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Abstract

Iterative algorithms such as Counterfactual Regret
Minimization (CFR) are the most popular way
to solve large zero-sum imperfect-information
games. In this paper we introduce Best-Response
Pruning (BRP), an improvement to iterative algo-
rithms such as CFR that allows poorly-performing
actions to be temporarily pruned. We prove that
when using CFR in zero-sum games, adding BRP
will asymptotically prune any action that is not
part of a best response to some Nash equilibrium.
This leads to provably faster convergence and
lower space requirements. Experiments show that
BRP results in a factor of 7 reduction in space,
and the reduction factor increases with game size.

1. Introduction

Imperfect-information extensive-form games model strate-
gic multi-step scenarios between agents with hidden infor-
mation, such as auctions, security interactions (both physical
and virtual), negotiations, and military situations. Typically
in imperfect-information games, one wishes to find a Nash
equilibrium, which is a profile of strategies in which no
player can improve her outcome by unilaterally changing
her strategy. A linear program can find an exact Nash equi-
librium in two-player zero-sum games containing fewer
than about 108 nodes (Gilpin & Sandholm, 2007). For
larger games, iterative algorithms are used to converge to a
Nash equilibrium. There are a number of such iterative al-
gorithms (Heinrich et al., 2015; Nesterov, 2005; Hoda et al.,
2010; Pays, 2014; Kroer et al., 2015), the most popular of
which is Counterfactual Regret Minimization (CFR) (Zinke-
vich et al., 2007). CFR minimizes regret independently at
each decision point in the game. CFR+, a variant of CFR,
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was used to essentially solve Limit Texas Hold’em, the
largest imperfect-information game ever to be essentially
solved (Bowling et al., 2015).

Both computation time and storage space are difficult chal-
lenges when solving large imperfect-information games.
For example, solving Limit Texas Hold’em required nearly
8 million core hours and a complex, domain-specific stream-
ing compression algorithm to store the 262 TiB of uncom-
pressed data in only 10.9 TiB. This data had to be repeatedly
decompressed from disk into memory and then compressed
back to disk in order to run CFR+ (Tammelin et al., 2015).

In certain situations, pruning can be applied to speed up the
traversal of the game tree in iterative algorithms (Lanctot
et al., 2009; Brown & Sandholm, 2015a; Brown et al., 2017).
However, these past pruning techniques do not reduce the
space needed to solve a game and lack theoretical guarantees
for improved performance.

In this paper we introduce Best-Response Pruning (BRP)!,
a new form of pruning for iterative algorithms such as CFR
in large imperfect-information games. BRP leverages the
fact that in iterative algorithms we are typically interested in
performance against the opponent’s average strategy over all
iterations, and that the opponent’s average strategy cannot
change faster than a rate of 1/, where ¢ is the number of iter-
ations conducted so far. Thus, if part-way through a run one
of our actions has done very poorly relative to other available
actions against the opponent’s average strategy, then after
just a few more iterations the opponent’s average strategy
cannot change sufficiently for the poorly-performing action
to now be doing well against the opponent’s updated average
strategy. In fact, we can bound how much an action’s perfor-
mance can improve over any number of iterations against
the opponent’s average strategy. So long as the upper bound
on that performance is still not competitive with the other
actions, then we can safely ignore the poorly-performing
action.

BRP provably reduces the computation time needed to solve
imperfect-information games. Additionally, a primary ad-
vantage of BRP is that in addition to faster convergence,

"Earlier versions of this paper referred to Best-Response Prun-
ing as Total Regret-Based Pruning (Total RBP)
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it also reduces the space needed over time. Specifically,
once pruning begins on a branch, BRP discards the memory
allocated on that branch and does not reallocate the memory
until pruning ends and the branch cannot immediately be
pruned again. In Section 3.1, we prove that after enough
iterations of CFR are completed, space for certain pruned
branches will never need to be allocated again. Specifi-
cally, we prove that when using BRP it is asymptotically
only necessary to store data for parts of the game that are
reached with positive probability in a best response to a
Nash equilibrium. This is extremely advantageous when
solving large imperfect-information games, which are often
constrained by space and in which the set of best response
actions may be orders of magnitude smaller than the size of
the game (Schmid et al., 2014).

While BREP still requires enough memory to store the entire
game in the early iterations, recent work has shown that
these early iterations can be skipped in CFR, and possibly
other iterative algorithms, by first solving a low-memory
abstraction of the game and then using its solution to warm
start CFR in the full game (Brown & Sandholm, 2016).
BRP’s reduction in space is also helpful to the Simulta-
neous Abstraction and Equilibrium Finding (SAEF) algo-
rithm (Brown & Sandholm, 2015b), which starts CFR with
a small abstraction of the game and progressively expands
the abstraction while also solving the game. SAEF’s space
requirements increase the longer the algorithm runs, and
may eventually exceed the constraints of a system. BRP
can counter this increase in space by eliminating the need
to store suboptimal paths of the game tree.

BRP shares some similarities to the earlier pruning algo-
rithm Regret-Based Pruning, which has shown empirical
evidence of improving the performance of CFR. In contrast,
this paper proves that CFR converges faster when using
BRP, because suboptimal paths in the game tree will only
need to be traversed O( ln(T)) times over 7' iterations. We
also prove that BRP uses asymptotically less space, while
Regret-Based Pruning does not reduce the space needed
to solve a game. Moreover, Best-Response Pruning eas-
ily generalizes to iterative algorithms beyond CFR such as
Fictitious Play (Heinrich et al., 2015).

The magnitude of the gains in speed and space that BRP
provides varies depending on the game. It is possible to
construct games where BRP provides no benefit. However,
if there are many suboptimal actions in the game—as is
frequently the case in large games—BRP can speed up
CFR by multiple orders of magnitude and require orders of
magnitude less space. Our experiments show an order of
magnitude space reduction already in medium-sized games,
and a reduction factor increase with game size.

2. Background

In a two-player zero-sum imperfect-information extensive-
form game there are two players, P = {1,2}. Let H be
the set of all possible histories (nodes) in the game tree,
represented as a sequence of actions. The actions available
in a history is A(h) and the player who acts at that history
is P(h) € P U ¢, where ¢ denotes chance. Chance plays
an action a € A(h) with a fixed probability. The history A’
reached after action a in h is a child of h, represented by
h-a =R, while h is the parent of /. More generally, b’ is
an ancestor of h (and h is a descendant of /), represented
by h' C h, if there exists a sequence of actions from A’ to h.
Z C H are terminal histories. For each player i € P, there
is a payoff function u; : Z — R where u; = —us. Define
A; = max,ez ui(z) — mingez u;(z) and A = max; A;.

Imperfect information is represented by information sets for
each player i € P by a partition Z; of h € H : P(h) = i.
For any information set I € Z;, all histories h, h’ € I are
indistinguishable to player i, so A(h) = A(h'). I(h) is
the information set I where h € I. P(I) is the player i
such that I € Z;. A(I) is the set of actions such that for
all h € I, A(I) = A(h). |A;| = maxjez, |A(I)| and
|A| = max; |A;|. Define U(I) to be the maximum payoff
reachable from a history in I, and L(I) to be the minimum.
That is, U(I) = mMaXzez hel:hCz UP(I) (2) and L(I) =
minzez,he];hgz up(I) (Z) Define A(I) = U(I) - L(I)
to be the range of payoffs reachable from a history in I.
Similarly U(1,a), L(I,a), and A(I, a) are the maximum,
minimum, and range of payoffs (respectively) reachable
from a history in I after taking action a. Define D(I, a) to
be the set of information sets reachable by player P(I) after
taking action a. Formally, I’ € D(I, a) if for some history
helandh' €I',h-aC k' and P(I) = P(I').

A strategy o;([) is a probability vector over A(I) for player
1 in information set I. The probability of a particular action
a is denoted by o, (I, a). Since all histories in an information
set belonging to player ¢ are indistinguishable, the strategies
in each of them must be identical. That is, for all h € I,
o;(h) = o;(I) and o;(h,a) = 0;(I,a). Define o; to be a
probability vector for player ¢ over all available strategies
>; in the game. A strategy profile o is a tuple of strategies,
one for each player. u;(o;,0_;) is the expected payoff
for player ¢ if all players play according to the strategy
profile (o;,0_;). If a series of strategies are played over T’
T _ Zt%T O'E .

iterations, then &;
77 (h) = p achopy (', a) is the joint probability of
reaching h if all players play according to o. 7¥ (h) is the
contribution of player ¢ to this probability (that is, the prob-
ability of reaching h if all players other than ¢, and chance,
always chose actions leading to h). 7%, (h) is the contribu-

tion of all players other than ¢, and chance. 77 (h, h’) is the
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probability of reaching A’ given that h has been reached,
and 0if h 7 1. In a perfect-recall game, Vh,h' € I € T;,
m;(h) = m;(h'). In this paper we focus on perfect-recall
games. Therefore, for i = P(I) define m;(I) = m;(h) for
h € I. Moreover, I’ C I if for some h' € I’ and some
hel, W © h Similarly, I’ -a C IT'if b’ -a C h. The
average strategy &7 (I) for an information set I is defined

as o

7(1) = Seer i (ollh)

‘ Cier 7 (D)
A best response to o_; is a strategy o; such that
ui(07,0-;) = max,/ex, ui(0;,0-;). A Nash equilib-

rium o* is a strategy profile where every player plays a
best response: Vi, u; (07,0 ;) = max,ex,; ui(o],0%,;). A
Nash equilibrium strategy for player 7 as a strategy o; that
is part of any Nash equilibrium. In two-player zero-sum
games, if 0; and o_; are both Nash equilibrium strategies,
then (o;,0_;) is a Nash equilibrium. An e-equilibrium
as a strategy profile o* such that Vi, u;(0,0*,) + € >
max,es, i(07,0%;).

2.1. Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is a popular al-
gorithm for extensive-form games in which the strategy
vector for each information set is determined according to a
regret-minimization algorithm (Zinkevich et al., 2007). We
use regret matching (RM) (Hart & Mas-Colell, 2000) as the
regret-minimization algorithm, but the material presented in
this paper also applies to other regret minimizing algorithms
such as Hedge (Brown et al., 2017).

The analysis of CFR makes frequent use of counterfactual
value. Informally, this is the expected utility of an informa-
tion set given that player i tries to reach it. For player ¢ at
information set I given a strategy profile o, this is defined
as

v (I) = Z (ﬂ"ii(h) Z (77 (h, z)ut(z))) (1)

hel z€Z

The counterfactual value of an action a is

v7(I,a) = Z (Wfi(h) Z (77 (h - a, z)ul(z))) )

hel 2€EZ

A counterfactual best response (Moravcik et al., 2016)
(CBR) is a strategy similar to a best response, except that
it maximizes counterfactual value even at information sets
that it does not reach due to its earlier actions. Specif-
ically, a counterfactual best response to o_; is a strat-
egy CBR(o_;) such that if CBR(0_;)(I,a) > 0 then
v(CBRO-D.0-) (] a) = maxy v CBRlO-).0-) (T a').
The counterfactual best response value C BV~ (1) is sim-
ilar to counterfactual value, except that player i = P(I)

plays according to a CBR to o_;. Formally, CBV?-i(I) =
(CBRi(0-i),0-i) ([)

Let o! be the strategy profile used on iteration t. The in-
stantaneous regret on iteration t¢ for action a in information
set Iis ri(I,a) = v° (I,a) — v° (I) and the regret for
action a in I on iteration T is R” (I,a) = Y ,.p 7' (1, a).
Additionally, R% (I,a) = max{R”(I,a),0} and RT(I) =
max,{R7 (I,a)}. Regret for player i in the entire game is
RzT = MaXy/ey; ZteT (ui(ag’ Uzi) - ui(af, Uii)) .

In regret matching, a player picks a distribution over actions
in an information set in proportion to the positive regret on
those actions. Formally, on each iteration T" 4 1, player ¢
selects actions a € A([I) according to probabilities

R (I,a)
ol (I a) = Z({/GAU) RY(La’)’

[A(D]

it >, RY(I,a')>0
otherwise

3)
If a player plays according to RM on every iteration then on

iteration T', RT (I) < A(I)+/|A(I)|VT.

If a player plays according to CFR in every iteration then
RT < S,ep RT(I). So,as T — oo, B2 = 0. In
two-player zero-sum games, if both players’ average re-
gret IgiT < ¢, their average strategies (57,52 ) form a 2e-
equilibrium (Waugh et al., 2009). Thus, CFR constitutes
an anytime algorithm for finding an e-Nash equilibrium in

Ze€ro-sum games.

2.2. Prior Approaches to Pruning

This section reviews forms of pruning that allow parts of the
game tree to be skipped in CFR. In vanilla CFR, the entire
game tree is traversed separately for each player history-
by-history. On each traversal, the regret for each action
of a history’s information set is updated based on the ex-
pected value for that action on that iteration, weighed by the
probability of opponents taking actions to reach the history
(that is, weighed by 7% t,(h)) However, if a history h is
reached on iteration ¢ in which 77 (h) = 0, then from (1)
and (2) the strategy at h contributes nothing on iteration
t to the regret of I(h) (or to the information sets above
it). Moreover, any history that would be reached beyond h
would also contribute nothing to its information set’s regret
because 77 (h') = 0 for every history h’ where h C k'
and P(h’) = P(h). Thus, when traversing the game tree
for player i, there is no need to traverse beyond any history
h when witi(h) = 0. The benefit of this form of pruning,
which we refer to as partial pruning, varies depending on
the game, but empirical results show a factor of 30 improve-
ment in some games (Lanctot et al., 2009).

While partial pruning allows one to prune paths that an op-
ponent reaches with zero probability, Regret-Based Pruning
allows one to also prune paths that the traverser reaches
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with zero probability (Brown & Sandholm, 2015a). How-
ever, this pruning is necessarily temporary. Consider an
action a € A(I) such that 0*(I,a) = 0, and assume that it
is known action a will not be played with positive probabil-
ity until some far-future iteration ¢’ (in RM, this would be
the case if R*(I,a) < 0). Since action a is played with zero
probability on iteration ¢, so from (1) the strategy played and
reward received following action a (that is, in D(I, a)) will
not contribute to the regret for any information set preceding
action a on iteration ¢. In fact, what happens in D(I, a) has
no bearing on the rest of the game tree until iteration ¢’ is
reached. So one could, in theory, “procrastinate” in deciding
what happened beyond action @ on iteration ¢, t+1, ..., t' — 1
until iteration ¢'.

However, upon reaching iteration ¢, rather than individu-
ally making up the ¢’ — ¢ iterations over D(I, a), one can
instead do a single iteration, playing against the average of
the opponents’ strategies in the ¢’ — ¢ iterations that were
missed, and declare that strategy was played on all the ¢’ — ¢
iterations. This accomplishes the work of the ¢’ —¢ iterations
in a single traversal. Moreover, since player ¢ never plays
action a with positive probability between iterations ¢ and
t’, that means every other player can apply partial pruning
on that part of the game tree for iterations ¢’ — ¢, and skip
it completely. This, in turn, means that player ¢ has free
rein to play whatever they want in D (I, a) without affecting
the regrets of the other players. In light of that, and of the
fact that player ¢ gets to decide what is played in D(7,a)
after knowing what the other players have played, player
1 might as well play a strategy that ensures zero regret for
all information sets I’ € D(I, a) in the iterations ¢ to t'. A
CBR to the average of the opponent strategies on the ¢’ — ¢
iterations would qualify as such a zero-regret strategy.

Regret-Based Pruning only allows a player to skip travers-
ing D(I,a) for as long as o'(l,a) = 0. Thus, in
RM, if R(I,a) < 0, we can prune the game tree
beyond action a from iteration ?y until iteration ¢; so
long as 3,207 (I,a) + Y4t 4 77 (DU(1a) <

v (D).

3. Best-Response Pruning

This section describes the behavior of BRP. In particular
we focus on the case where BRP is applied to the most
popular family of iterative algorithms, CFR. BRP begins
pruning an action in an information set whenever playing
perfectly beyond that action against the opponent’s average
strategy (that is, playing a CBR) still does worse than what
has been achieved in the iterations played so far (that is,
Zle v”" (I)). Pruning continues for the minimum number
of iterations it could take for the opponent’s average strategy
to change sufficiently such that the pruning starting condi-
tion (that is, playing a CBR beyond the action against the

opponent’s average strategy does worse than what has been
achieved in the iterations so far) no longer holds. When
pruning ends, BRP calculates a CBR in the pruned branch
against the opponent’s average strategy over all iterations
played so far, and sets regret in the pruned branch as if that
CBR strategy were played on every iteration played in the
game so far—even those that were played before pruning
began.

While using a CBR works correctly when applying BRP to
CFR, it is also sound to choose a strategy that is almost a
CBR (formalized later in this section), as long as that strat-

egy ensures >, c 4 (p (R%(1, a))2 < (A(I))2|A(I)|T. In
practice, this means that the strategy is close to a CBR, and
approaches a CBR as T" — oco. We now present the theory
to show that such a near-CBR can be used. However, in
practice CFR converges much faster than the theoretical
bound, so the potential function is typically far lower than
the theoretical bound. Thus, while choosing a near-CBR
rather than an exact CBR may allow for slightly longer prun-
ing according to the theory, it may actually result in worse
performance. All of the theoretical results presented in this
paper, including the improved convergence bound as well
as the lower space requirements, still hold if only a CBR is
used, and our experiments use a CBR. Nevertheless, clever
algorithms for deciding on a near-CBR may lead to even
better performance in practice.

We define a strategy 5(o—_;,T) as a T-near counterfactual
best response (T'-near CBR) to o_; if for all I belonging to
player ¢

(B(o—i,T),0—;) (B(o_i,T),0_4) 2 x?
> (O (0D < T
acA(I) @

where xIT can be any value in the range 0 < m? <

(A(D)’|A(I)|T. 1f 2T = 0, then a T-near CBR is
always a CBR. The set of strategies that are T-near
CBRs to o_; is represented as ¥4(c_;, T). We also
define the T-near counterfactual best response value
as Y°-iT(I,a) = ming;ezg([,fi’T)v(”@”*")(I,a) and
o= T(I) = mingess (o_, 1) v<‘7§"’*4>(1).

When applying BRP to CFR, an action is pruned only if it
would still have negative regret had a T-near CBR against
the opponent’s average strategy been played on every itera-
tion. Specifically, on iteration 7" of CFR with RM, if

T4 (1,a)) <307 (1) (5)
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then D(I, a) can be pruned for

t =T
7 i (1) =471 a)
U(I,a) — L(I)
iterations. After those 7" iterations are over, we calculate
aT + T’-near CBR in D(I,a) to the opponent’s average
strategy and set regret as if that 7' + T”-near CBR had been
played on every iteration. Specifically, for each ¢t < T + T

we set? v7 (I,a) = w&ij T+ (I,a) so that

(6)

, T+T'
RT+T'(Ia) = (T+T") (47~ T+ (La)) = Y o7 (1)

t=1
(N
€ D(,a) we

T @') and vo' (I') =

and for every information set I’
t _T+T'

set v7 (I';a) = ¢
1/)‘_’1” T+’ (I") so that
RT+T’(I/ a/) _

(T +T) (7T (1) — T (1) 8)

Theorem 1 proves that if (5) holds for some action, then the
action can be pruned for T” iterations, where 7" is defined
in (6). The same theorem holds if one replaces the T-near
counterfactual best response values with exact counterfac-
tual best response values. The proof for Theorem 1 draws
from recent work on warm starting CFR using only an aver-
age strategy profile (Brown & Sandholm, 2016). Essentially,
we warm start regrets in the pruned branch using only the
average strategy of the opponent and knowledge of 7T'.

Theorem 1. Assume T iterations of CFR with RM have
been played in a two-player zero-sum game and assume
T(wa{i’T(I,a)) < Zthl v7' (I) where P(I) = i. Let
T ot LRI a
T = LZt:lU [5275_(%(1) & ))J If both players
play according to CFR with RM for the next T' itera-
tions in all information sets 1" & D(I,a) except that
o(I,a) is set to zero and o(I) is renormalized, then

(T + T~ T (1a)) < ST v (1)

over, if one then sets v° (I,a) = w‘_’ij T+T(1,a) for
eacht < T + T and v (I',d') = z/f’iﬂ T )
foreach I' € D(I,a), then after T" additional iterations
of CFR with RM, the bound on exploitability of 5T+ T +T"
is no worse than having played T + T' + T" iterations of
CFR with RM without BRP.

. More-

In practice, rather than check whether (5) is met for an
action on every iteration, one could only check actions that

’In practice, only the sums >/, v (I) and either
>, v (I,a) or RT (I, a) are stored.

have very negative regret, and do a check only once every
several iterations. This would still be safe and would save
some computational cost of the checks, but would lead to
less pruning.

Similar to Regret-Based Pruning, the duration of pruning in
BRP can be increased by giving up knowledge beforehand
of exactly how many iterations can be skipped. From (2)
and (1) we see that 77 (I,a) < 7%,(I)(U(I,a) — L(I)).
Thus, if witi(l ) is very low, then (5) would continue to hold
for more iterations than (6) guarantees. Specifically, we can
prune D(I, a) from iteration ¢, until iteration ¢; as long as

t1 t1

(V7 (L) + > AT (NULa) < Yo7 (1)

t=to+1

3.1. Best-Response Pruning Requires Less Space

A key advantage of BRP is that setting the new regrets ac-
cording to (7) and (8) requires no knowledge of what the
regrets were before pruning began. Thus, once pruning
begins, all the regrets in D (I, a) can be discarded and the
space that was allocated to storing the regret can be freed.
That space need only be re-allocated once (9) ceases to hold
and we cannot immediately begin pruning again (that is,
(5) does not hold). Theorem 2 proves that for any infor-
mation set I and action a € A(I) that is not part of a best
response to a Nash equilibrium, there is an iteration 77 ,
such that for all T' > T} ,, action a in information set [
(and its descendants) can be pruned.3 Thus, once this T7 4
is reached, it will never be necessary to allocate space for
regret in D(I, a) again.

Theorem 2. In a two-player zero-sum game, if
for every opponent Nash equilibrium strategy o* P(1y

CBV?-rw)(I,a) < CBV?-ru) (1), then there exists a
Tr.4 and 61,4 > 0 such that after T > Tt , iterations of

CFR, CBV i(I,a) — Zi=" D < 5,

While such a constant 77 , exists for any suboptimal action,
BRP cannot determine whether or when 77, is reached.
Thus, it is still necessary to check whether (5) is satisfied
whenever (9) no longer holds, and to recalculate how much
longer D(I, a) can safely be pruned. This requires the algo-
rithm to periodically calculate a best response (or near-best
response) in D(I,a). However, this (near-)best response
calculation does not require knowledge of regret in D(1, a),

3If CFR converges to a particular Nash equilibrium, then this
condition could be broadened to any information set I and action
a € A(I) that is not a best response to that particular Nash equi-
librium. While empirically CFR does appear to always converge
to a particular Nash equilibrium, there is no known proof that it
always does so.



Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning

so it is still never necessary to store regret after iteration
T7 4 is reached.

While it is possible to discard regrets in D(I, a) without
penalty once pruning begins, regret is only half the space
requirement of CFR. Every information set I also stores a
sum of the strategies played Zthl (ﬂft (I)o'(I)) which is
normalized once CFR ends in order to calculate 7 (I). For-
tunately, if action a in information set [ is pruned for long
enough, then the stored cumulative strategy in D(1, a) can
also be discarded at the cost of a small increase in the dis-
tance of the final average strategy from a Nash equilibrium.
Specifically, if 77 T(I ,a) < %, where C' is some con-
stant, then setting 57 (I, a) = 0 and renormalizing 57 (1),
and setting 67 (I',a’) = 0 for I’ € D(I,a), can result in

C\I/I‘TA higher exploitability for the whole strategy

at most

oT. Since CFR only guarantees that 67 is a %\/%/W'
ClI|A
VT
of the bound. If an action is pruned from 7’ to T, then
ZZ;I (ﬂ'ft (No'(I,a)) < T% Thus, if an action is pruned
for long enough, then eventually 3°,_, (x¢" (I)o*(I,a)) <
% for any C, so Zthl (Wft (I)a*(I,a)) could be set to
zero (as well as all descendants of [ - a), while suffering at
most a constant factor increase in exploitability. As more
iterations are played, this penalty will continue to decrease
and eventually be negligible. The constant C' can be set by
the user: a higher C allows the average strategy to be dis-
carded sooner, while a lower C' reduces the potential penalty

in exploitability.

Nash equilibrium anyway,

is only a constant factor

We define Zg as the set of information sets that are not guar-
anteed to be asymptotically pruned by Theorem 2. Specif-
ically, I € Zg if I ¢ D(I',a’) for some I’ and o’ € A(I")
such that for every opponent Nash equilibrium strategy
0% piprys CBV PN (I a’) < CBV7-rt(I'). Theo-
rem 2 implies the following.

Corollary 1. In a two-player zero-sum game with some
threshold on the average strategy % for C > 0, after

a finite number of iterations CFR with BRP requires only
O(|Zs||Al) space.

Using a threshold of % rather than % does not change the
theoretical properties of the corollary, and may lead to faster
convergence in some situations, but it may also result in a
slower reduction in the space used by the algorithm (though
the asymptotic space used is identical). In particular, if
BRP can be extended to first-order methods that converge to
an e-Nash equilibrium in O(2) iterations rather than O(%)
iterations, such as the Excessive Gap Technique (Hoda et al.,
2010; Kroer et al., 2017), then a threshold of % may be more
appropriate when those algorithms are used. A threshold of

% may also be preferable when using an algorithm which

empirically converges to an e-Nash equilibrium in faster
than O(% ) iterations, such as CFR+ on some games.

3.2. Best-Response Pruning Converges Faster

We now prove that BRP in CFR speeds up convergence to an
e-Nash equilibrium. Section 3 proved that CFR with BRP
converges in the same number of iterations as CFR alone. In
this section, we prove that BRP allows each iteration to be
traversed more quickly. Specifically, if an action a € A(J)
is not a CBR to a Nash equilibrium, then D(I, a) need only
be traversed O(In(7")) times over T iterations. Intuitively,
as both players converge to a Nash equilibrium, actions that
are not a counterfactual best response will eventually do
worse than actions that are, so those suboptimal actions
will accumulate increasing amounts of negative regret. This
negative regret allows the action to be safely pruned for
increasingly longer periods of time.

Specifically, let S C H be the set of histories where h-a € S
if h € S and action « is part of some CBR to some Nash
equilibrium. Formally, S contains () and every history h - a
such that h € S and CBV°-r) (I, a) = CBV?-r( ()
for some Nash equilibrium o*.

Theorem 3. In a two-player zero-sum game, if both players
choose strategies according to CFR with BRP, then conduct-
ing T iterations requires only O(|S|T + |H|In(T)) nodes
to be traversed.

The definition of S uses properties of the Nash equilibria
of the game, and an action a € A(I) not in S is only
guaranteed to be pruned by BRP after some 77, is reached,
which also depends on the Nash equilibria of the game.
Since CFR converges to only an e-Nash equilibrium, CFR
cannot determine with certainty which nodes are in S or
when 77 , is reached. Nevertheless, both S and 17 , are
fixed properties of the game.

4. Experiments

We compare the convergence speed of BRP to Regret-Based
Pruning, to only partial pruning, and to no pruning at all.
We also show that BRP uses less space as as more iterations
are conducted, unlike prior pruning algorithms. The exper-
iments are conducted on Leduc Hold’em (Southey et al.,
2005) and Leduc-5 (Brown & Sandholm, 2015a). Leduc
Hold’em is a common benchmark in imperfect-information
game solving because it is small enough to be solved but
still strategically complex. In Leduc Hold em, there is a
deck consisting of six cards: two each of Jack, Queen, and
King. There are two rounds. In the first round, each player
places an ante of 1 chip in the pot and receives a single pri-
vate card. A round of betting then takes place with a two-bet
maximum, with Player 1 going first. A public shared card is
then dealt face up and another round of betting takes place.
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Again, Player 1 goes first, and there is a two-bet maximum.
If one of the players has a pair with the public card, that
players wins. Otherwise, the player with the higher card
wins. The bet size in the first round is 2 chips, and 4 chips in
the second round. Leduc-5 is like Leduc Hold’em but larger:
there are 5 bet sizes to choose from. In the first round a
player may bet 0.5, 1, 2, 4, or 8 chips, while in the second
round a player may bet 1, 2, 4, 8, or 16 chips.

Nodes touched is a hardware and implementation-
independent proxy for time which we use to measure per-
formance of the various algorithms. Overhead costs are
counted in nodes touched. CFR+ is a variant of CFR in
which a floor on regret is set at zero and each iteration
is weighted linearly in the average strategy (that is, iter-
ation ¢ is weighted by ¢) rather than each iteration being
weighted equally. Since Regret-Based Pruning can only
prune negative-regret actions, Regret-Based Pruning modi-
fies the definition of CFR+ so that regret can be negative, but
immediately jumps up to zero as soon as regret increases.
BRP does not require this modification. Still, BRP also
modifies the behavior of CFR+ because without pruning,
CFR+ would put positive probability on an action as soon
as its regret increases, while BRP waits until pruning is over.
This is not, by itself, a problem. However, CFR+’s linear
weighting of the average strategy is only guaranteed to con-
verge to a Nash equilibrium if pruning does not occur. While
both Regret-Based Pruning and BRP do well empirically
with CFR+, the convergence is noisy. This noise can be
reduced by using the lowest-exploitability average strategy
profile found so far, which we do in the experiments.4 BRP
does not do as well empirically with the linear-averaging
component of CFR+. Thus, for BRP we only measure per-
formance using RM+ with CFR, which is the same as CFR+
but without linear averaging. CFR+ with and without linear
averaging has the same theoretical performance as CFR,
but CFR+ does better empirically (particularly with linear
averaging).

Figure 1 and Figure 2 show the reduction in space needed
to store the average strategy and regrets for BRP—for var-
ious values of the constant threshold C, where an action’s
probability is set to zero if it is reached with probability
less than % in the average strategy, as we explained in
Section 3.1. In both games, a threshold between 0.01 and
0.1 performed well in both space and number of iterations,
with the lower thresholds converging somewhat faster and
the higher thresholds reducing space faster. We also tested
thresholds below 0.01, but the speed of convergence was es-
sentially the same as when using 0.01. In Leduc, all variants
resulted in a quick drop-off in space to about half the initial

“Exploitability is no harder to compute than one iteration of
CFR or CFR+. Snapshots are not plotted at every iteration but
only after every 10,000,000 nodes touched—except for the first
few snapshots.

amount. In Leduc-5, a threshold of 0.1 resulted in about a
factor of 7 reduction for both CFR with RM and CFR with
RM+. This space reduction factor appears to continue to
increase.
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Figure 1. Convergence and space required for CFR using RM and
RM+ with best-response pruning in Leduc Hold’em. The y-axis
on the top graph is linear scale.
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Figure 2. Convergence and space required for CFR using RM and
RM+ with best-response pruning in Leduc-5. The y-axis on the
top graph is linear scale.

Figure 3 and Figure 4 compare the convergence rates of
BRP, Regret-Based Pruning, and only partial pruning for
CFR with RM, CFR with RM+, and CFR+. In Leduc, BRP
and Regret-Based Pruning perform comparably when added
to CFR. Regret-Based Pruning with CFR+ does significantly
better, while BRP with CFR using RM+ sees no improve-
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ment over BRP with CFR. In Leduc-5, which is a far larger
game, BRP outperforms Regret-Based Pruning by a factor
of 2 when added to CFR. BRP with CFR using RM+ also
performs comparably to Regret-Based Pruning with CFR+,
while retaining theoretical guarantees and not suffering from
noisy convergence.

—CFR - No Prune
Leduc Hold'em — -CFR
— -CFRw/ BRP
CFR w/ regret-based pruning
CFR+
——CFR-RM+ w/ BRP
— -CFR+ w/ regret-based pruning

0.001

Exploitability

N —

0.0001
0.00001

0.000001
0.01 0.1 1 10 100 1000
Nodes Touched x 10A7

Figure 3. Convergence for partial pruning, regret-based pruning,
and best-response pruning in Leduc. “CFR - No Prune” is CFR
without any pruning.

10 ——CFR-No Prune
- CRR
Leduc-5 — CFRw/BRP
CFR w/ regret-based pruning
CFR+
—CFR-RM+ w/ BRP
— CFR+w/ regret-based pruning

0.1

0.01

Exploitability

0.001
0.0001

0.00001
1 10 100 1000
Nodes Touched x 107

Figure 4. Convergence for partial pruning, regret-based pruning,
and best-response pruning in Leduc-5. “CFR - No Prune” is CFR
without any pruning.

5. Conclusions

We introduced BRP, a new form of pruning that prov-
ably reduces both the space needed to solve an imperfect-
information game and the time needed to reach an e-Nash
equilibrium. This addresses both of the major bottlenecks
in solving large imperfect-information games. Experimen-
tally, BRP reduced the space needed to solve a game by a
factor of 7, with the reduction factor increasing with game
size. While the early iterations may still be slow and re-
quire the same amount of space as CFR without BRP, these
early iterations can be skipped by warm starting CFR with
an abstraction of the game (Brown & Sandholm, 2016).
This paper focused on the theory of BRP when applied
to CFR, the most popular algorithm for solving imperfect-
information games. However, BRP can also be applied to
Fictitious Play (Heinrich et al., 2015) and likely extends to
other iterative algorithms as well (Hoda et al., 2010).
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