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ABSTRACT 
Human activities in buildings are connected by various 

transportation measures. For the emerging Smart and Connected 
Communities (S&CC), it is possible to synergize the energy 
management of smart buildings with the vehicle operation/travel 
information available from transportation infrastructure, e.g. the 
intelligent transportation systems (ITS). Such information 
enables the prediction of upcoming building occupancy and 
upcoming charging load of electrified vehicles. This paper 
presents a predictive energy management strategy for smart 
community with a distributed model predictive control 
framework, in which the upcoming building occupancy and 
charging load are assumed to be predictable to certain extent 
based on the ITS information. An illustrative example of smart 
community is used for simulation study based on a Modelica 
simulation model, in which a chilled-water plant sustains the 
ventilation and air conditioning of three buildings, and each 
building is assumed to host a number of charging stations. 
Simulation study is performed to validate the proposed strategy.  

INTRODUCTION 
Buildings and transportation are two pillars for industrialized 

societies: buildings provide the place for human’s habitat and 
various activities, while transportation facilitates the 
commutation among buildings. Buildings is a primary sector of 
energy consumption, e.g. in the U.S., accounting for about 76% 
of electricity use and 40% of all primary energy use [1]. 
Reducing building energy consumption is essential to energy and 
environmental sustainability and cost reduction for building 
operation. In addition to the plug loads, a primary portion of 
energy consumption in buildings is attributed to the heating, 
ventilation, and air conditioning (HVAC) systems. Development 
of smart buildings technology enables advanced building energy 
management through integration with grid operation, distributed 
energy resources (DER), electric vehicles (EV), smart metering 
and demand response. At a larger scale, smart community 

extends the smart building operation to a cluster of buildings 
with coherent connections of power, water, transportation and 
information.  

Building occupancy is a primary aspect for energy 
management. Building occupancy affects the set point for 
thermal environment control as well as the thermal load. In this 
study, we consider the energy management of smart community 
in the context of synergy with the Intelligent Transportation 
Systems (ITS) and ramification of electrified transportation. The 
contemporary ITS technology has enabled onboard real-time 
prediction of travel time and driving cycle for a specific trip, as 
well as onboard battery state-of-charge consumption for EV 
operation. Such capability can thus bring forth the following 
benefit for predictive energy management for smart building 
and/or smart community operation: predictive information on 
building occupancy and EV charging load and duration.   

Figure 1 illustrates a scenario of smart community that 
consists of a number of buildings whose ventilation and air 
conditioning is sustained by a central chilled-water plant. Each 
building is attached with a parking lot with EV charging stations. 
The power demands by the chilled-water plant, buildings and 
associated EV charging are assumed to be sustained by the 
distribution grid local to the community, subject to a distribution 
transformer. The associated equipment operation are regulated 
by mechanisms of daily-ahead dynamic electricity pricing such 
as time-of-use (TOU) and demand charge.  

Advancements in information, communication and sensing 
technologies have laid the backbones for smart community [2-
4]. Demand response (DR) has been well received for peak load 
shifting operation for both residential and commercial building 
operations [5][6]. Handling of distributed energy resources 
(DERs) has resorted to various distributed optimization methods, 
e.g. game theoretical approaches [7]. Model predictive control 
(MPC) has been well investigated for building energy 
management due to its capability in handling constraints and 
incorporating future information [8]. Integrated scheduling of 
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the building HVAC and EV charging has been studied in a 

relatively simple fashion [9]. Notice that smart community 

operation, distributed MPC has been the suitable solution over 

the centralized MPC due to the curse of dimensionality and the 

need for scalability and reconfigurability of implementation.  

 

Figure 1. Schematic for smart community energy management  

In this study, we approach the optimize energy management 

of smart community with three major features: 1) a distributed 

model predictive control framework is considered, which treats 

the central plant of heating/cooling source and individual 

buildings as agents; 2) predictive information on upcoming 

building occupancy and EV charging load is assumed to be 

available through the synergy with ITS information; and 3) 

simulation based evaluation is based on the development of 

multi-physical dynamic simulation model using the Modelica 

platform [10]. 
The remainder of this paper is organized as follows. The 

system description will be provided in next section, followed by 

the formulation of the distributed dynamic optimization 

problem. The simulation model and control oriented models will 

then be described. The active-set primal-dual algorithm adopted 

for the distributed MPC framework will be briefly reviewed, and 

then the simulation results will be presented. The final section 

concludes the paper. 

NOMENCLATURE 
n: number of chillers  
m: number of buildings 
��: state vector for the ith building 
���: space temperature of the ith building 
����:supply air temperature of the ith building 

���: return water temperature of the ith building 
��: aggregated SOC for EVs at the ith building 
�	
�: states of the chiller water plant 
��	�
: supply water temperature from chilled water plant 
��	�
: return water temperature to chilled water plant 
��: inputs for the ith building 
�� ��: chilled water mass flow rate to Building � 
��: the EV charging power at the ��� building 
�	
�: vector of inputs for the chilled-water plant 

�� ��: condensing water flow rate of chiller j 

�� ��: fan flow rate of cooling tower j 

��� :  leaving water temperature out of chiller j 

�� ��: leaving water mass flow rate of chiller j 

� : dynamic electricity price 
��: AHU power consumption of the i-th building 
Q: weighting matrix 
R: weighting matrix 

��: power consumption of chiller j 

���      : upper bound of SOC 
DC: demand charge 
dc: demand charge rate 
��: sampling time 
!: capacity of onboard battery 
": charging power supplied for charging the device 
#: disturbance vector 
$!!�: number of occupants in the i-th building 
��	�: ambient temperature 
Rad: solar radiation 
RH: relative humidity 
%�: state matrix 
&�: input matrix 
��: output matrix 
'�: feedthrough matrix 
(�: disturbance matrix 

���,�*�: temperature setpoint of the i-th building 

 
Problem Formulation 

The smart community considered in this study is simplified 

as a number of buildings sustained by central plant cooling. The 

distributed MPC is anchored on a multi-agent system 

framework. The chilled-water plant is deemed as one agent that 

incorporates n chillers. Each building is treated as an agent that 

includes the chilled-water based air handling unit (AHU) for 

thermal comfort regulation, as well as its own EV parking lot. As 

simple treatment, each building is simplified as a single zone 

regulated by one AHU. The state-space model for each agent 

follows: 

��+, - 1/ 0 %���+,/ - &��+,/ - (�#+,/            (1) 

1�+,/ 0 ����+,/ - '��+,/                            (2) 

where i0 1,2, … , � - 1.	 For i = 1, …, m, �� 0 5��� , ��� , ���� ,
��67 , � 0 5	��, �8, … , �	, �	
�67 , with �� 0 5�� ��, ��	�
 , ��67 . 

For the chilled-water plant, �	
� 0 5��	�
 , ��	�
67 , �	
� 0
5�� ��, , …�� �9,	�� ��, … ,�� �9, ���, … ��9 , �� ��, …�� �96, with j = 1, 

2, …, n. The disturbance vector is # 0 5$!!�, $!!8, … $!!	 ,
��	� , :;<, :=67 , %� , &� , ��, '� , (�  are matrices with compatible 

dimensions. For the j-th chiller, the power consumption is �� 0
�$>?@�+��� , �� �� , �� ��, �� ��, ��� , ��	�
/ , which is evaluated 

with a 6D look-up table (LUT).  
To achieve the optimal energy management for smart 

community, the goal is to minimize the cost for energy 

consumption of thermal regulation and EV charging which 

includes both TOU and demand charges, while meeting the 
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requirement of thermal comfort regulation and charging demand. 

The associated optimization problem can be framed as: 

min
DE,…,  DFGE

J 0 ∑ Jp+k/M∑ POPOQ� +k/ - ∑ +ϕS+k/ -	SQ�TUQ�

MS+k//W - ∑ XTZS+k/ [ TZS,\]^+k/_` ∗ Q ∗cSQ� dTZS+k/ [
TZS,  \]^+k/e - DCh - +L+T/ [ SOC     /` ∗ R ∗ +L+T/ [ SOC     /   (3) 

s.t.                                                                                  
 ��+, - 1/ 0 %���+,/ - &��+,/ - (�#+,/       (3a) 

1�+,/ 0 ����+,/ - '��+,/  (3b) 

�� �,	�9 m �� �� m �� �,	�
   (3c) 

    �� �,	�9 m �� �� m �� �,	�
   (3d) 

    �� �,	�9 m �� �� m �� �,	�
   (3e) 

��,	�9 m ��� m ��,	�
   (3f) 

���	�9 m �+,/ m ���	�
 (3g) 

0 m o+,/ m o	�
   (3h) 

∑ �� �� 0 ∑ �� ��
	
�Q�

9
�Q�   (3i) 

where i = 1, 2, …, m, j = 1, 2, …, n. DC is the demand charge, 

which is determined by  

'� 0 <! ∗ max
�rsrt

u∑ ��+,/ -
v
�Q� ∑ 5��+,/ - ��+,/6

v
�Q� w     (3j) 

 
Simulation Model and Control Oriented Models 
There are two efforts of model development in this study. First, 

a Modelica based dydnamic simulation model is developed for 

the smart community system using Dymola and TIL Library. 

Modelica enables an equation based multi-physical simulation 

platform, which is suitable choice for smart community systems 

which is a mixture of building HVAC, electrical, mechanical and 

control systems. The illustrative system consists of three chillers 

and three buildings, i.e. n = 3 and m = 3. Figure 2 shows the 

entire system layout in Dymola. The chiller plant is shown in the 

left blue dash box to the left, in which there are three chillers are 

configured in parallel.  

 

 

Figure 2 Dymola layout of simulation model of the illustrative 

smart community system.  

In the dash box to the right, three buildings of the community are 

shown, each contains an AHU and zone model. Each building is 

attached with a parking lot of 20 charging stations, and each 

charging station is modeled with a battery pack representing the 

EV. The charging mode and charging power can be set by the 

control algorithms. The charging power and duration for each 

charging station can be programmed. The length of water pipe 

between buildings is 40m, and the length of water pipe between 

Building 1 and the chiller plant is 20m. 
Then the control oriented models as described in the previous 

section are obtained via system identification algorithms. Open-

loop tests are performed using Pseudo Random Binary Sequence 

(PRBS) inputs in order to meet the requirement of persistent 

excitation considering the number of model parameters 

involved. The MATLAB System Identification Toolbox [11] is 

used to estimate the model parameters. 
 
Distributed MPC for Predictive Energy Management of 
Smart Community System 

For the large-scale dynamic optimization problem for energy 

management of smart community, DMPC is an appropriate 

solution due to the computational loads involved for the large 

number of buildings and charging stations.  Several DMPC 

methods have been investigated, such as dual decomposition 

(DD) [12][13], interior point decomposition (IPD) [14], Nash 

equilibrium (NE) [15], and alternating direction method of 

multipliers (ADMM) [16]. The advantages of DD is that the 

algorithm is simple to implement; however, its convergence is 

known to be very slow and it cannot guarantee primal feasibility 

until convergence. IPD has faster convergence, but may lose 

accuracy in the presence of ill conditioning. NE may obtain an 

undesirable optimal point of the controlled system. ADMM has 

better convergence rates than DD, but requires many more 

iterations to converge and high communication cost. In 

particular, the primal-dual active-set (PDAS) method has 

recently been shown to be suited for distributed control with high 

communication cost. Although the communication cost of PDAS 

is higher than DP and ADMM in each iteration, the number of 

iterations to convergence is much less. Overall, the 

communication cost of PDAS is much less than other DMPC 

methods. Therefore, in this study, the PDAS method is selected 

to solve the associated DMPC problem.  
A PDAS method for strictly convex quadratic programs that 

was initially proposed by Hintermüller [17] and expand upon by 

Curtis [18]. In this algorithm, multiple constraints are added to 

or removed from the active set during each iteration of the 

algorithm. As a result, the algorithm often converges in very few 

iterations and it exhibits local superlinear convergence [19]. 
The PDAS algorithm is described as follows. Assume that a 

large-scale system can be decomposed into n subsystems which 

are sparsely coupled. Each subsystem i is connected to its 

neighbors x+�/ via state and/or input coupling. Each subsystem 

has own local performance for state ��  and input �� . The 

associated DMPC problem can be framed as: 

min
y,z

∑ ∑ ��+��+,/, ��+,//
9
�Q�

t
sQ{                      (4a) 

Parking #1 Parking #2 Parking #3 

Building #3 Building #2 Building #1 Chilled-water Plant 
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|. }.		��+, - 1/ 0 %���+,/ - &��+,/ - (�#+,/  (4b) 

��+,/ ∈ �� , � = 1, … , �, ;�<	, = 0,… , � − 1  (4c) ��+,/ ∈ ��, � = 1, … , �, ;�<	, = 0,… , � − 1  (4d) 

where N is the prediction horizon. % = �%� 0 …0 ⋱ ⋮⋮ … %�
� , & =

[&� , … , &�]7. �+,/ ∈ ℛ9 is the predicted state under the control 
action �+,/ ∈ ℛ	  and forecasted disturbance #+,/ ∈ ℛ9  over 

horizon N, �+,/ = [��+,/, … ��+,/]7   and �+,/ =[��+,/, …��+,/]7 . For subsystem i, the vector of states and 
inputs within the prediction horizon is denoted as �� ≜[��7+0/… ��7+�/	��7+0/ …��7+� − 1/]7. Then, the DMPC design 
problem becomes min�E,��,…,�� ∑ ��+��/9�Q�                                 (5a) 

|. }.		%��� ≤ �� 	∀� ∈ �1, … , ��                       (5b) ���� = <� 	∀� ∈ �1, … , ��                       (5c) 

For N = 1, the DMPC program is defined with a quadratic 
objective function [18][19], i.e. 

                                 min� �8 �7� � + !7�                                 (6a) |. }. �� = <                   (6b) 

       � ≤ z ≤	��                                     (6c) 

where ��ℛ�, ! ∈ ℛ�, � ∈ ℛ�, < ∈ ℛ�, and � = �7 ≻ 0. 
Let "�ℛ� be the dual variables corresponding to the equality 

constraints (6b), and �̅∈ℛ� and �∈ℛ� be the dual variables for 

the upper and lower bound constraints (6c). The Karush-Kuhn-
Tucker (KKT) necessary and sufficient conditions for optimality 
for the quadratic program (6) are:  

 �� + ! + �7" + �̅ − � = 0                (7a) 

�� − < = 0             (7b) 

min��̅ − �, �̅� = 0                             (7c) 

min�� − �,	�� = 0                              (7d) 

Let � = �1, … , �� be the index set for the elements of z. For a 
primal variable z, we define the following disjoint subsets of �: 

     %̅ = �� ∈ �: �� = ��̅�                          (8a) 

    % = �� ∈ �: �� = ���                          (8b) 

where A� is the set of components of z that are active at their upper 

bound z , and A is the set of elements of z that are active at their 

lower bound z. By defining � = � ∪ �̅, I = �\� is the set of 

element of z that are not active. We denote by z�  the elements zO 
of z for j∈� . Similarly, z¢  is the element zO  of z for j∈ℐ . The 

algorithm is initialized with an active-set partition A , A  and I. 

There must exist some z¤ such that set Z¤ is not empty, where Z¤ 
is defined as follows; Z¤ ≔ �z¤|Cz = C¨z¨ + C¤z¤ = d�                   (9) 
The first step of the algorithm is to find primal variables z¤ and 
equality dual variables υ that satisfy (7a) and (7b). 

«P¤,¤ C¤¬C¤ 0 ­ ®z¤υ¯ = «−P¤,¨z¨ − C¤−C°z° + d ­               (10) 

where λ¤� = λ¤ = 0. 

Next is to update the inequality dual variables λ  and λ   to 

satisfy (7a), i.e. 

λ O = ² POz + cO + +C¬υ/O				if	j ∈ �̅0																																			if		j ∉ �̅  (11a)                 

λO = ²POz + cO + +C¬υ/O						if	jϵ�			0																																				if	j ∉ �          (11b) 

where �� is the j-th row of P. The active sets are updated as  

%̅
 ← ���¸+�� > ��̅ 	;�<	� ∈ º/��               (12a) 

   %
 ← ���¸+�� < ��	;�<	� ∈ º/��             (12b) 

º
 ← ���¸� ∉ %̅
 ∪ %
��             (12c) 

where superscript ‘+’ indicates the update of the active set at the 
next iteration. 
 
Algorithm 1 Primal Dual Active-Set Method 

1: Find feasible initial active-set partition %̅{, %{, º{ 

2: while ¼
 ≠ ¼			¾¿		¼�
 ≠ ¼�	  do 

3:       Solve minimization problem (10) 

4:       Update duals using (11a) (11b) 

5:       Update active-sets %̅ and % using (12a) (12b) (12c) 

6: end while 

 
For � ≥ 1, the PDAS based DMPC design problem becomes 

[20]: miny,z �+�/7��+�/ + ∑ +�+,/7Á�+,/ + �+,/7:�+,//tÂ�sQ{  (13a)            |. }. ��+, + 1/ = %���+,/ + &��+,/ + (�#+,/        (13b) � ≤ ��++,/ ≤ �̅, , = 1,…�                              (13c) 

� ≤ �+,/ ≤ � , , = 0,… , � − 1                        (13d) 

  �+0/ = ��                                                            (13e) 

Symmetric matrices Á, :, � ≻ 0 are defined as 

� = Ã�� ⋱ ��Ä , Á = ÃÁ� ⋱ Á�
Ä , : = Ã:� ⋱ :�

Ä. 

Algorithm 1 is repeated at every computational step. 
 
Simulation results 
The proposed DMPC based smart community energy 
management strategy is simulated for the plant model described 
in the second section. Figure 3 shows the disturbance and 
electricity price used in the simulation. The sampling period is 
300 seconds. The prediction horizon is 30 time steps. The zone 

temperature setpoints are 23, 24 and 25°C for Buildings 1, 2 and 
3, respectively. The day-ahead electricity price profile for Dallas 
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on April 7, 2017 was obtained from the database of the Electric 
Reliability Council of Texas (ERCOT) [21]. 

 

 
Figure 3. Ambient condition and electricity price for the 

simulated period 
 

For three buildings, we expect 20 EV (each carries 25 people) 
coming to each building. The EV arrival rate is assumed to 
follow a Poisson distribution as shown in Figure 4. Each vehicle 
will stay for at least five steps. The onboard battery capacity is 
16kWh. The nominal charging rate is 6.4kW. The battery 
charging takes 2.5 hours to fully charge the vehicle batteries.  

 
Figure 4. EV arrival rates at Buildings 1, 2 and 3. 

 
First, a centralized MPC scheme is applied to solve the 

scenario of system operation. Figure 5 shows the results of 
building temperature tracking along with profiles of key process 
variables for chiller plant operation. Figure 6 shows the profiles 
of power consumption and electricity bills. 

 

 

 

 

 

Figure 5. Simulation results of centralized MPC: building 
temperature tracking and chiller plant operation. 
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Figure 6. Simulation results of centralized MPC: Power 
consumption of HVAC and EV charging and electricity bills 

Then, the distributed MPC algorithm described above is applied. 
Figures 7, 8 and 9 show the simulation results of thermal comfort 
regulation and EV charging for Buildings 1, 2 and 3, 
respectively. Figure 10 shows the profiles of the key process 
variables for the chiller plant operation. Figure 11 shows the 
trajectories of power consumption and electricity charges from 
the distributed MPC.  

 

Figure 7. DMPC simulation results for Building-1 energy 
management. 

 

Figure 8. DMPC simulation results for Building-2 energy 
management. 

 

Figure 9. DMPC simulation results for Building-3 energy 
management. 

 

Figure 10. Chiller plant operation during DMPC simulation.  

 

Figure 11. Trajectories of power consumption and electricity 
charges 

For the simulated period, the combined cost of TOU charge 
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and demand charge of DMPC are higher than corresponding 
values obtained from centralize MPC. Within the simulated 
period, the total power consumption of the centralized MPC is 
2,685.2 kWh, while in comparison DMPC yields 2,825.5kWh, 
5.15% increase. The TOU charge of the centralized MPC is 
$52.33, while that for the DMPC is $54.98, 5.06% increase. The 
demand charges are $4,725.1 and $5,111.0 for the centralized 
MPC and the distributed MPC, respectively. Demand charge of 
DMPC is 8.17% higher than that of centralized MPC. Further 
work is under way to improve the performance of the DMPC. 
 
Conclusion 

A DMPC based predictive energy management strategy is 
proposed for smart community with chilled water plant and EV 
charging load, enabled by ITS driven prediction for occupancy-
vehicle arrival information. A Modelica based dynamic 
simulation model is developed for the smart community, 
including chiller plant, building HVAC and EV battery charging. 
DMPC is benchmarked against a centralized MPC. The 
simulation shows that the distributed MPC has performed 
reasonably but further improvement of DMPC is needed. There 
is no significant fluctuation in the power consumption profile 
with the predictive control policy due to the introduction of 
predictive occupancy and vehicle charging information 
reinforced by ITS information exchange. Notice that in this 
study, the peak EV charging power takes up to 25-30% of total 
power consumption. If more EVs are present to parking lot 
charging, this share will certainly increase. Further work is 
conducted under way to improve the DMPC performance 
reducing the discrepancy from the centralized MPC results. Also, 
the uncertainty quantification and propagation issues will be 
study in near future. 
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