. In Leduc Hold’em, there is a

deck consisting of six cards: two each of Jack, Queen, and

King. There are two rounds. In the first round, each player

places an ante of 1 chip in the pot and receives a single pri-

vate card. A round of betting then takes place with a two-bet

maximum, with Player 1 going first. A public shared card is

then dealt face up and another round of betting takes place.
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