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Abstract: 

Patterns of estimated neural activity derived from 
resting state functional magnetic resonance imaging 
(rs-fMRI) have been shown to predict a wide range of 
cognitive and behavioral outcomes in both normative 
and clinical populations. Yet, without links to 
established cognitive processes, the functional brain 
states associated with the resting brain will remain 
unexplained, and potentially confounded, markers of 
individual differences. In this work we demonstrate the 
application of multivoxel pattern classifiers (MVPCs) to 
predict the valence and arousal properties of 
spontaneous affect processing in the task-non-engaged 
resting state. rs-fMRI data were acquired from subjects 
that were held out from a subject set that underwent 
image-based affect induction concurrent with fMRI to 
train the MVPCs.  We also validated these affective 
predictions against a well-established, independent 
measure of autonomic arousal, skin conductance 
response.  These findings suggest a new neuroimaging 
methodology for resting state analysis in which models, 
trained on cognition-specific task-based fMRI acquired 
from well-matched cohorts, capably predict hidden 
cognitive processes operating within the resting brain.  
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Introduction 

Measures of resting state fMRI (rs-fMRI) brain 

activations have been shown to predict diverse 
cognitive and behavioral outcomes in both normative 
and clinical populations (Lee et al., 2013). While 

predictive, rs-fMRI measures often lack theoretical 
mechanistic explanations of why and how variation in 
resting brain function explains individual and group 

variation. Due to a lack of “ground truth” as to the 
identity of the spontaneous cognitions underlying the 
temporal fluctuations of resting state neural 

activations, rs-fMRI is largely characterized by its 
functional or effective connectivities. In this work, we 
consider an alternative exploration of resting state 

brain activations by applying highly accurate, 
reproducible, and physiologically validated whole-brain 
multivariate pattern classification models (MVPCs) of 

the valence and arousal properties of dimensional 
emotion (Bush et al., 2017; Bush et al., 2018a; Bush et 

al., 2018b) to label a specific cognitive process (affect) 
as it spontaneously evolves through time.  We show 
that emotion labeling of rs-fMRI data can be 

accomplished on out-of-sample datasets and that the 
neural pattern classifier prediction of at least one 
affective property, arousal, significantly agrees with the 

temporal course of an independent measurement of 
autonomic arousal captured via skin conductance 
response (SCR). 

Methods 

Overview: We conducted analyses of data acquired 

from two separate fMRI studies that shared a common 

design structure up to and including the resting state 
“task” of the neuroimaging session. All study 
procedures were conducted in the Brain Imaging 

Research Center (BIRC) at the University of Arkansas 
for Medical Sciences (UAMS). All subjects provided 
written informed consent and all procedures were 

conducted with approval and oversight by the UAMS 
Institutional Review Board. Study participation involved 
two sessions on separate days. Session 1 included 

obtaining written informed consent, determining if 
subjects met clinical exclusionary criteria via structured 
clinical interview (SCID-I/NP), and administering 

behavioral surveys and questionnaires. Session 2 
included the neuroimaging session, lasting 
approximately 1 hour and comprised of three 

sequential task conditions: Emotion Identification, 
Resting State, and Intrinsic Neuromodulation. This 
data analysis focused on the Emotion Identification 
and Resting State Task conditions. 

Subjects: The participant sample (n=38) used for this 

analysis had the following demographic 
characteristics: age [mean(s.d.)]: 32.1(13.6), range 
18‒63; sex: 22 (57.9%) female; race/ethnicity: 31 

(81.6%) self-reporting as White or Caucasian, 6 
(15.8%) as Black or African-American, 1 (2.6%) as 
Hispanic or Latino; education [mean(s.d.)]: 16.5 (2.6) 

years, range 12‒23; IQ [mean(s.d.)]: 106.1(14.3), 
range 74‒137. All subjects were right-handed, native-
born United States citizens (to comport with the 



affective stimulus normative scores), medically 
healthy, with no current psychopathology, no current 

usage of psychotropic medication, and produced a 
negative urine screen for drugs of abuse immediately 
prior to the MRI scan. Additionally, subjects’ vision was 

corrected to 20/20 during the MRI scan and color-
blindness was exclusionary. 

MR and SCR Acquisition and Preprocessing: 

Imaging data was acquired using a Philips 3T Achieva 
X-series MRI scanner (TR=2s). We recorded 

psychophysiological response measures using a 
BIOPAC MP150 Data Acquisition System using the 
AcqKnowledge software platform for simultaneous 

recording of skin conductance via the EDA100C-MRI 
module (sampling frequency was 2000 Hz). fMRI 
signals were preprocessed to remove noise and 

motion artifacts  and segmented to remove all voxels 
except gray matter (GM) according to the methods in 
Bush et al. (2017); 2) SCR signals were preprocessed 

to remove noise and tonic signal components as 
described in Bush et al. (2018b). 

Emotion Perception Modeling 

Emotion Identification Task: Ninety image stimuli 

were selected from the International Affective Picture 

System (IAPS) such that the image subset 
represented the full range of the continuously-valued 
component properties, valence (V) and arousal (A), as 
described in Bush et al. (2018a). Concurrently with 

fMRI and SCR acquisition, the images were passively 
viewed for 2 s interleaved with random inter-trial 
intervals [2–6] s.  The total task time covered two 
scans, each 9.25 min. in duration. 

Brain and Psychophysiological State Estimation: 

For each IAPS stimulus, neural activation patterns and 
skin conductance response patterns were extracted 
via the beta-series method (Rissman et al., 2004) 

using either the canonical hemodynamic response 
function (BOLD beta-series) or the canonical skin 
conductance response function (SCR beta-series) 
(Bach et al., 2009). 

Classification of Affective Signals: The individual 

patterns of affective image related neural activation, 
each matched to the normed labels of the stimulus 
from which they were derived, were used to conduct 

intra-subject leave-one-out-cross-validated (LOOCV) 
linear support vector machine (SVM) classification 
(Vapnik, 1995). Separate intra-subject valence, β

V
(i), 

and arousal, β
A
(i), models were fit for each subject i, 

as described in Bush et al. (2018a). 

Resting State Emotion Prediction 

Resting State Task: Subjects were instructed to stare 

at a central fixation cross and allow their minds to 
freely wander while fMRI and SCR data were 
concurrently recorded. The task duration was 7.5 min 
(225 volumes). 

Brain and Psychophysiological State Estimation: 

In the resting state, neural activations and SCR 
response patterns were extracted according to the 
following algorithm. We defined a set of theoretical 

“self-task” stimuli that occur at 2 s intervals on the 
range of 12–430 s (210 unique stimuli). For 30 
independent iterations we: 1) uniformly randomly 

sampled 100 self-task stimulus times, and 2) extracted 
the neural and SCR activation patterns according to 
the beta-series method. Over the course of the 

iterations, all neural activations extracted for the same 
stimulus time were separately predicted (see below).  

The purpose of this iterative process is to 

simultaneously estimate the neural and physiological 
state over the entire resting state task while allowing 

each general linear model (GLM) to be sufficiently 
constrained; we also sought to capture variance 
arising from correlations between the sampled beta-
series regressors.    

Emotion Prediction of Resting Brain States: We 
then applied the learned emotion models, β

V
(i) and 

β
A
(i), of each subject to each brain state extracted 

from the resting state task, yielding predictions V(i,j,k) 
and A(i,j,k), which are the valence and arousal 

estimates of state j predicted by the respective models 

of subject i for the k
th

 sampling of state j (k30). 
Predictions are averaged over k for each subject, i.  

Distributions of affect are computed over all subjects, i, 
for each state, j. An example prediction outcome for a 
single subject is depicted in Figure 1 (panel A). 

Experiments 

Cross-Validation of Valence and Arousal 

Predictions: The purpose of this test is to validate the 
accuracy of group-level emotion predictions to hold-out 
rs-fMRI data.  In this test, we use the mean valence 

and arousal predictions of n=37 subjects models 
applied to one hold-out subject’s rs-fMRI.  We then 
measure the Pearson’s correlation (R) of these 

predictions of emotion to the hold-out predictions of 
this rs-fMRI made by the subject’s own models, i.e. RV 
and RA. We repeated this process for each of the 38 

subjects. 

 



Figure 1. Example prediction outcome and summary of experimental results. (A) Example predicted 
emotion trajectories for a single subject’s rs-fMRI. Thick line denotes mean group prediction, μ, and thin lines 

denote the 95% confidence interval of the mean, CI. (B) Distribution of LOOCV correlations, RV, between 
group and hold-out subject predictions of valence, and (C) arousal, RA.  (D) Distribution of LOOCV 
correlations, RSCR, between group predictions of arousal and hold-out subject autonomic arousal, measured 

as skin conductance response.  Correlations are reported as Pearson’s R. 

Physiological Validation of Predicted Arousal: The 

purpose of this test is to validate the MVPA predictions 
of affective arousal against a well-validated 
independent measure of physiological arousal, the 

skin conductance response (Bach et al., 2010).  In this 
test, we use the mean arousal predictions of n=37 
subjects’ models applied to one hold-out subject’s rs-

fMRI.  We then measured the Pearson’s correlation of 
these predictions against the subject’s true 
physiological state estimates, Rscr. We repeated this 
process for each of the 38 subjects. 

Results 

Our experimental results are summarized in Figure 1 

(panels B–D). We found that our group-level prediction 
of emotion perception was highly significant using non-

parametric testing of the cross-validated correlation 
result.  Median correlation of valence group predictions 
to hold-out subject predictions (see Fig. 1, panel B) 

was RV=0.40 (p<0.001, signrank test, null: 
median(RV)=0).  Median correlation of arousal group 
predictions to the hold-out subject predictions (see Fig. 

1, panel C) was RA=0.21 (p<0.001, signrank test, null: 
median(RA)=0). These findings suggest that indeed, 

pre-built emotion models can effectively estimate the 

emotion fluctuations in an out-of-sample rs-fMRI 
signal.   

We also found that our group prediction of 

emotional arousal was significantly correlated with 
SCR (see Fig. 1, panel D), an independent 

measurement of autonomic arousal, RSCR=0.05 
(p=0.016, signrank test, null: median(RSCR)=0). This 
finding suggests that, in agreement with numerous 

validations of our emotion perception models, resting 
state MVPA-based emotion state prediction is 
convergently valid across multiple measurements of 
affect processing. 

Discussion 

We have demonstrated that accurate emotion state 

prediction can be extracted from rs-fMRI data of 
subjects for which we do not have a subject-fitted 

prediction model. We have also validated these 
predictions against a well-established measure of 
emotion-related arousal. Our technique paves the way 

for defining the functional structure of the human brain 
at rest (potentially for any cognitive process for which 



MVPC-based models may be constructed and 
independently validated via concurrent physiological 

measurement).  This approach is particularly relevant 
to large, openly available datasets for which rs-fMRI 
data exist. Within these datasets, we foresee highly 

powered studies of functional brain structure in the 
absence of task labels to explore the population-level 
clinical, developmental, and environmental 
determinants of brain organization. 
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