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Abstract

Heads-up no-limit Texas Hold’em is a primary benchmark challenge for Al. Due
to the hidden information in poker, techniques used for games like chess and Go
are ineffective. We present Libratus, the first Al to defeat top human professionals
in no-limit poker. Libratus’s features three main components: pre-computing a
solution to an abstraction of the game which provides a high-level blueprint for
how the Al should play, a new nested subgame-solving algorithm which repeatedly
calculates a more detailed strategy as play progresses, and a self-improving module
which augments the pre-computed blueprint based on opponent behavior.

1 Introduction

Recreational games have long been benchmarks to evaluate the progress of the field of Al In recent
years Als have successfully beaten top humans in chess Campbell e al. [2002] and Go Silver et
al. [2016]. But these games both share the feature of being perfect information, in which both
players see all the information that is available and know the exact state of the game. Poker is an
imperfect-information game, in which players have access to hidden information. Most real-world
strategic interactions, such as negotiations, security situations, and auctions, involve some amount
of hidden information and can be modeled as imperfect-information games. Dealing with hidden
information requires drastically different approaches for Al because the exact state is no longer known.
No-limit Texas Hold’em has long been the primary benchmark challenge for imperfect-information
games. Until Libratus, no Al had beaten top humans in no-limit Texas Hold’em.

Libratus features three main components. The first is an abstraction and equilibrium-finding algorithm.
This reduces the size of the game from 106! different decision points to a more manageable 10'2
by grouping similar states together. This abstract game is solved to determine a detailed strategy
for the first two out of four rounds in no-limit Texas Hold’em, but only a blueprint of a strategy in
the third and fourth rounds. The second component of Libratus solves a finer-grained abstraction
of the remaining game, taking into account the blueprint of the strategy for the entire game, when
the third round is reached. The final component improves the first-component abstraction over time
by observing which situations Libratus frequently encounters during play against an opponent that
are not accurately represented in its abstraction. The abstraction is augmented to better estimate the
value of those situations.

2 Abstraction and Equilibrium Finding

Heads up no-limit Texas hold’em involves 106! decision points, making it infeasible to pre-compute
a strategy for the entire game. However, many strategically similar situations can be treated identically
at only a small cost. For example, the difference between a bet of $500 and a bet of $501 is tiny.
In Libratus we first generated an abstraction of the full game that includes only a few of the
20, 000 possible actions, and buckets strategically similar poker hands together to reduce the game’s
complexity. The abstraction is very fine-grained on the first two rounds, but coarse on the final two
rounds. This is acceptable because the agent will never play according to the abstraction strategy it
computes in the final two rounds. Instead, it will generate an improved strategy in real time using
subgame solving (explained next) when it reaches that point in the game.



The abstraction is solved via a distributed form of Monte Carlo Counterfactual Regret Minimization
(MCCFR) Zinkevich et al. [2007]; Lanctot et al. [2009]. MCCEFR is an algorithm that repeatedly
traverses a sampled portion of the game tree and independently minimizes regret at every decision
point encountered. Libratus improves upon the vanilla MCCFR algorithm by exploring actions in the
game tree less frequently if those actions have performed poorly in the past.

3 Nested Subgame Solving

An imperfect-information subgame cannot be solved in isolation, because the Nash equilibrium
strategy in other subgames affects the optimal strategy in the subgame that is reached during play.
This is an important difference from perfect-information games. Nevertheless, we can approximate
a good strategy in a subgame in real time if we have a good estimate of the value of reaching all
subgames in an equilibrium. The first module estimated this value for every subgame. Using these
subgame values as input, subgame solving creates and solves a finer-grained abstraction in the
subgame that is reached.

This finer-grained abstraction does not use any card abstraction and uses a dense action abstraction.
Rather than apply action translation, Libratus instead constructs and solves a new subgame every time
an opponent chooses an action that is not in the finer-grained abstraction (in practice, it constructs a
new subgame every time the opponent bets). This allows it to avoid the rounding error due to action
translation and leads to much lower exploitability Brown and Sandholm [2017].

4 Self-Improving

Libratus uses a dense action abstraction on the first two rounds of no-limit Texas Hold’em, but if the
opponent does not bet an amount that is in the abstraction then the bet is rounded to a nearby size
that is in the abstraction. This leads to the strategy the Al uses to be slightly off. To improve upon
this, every night during the competition the Al determined a small number of actions to add to the
abstraction. The choice of actions was based on a combination of which actions the opponents were
choosing most frequently, and how far those actions were from an existing action in the abstraction.
Once an action was selected, a strategy was calculated for it in a similar manner to subgame solving,
described in Section 3. From that point on, if that action (or a nearby one) were chosen by an
opponent, then the newly solved subgame strategy would be used. This had the effect of reducing
over time the rounding error due to action translation.

5 Demonstration

Attendees will have the opportunity to play against Libratus in heads up no-limit Texas Hold’em via
the same web-based user interface that the top professional players used in their competition against
the AIL. One computer will be available for an attendee to use, while others can watch the game on a
large panel monitor. A Youtube video of the precursor bot (played through the same user interface that
will be available to NIPS attendees) can be seen at https://www.youtube.com/watch?v=phRAyF1rq0l.
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