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Abstract:

Patterns of estimated neural activity derived from
resting state functional magnetic resonance imaging
(rs-fMRI) have been shown to predict a wide range of
cognitive and behavioral outcomes in both normative
and clinical populations. Yet, without links to
established cognitive processes, the functional brain
states associated with the resting brain will remain
unexplained, and potentially confounded, markers of
individual differences. In this work we demonstrate the
application of multivoxel pattern classifiers (MVPCs) to
predict the valence and arousal properties of
spontaneous affect processing in the task-non-engaged
resting state. rs-fMRI data were acquired from subjects
that were held out from a subject set that underwent
image-based affect induction concurrent with fMRI to
train the MVPCs. We also validated these affective
predictions against a well-established, independent
measure of autonomic arousal, skin conductance
response. These findings suggest a new neuroimaging
methodology for resting state analysis in which models,
trained on cognition-specific task-based fMRI acquired
from well-matched cohorts, capably predict hidden
cognitive processes operating within the resting brain.

Keywords: resting state; emotion; fMRI; MVPA; SCR

Introduction

Measures of resting state fMRI (rs-fMRI) brain
activations hawe been shown to predict diverse
cognitive and behavioral outcomes in both normative
and clinical populations (Lee et al.,, 2013). While
predictive, rs-fIMRlI measures often lack theoretical
mechanistic explanations of why and how variation in
resting brain function explains individual and group
variation. Due to a lack of “ground truth” as to the
identity of the spontaneous cognitions underlying the
temporal fluctuations of resting state neural
activations, rs-fMRI is largely characterized by its
functional or effective connectivities. In this work, we
consider an alternative exploration of resting state
brain activations by applying highly accurate,
reproducible, and physiologically validated whole-brain
multivariate pattern classification models (MVPCs) of
the wvalence and arousal properties of dimensional
emotion (Bush et al., 2017; Bush et al., 2018a; Bush et

al., 2018b) to label a specific cognitive process (affect)
as it spontaneously ewlves through time. We show
that emotion labeling of rs-fMRlI data can be
accomplished on out-of-sample datasets and that the
neural pattern classifier prediction of at least one
affective property, arousal, significantly agrees with the
temporal course of an independent measurement of
autonomic arousal captured via skin conductance
response (SCR).

Methods

Overview: We conducted analyses of data acquired
from two separate fMRI studies that shared a common
design structure up to and including the resting state
“task” of the neuroimaging session. All study
procedures were conducted in the Brain Imaging
Research Center (BIRC) at the University of Arkansas
for Medical Sciences (UAMS). All subjects provided
written informed consent and all procedures were
conducted with approval and owersight by the UAMS
Institutional Review Board. Study participation involved
two sessions on separate days. Session 1 included
obtaining written informed consent, determining if
subjects met clinical exclusionary criteria via structured
clinical intenview (SCID-I/NP), and administering
behavioral sureys and questionnaires. Session 2
included the neuroimaging  session, lasting
approximately 1 hour and comprised of three
sequential task conditions: Emotion Identification,
Resting State, and Intrinsic Neuromodulation. This
data analysis focused on the Emotion Identification
and Resting State Task conditions.

Subjects: The participant sample (n=38) used for this
analysis had the following demographic
characteristics: age [mean(s.d.)]: 32.1(13.6), range
18-63; sex: 22 (57.9%) female; racel/ethnicity: 31
(81.6%) self-reporting as White or Caucasian, 6
(15.8%) as Black or African-American, 1 (2.6%) as
Hispanic or Latino; education [mean(s.d.)]: 16.5 (2.6)
years, range 12-23; 1Q [mean(s.d.)]: 106.1(14.3),
range 74-137. All subjects were right-handed, native-
born United States citizens (to comport with the



affective  stimulus normative scores), medically
healthy, with no current psychopathology, no current
usage of psychotropic medication, and produced a
negative urine screen for drugs of abuse immediately
prior to the MRI scan. Additionally, subjects’ vision was
corrected to 20/20 during the MRI scan and color-
blindness was exclusionary.

MR and SCR Acquisition and Preprocessing:
Imaging data was acquired using a Philips 3T Achieva
X-series MRI scanner (TR=2s). We recorded
psychophysiological response measures using a
BIOPAC MP150 Data Acquisition System using the
AcgKnowledge software platform for simultaneous
recording of skin conductance via the EDA100C-MRI
module (sampling frequency was 2000 Hz). fMRI
signals were preprocessed to remowe noise and
motion artifacts and segmented to remowe all voxels
except gray matter (GM) according to the methods in
Bush et al. (2017); 2) SCR signals were preprocessed
to remove noise and tonic signal components as
described in Bush et al. (2018b).

Emotion Perception Modeling

Emotion Identification Task: Ninety image stimuli
were selected from the International Affective Picture
System (IAPS) such that the image subset
represented the full range of the continuously-valued
component properties, valence (V) and arousal (A), as
described in Bush et al. (2018a). Concurrently with
fMRI and SCR acquisition, the images were passively
viewed for 2 s interleaved with random inter-trial
intervals [2-6] s. The total task time cowered two
scans, each 9.25 min. in duration.

Brain and Psychophysiological State Estimation:
For each IAPS stimulus, neural activation patterns and
skin conductance response patterns were extracted
via the beta-series method (Rissman et al., 2004)
using either the canonical hemodynamic response
function (BOLD beta-series) or the canonical skin
conductance response function (SCR beta-series)
(Bach et al., 2009).

Classification of Affective Signals: The individual
patterns of affective image related neural activation,
each matched to the normed labels of the stimulus
from which they were derived, were used to conduct
intra-subject leave-one-out-cross-validated (LOOCV)
linear support vector machine (SVM) classification
(Vapnik, 1995). Separate intra-subject valence, Bv(i),
and arousal, BA(i), models were fit for each subject i,
as described in Bush et al. (2018a).

Resting State Emotion Prediction

Resting State Task: Subjects were instructed to stare
at a central fixation cross and allow their minds to
freely wander while fMRI and SCR data were
concurrently recorded. The task duration was 7.5 min
(225 wolumes).

Brain and Psychophysiological State Estimation:
In the resting state, neural activations and SCR
response patterns were extracted according to the
following algorithm. We defined a set of theoretical
“self-task” stimuli that occur at 2 s intervals on the
range of 12430 s (210 unique stimuli). For 30
independent iterations we: 1) uniformly randomly
sampled 100 selftask stimulus times, and 2) extracted
the neural and SCR activation patterns according to
the beta-series method. Over the course of the
iterations, all neural activations extracted for the same
stimulus time were separately predicted (see below).

The purpose of this iterative process is to
simultaneously estimate the neural and physiological
state over the entire resting state task while allowing
each general linear model (GLM) to be sufficiently
constrained; we also sought to capture variance
arising from correlations between the sampled beta-
series regressors.

Emotion Prediction of Resting Brain States: We
then applied the learned emotion models, Bv(i) and
BA(i), of each subject to each brain state extracted
from the resting state task, yielding predictions V(i,j,k)
and A(,j,k), which are the valence and arousal
estimates of state j predicted by the respective models
of subject i for the K™ sampling of state j (k<30).
Predictions are averaged over k for each subject, i.
Distributions of affect are computed over all subjects, i,
for each state, j. An example prediction outcome for a
single subject is depicted in Figure 1 (panel A).

Experiments

Cross-Validation of Valence and Arousal
Predictions: The purpose of this test is to validate the
accuracy of group-level emotion predictions to hold-out
rs-fIMRI data. In this test, we use the mean valence
and arousal predictions of n=37 subjects models
applied to one hold-out subject’s rs-fMRI.  We then
measure the Pearson’s correlation (R) of these
predictions of emotion to the hold-out predictions of
this rs-IMRI made by the subject’s own models, i.e. Ry
and Ra. We repeated this process for each of the 38
subjects.
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Figure 1. Example prediction outcome and summary of experimental results. (A) Example predicted
emotion trajectories for a single subject’s rs-fMRI. Thick line denotes mean group prediction, y, and thin lines
denote the 95% confidence interval of the mean, CI. (B) Distribution of LOOCV correlations, Ry, between

group and hold-out subject predictions of valence, and (C) arousal, Ra.

(D) Distribution of LOOCV

correlations, Rscr, between group predictions of arousal and hold-out subject autonomic arousal, measured
as skin conductance response. Correlations are reported as Pearson’s R.

Physiological Validation of Predicted Arousal: The
purpose of this test is to validate the MVPA predictions
of affective arousal against a  well-validated
independent measure of physiological arousal, the
skin conductance response (Bach et al., 2010). In this
test, we use the mean arousal predictions of n=37
subjects’ models applied to one hold-out subject’s rs-
fMRI.  We then measured the Pearson’s correlation of
these predictions against the subject’'s true
physiological state estimates, Rs.;. We repeated this
process for each of the 38 subjects.

Results

Our experimental results are summarized in Figure 1
(panels B-D). We found that our group-level prediction
of emotion perception was highly significant using non-
parametric testing of the cross-validated correlation
result. Median correlation of valence group predictions
to hold-out subject predictions (see Fig. 1, panel B)
was Ry=0.40 (p<0.001, signrank test, null:
median(Ry)=0). Median correlation of arousal group
predictions to the hold-out subject predictions (see Fig.
1, panel C) was Rp=0.21 (p<0.001, signrank test, null:
median(Ra)=0). These findings suggest that indeed,

pre-built emotion models can effectively estimate the

emotion fluctuations in an out-of-sample rs-fMRI
signal.

We also found that our group prediction of

emotional arousal was significantly correlated with
SCR (see Fig. 1, panel D), an independent
measurement of autonomic arousal, Rgcr=0.05

(p=0.016, signrank test, null: median(Rscr)=0). This
finding suggests that, in agreement with numerous
validations of our emotion perception models, resting
state MVPA-based emotion state prediction is
conwergently valid across multiple measurements of
affect processing.

Discussion

We hawe demonstrated that accurate emotion state
prediction can be extracted from rs-fMRI data of
subjects for which we do not have a subject-fitted
prediction model. We havwe also validated these
predictions against a well-established measure of
emotion-related arousal. Our technique paves the way
for defining the functional structure of the human brain
at rest (potentially for any cognitive process for which



MVPC-based models may be constructed and
independently validated via concurrent physiological
measurement). This approach is particularly relevant
to large, openly available datasets for which rs-fMRI
data exist. Within these datasets, we foresee highly
powered studies of functional brain structure in the
absence of task labels to explore the population-level
clinical, developmental, and environmental
determinants of brain organization.
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