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Abstract
While there has been a tremendous interest in processing
data that has an underlying graph structure, existing dis-
tributed graph processing systems take several minutes or
even hours to mine simple patterns on graphs. This paper
presents ASAP, a fast, approximate computation engine
for graph pattern mining. ASAP leverages state-of-the-art
results in graph approximation theory, and extends it to
general graph patterns in distributed settings. To enable
the users to navigate the tradeoff between the result accu-
racy and latency, we propose a novel approach to build the
Error-Latency Profile (ELP) for a given computation. We
have implemented ASAP on a general-purpose distributed
dataflow platform and evaluated it extensively on several
graph patterns. Our experimental results show that ASAP
outperforms existing exact pattern mining solutions by up
to 77×. Further, ASAP can scale to graphs with billions
of edges without the need for large clusters.

1 Introduction
The recent past has seen a resurgence in storing and pro-
cessing massive amounts of graph-structured data [1, 3].
Algorithms for graph processing can broadly be classi-
fied into two categories. The first, graph analysis al-
gorithms, compute properties of a graph typically using
neighborhood information. Examples of such algorithms
include PageRank [46], community detection [31] and
label propagation [65]. The second, graph pattern min-
ing algorithms, discover structural patterns in a graph.
Examples of graph pattern mining algorithms include mo-
tif finding [44], frequent sub-graph mining (FSM) [60]
and clique mining [19]. Graph mining algorithms are
used in applications like detecting similarity between
graphlets [49] in social networking and for counting pat-
tern frequencies to do credit card fraud detection.
Today, a deluge of graph processing frameworks ex-

ist, both in academia and open-source [20, 24, 25, 34–
36, 40, 42, 43, 45, 50, 53, 54, 58, 64]. These frame-
works typically provide high-level abstractions that make
it easy for developers to implement many graph algo-
rithms. A vast majority of the existing graph processing

∗Equal contribution.

frameworks however have focused on graph analysis al-
gorithms. These frameworks are fast and can scale out
to handle very large graph analysis settings: for instance,
GraM [59] can run one iteration of page rank on a trillion-
edge graph in 140 seconds in a cluster. In contrast, systems
that support graph patternmining fail to scale to evenmod-
erately sized graphs, and are slow, taking several hours to
mine simple patterns [29, 55].

The main reason for the lack of the scalability in pattern
mining is the underlying complexity of these algorithms—
mining patterns requires complex computations and stor-
ing exponentially large intermediate candidate sets. For
example, a graph with a million vertices may possibly con-
tain 1017 triangles. While distributed graph-processing
solutions are good candidates for processing such massive
intermediate data, the need to do expensive joins to create
candidates severely degrades performance. To overcome
this, Arabesque [55] proposes new abstractions for graph
mining in distributed settings that can significantly opti-
mize how intermediate candidates are stored. However,
even with these methods, Arabesque takes over 10 hours
to count motifs in a graph with less than 1 billion edges.

In this paper, we present ASAP1, a system that enables
both fast and scalable pattern mining. ASAP is moti-
vated by one key observation: in many pattern mining
tasks, it is often not necessary to output the exact answer.
For instance, in FSM the task is to find the frequency of
subgraphs with an end-goal of ordering them by occur-
rences. Similarly, motif counting determines the number
of occurrences of a given motif. In these scenarios, it is
sufficient to provide an almost correct answer. Indeed, our
conversations with a social network firm [4] revealed that
their application for social graph similarity uses a count
of similar graphlets [49]. Another company’s [4] fraud
detection system similarly counts the frequency of pattern
occurrences. In both cases, an approximate count is good
enough. Furthermore, it is not necessary to materialize
all occurrences of a pattern2. Based on these use cases,
we build a system for approximate graph pattern mining.

1for A Swift Approximate Pattern-miner
2In fact, it may even be infeasible to output all embeddings of a

pattern in a large graph.
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Approximate analytics is an area that has gathered
attention in big data analytics [6, 13, 32], where the goal
is to let the user trade-off accuracy for much faster results.
The basic idea in approximation systems is to execute the
exact algorithm on a small portion of the data, referred
to as samples, and then rely on the statistical properties
of these samples to compose partial results and/or error
characteristics. The fundamental assumption underlying
these systems is that there exists a relationship between
the input size and the accuracy of the results which can
be inferred. However, this assumption falls apart when
applied to graph pattern mining. In particular, running
the exact algorithm on a sampled graph may not result in
a reduction of runtime or good estimation of error (§ 2.2).

Instead, in ASAP, we leverage graph approximation the-
ory, which has a rich history of proposing approximation
algorithms for mining specific patterns such as triangles.
ASAP exploits a key idea that approximate pattern mining
can be viewed as equivalent to probabilistically sampling
random instances of the pattern. Using this as a foun-
dation, ASAP extends the state-of-the-art probabilistic
approximation techniques to general patterns in a dis-
tributed setting. This lets ASAP massively parallelize
instance sampling and provide a drastic reduction in run-
timeswhile sacrificing a small amount of accuracy. ASAP
captures this technique in a simple API that allows users
to plugin code to detect a single instance of the pattern
and then automatically orchestrates computation while
adjusting the error bounds based on the parallelism.
Further, ASAP makes pattern mining practical by sup-

porting predicate matching and introducing caching tech-
niques. In particular, ASAP allows mining for patterns
where edges in the pattern satisfy a user-specified property.
To further reduce the computation time, ASAP leverages
the fact that in several mining tasks, such as motif finding,
it is possible to cache partial patterns that are building
blocks for many other patterns. Finally, an important
problem in any approximation system is in allowing users
to navigate the tradeoff between the result accuracy and
latency. For this, ASAP presents a novel approach to build
the Error-Latency Profile (ELP) for graph mining: it uses
a small sample of the graph to obtain necessary informa-
tion and applies Chernoff bound analysis to estimate the
worst-case error profile for the original graph.

The combination of these techniques allows ASAP
to outperform Arabesque [55], a state-of-the-art exact
pattern mining solution by up to 77× on the LiveJournal
graph while incurring less than 5% error. In addition,
ASAP can scale to graphs with billions of edges—for
instance, ASAP can count all the 6 patterns in 4-motifs
on the Twitter (1.5B edges) and UK graph (3.7B edges) in
22 and 47 minutes, respectively, in a 16 machine cluster.
We make the following contributions in this paper:

• We present ASAP, the first system to our knowledge,
that does fast, scalable approximate graph pattern min-
ing on large graphs. (§3)

• We develop a general API that allows users to mine any
graph pattern and present techniques to automatically
distribute executions on a cluster. (§4)

• We propose techniques that quickly infer the relation-
ship between approximation error and latency, and show
that it is accurate across many real-world graphs. (§5)

• We show that ASAP handles graphs with billions of
edges, a scale that existing systems failed to reach. (§6)

2 Background & Motivation
We begin by discussing graph pattern mining algorithms
and then motivate the need for a new approach to approx-
imate pattern mining. We then describe recent advance-
ments in graph pattern mining theory that we leverage.

2.1 Graph Pattern Mining
Mining patterns in a graph represent an important class
of graph processing problems. Here, the objective is to
find instances of a given pattern in a graph or graphs. The
common way of representing graph data is in the form of
a property graph [52], where user-defined properties are
attached to the vertices and edges of the graph. A pattern
is an arbitrary subgraph, and pattern mining algorithms
aim to output all subgraphs, commonly referred to as
embeddings, that match the input pattern. Matching is
done via sub-graph isomorphism, which is known to be
NP-complete. Several varieties of graph pattern mining
problems exist, ranging from finding cliques to mining
frequent subgraphs. We refer the reader to [7, 55] for an
excellent, in-depth overview of graph mining algorithms.
A common approach to implement pattern mining al-

gorithms is to iterate over all possible embeddings in the
graph starting with the simplest pattern (e.g., a vertex or
an edge). We can then check all candidate embeddings,
and prune those that cannot be a part of the final answer.
The resulting candidates are then expanded by adding one
more vertex/edge, and the process is repeated until it is
not possible to explore further. The obvious challenge in
graph pattern mining, as opposed to graph analysis, is the
exponentially large candidate set that needs to be checked.
Distributed graph processing frameworks are built to

process large graphs, and thus seem like an ideal can-
didate for this problem. Unfortunately when applied to
graph mining problems, they face several challenges in
managing the candidate set. Arabesque [55], a recently
proposed distributed graphmining system, discusses these
challenges in detail, and proposes solutions to tackle sev-
eral of them. However, even Arabesque is unable to scale
to large graphs due to the need to materialize candidates
and exchange them between machines. As an example,
Arabesque takes over 10 hours to count motifs of size 3
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(a) Uniform edge sampling.
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(b) 3-chains in Twitter graph
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(c) Triangles in UK graph
Figure 1: Simply extending approximate processing techniques to graph pattern mining does not work.

in a graph with less than a billion edges on a cluster of 20

machines, each having 256GB of memory.

2.2 Approximate Pattern Mining
Approximate processing is an approach that has been used

with tremendous success in solving similar problems in

both the big data analytics [6, 32] and databases [22, 26,

27], and thus it is natural to explore similar techniques

for graph pattern mining. However, simply extending

existing approaches to graphs is insufficient.

The common underlying idea in approximate process-

ing systems is to sample the input that a query or an

algorithm works on. Several techniques for sampling the

input exists, for instance, BlinkDB [6] leverages stratified

sampling. To estimate the error, approximation systems

rely on the assumption that the sample size relates to the

error in the output (e.g., if we sample K items from the

original input, then the error in aggregate queries, such

as SUM, is inversely proportional to
√

K). It is straightfor-

ward to envision extending this approach to graph pattern

mining—given a graph and a pattern to mine in the graph,

we first sample the graph, and run the pattern mining

algorithm on the sampled graph.

Figure 1a depicts the idea as applied to triangle count-

ing. In this example, the input graph consists of 10 trian-

gles. Using uniform sampling on the edges we obtain a

graph with 50% of the edges. We can then apply triangle

counting on this sample to get an answer 1. To scale this

number to the actual graph, we can use several ways. One

naive way is to double it, since we reduced the input by

half. To verify the validity of the approach, we evalu-

ated it on the Twitter graph [39] for finding 3-chains and

the UK webgraph [17] graph for triangle counting. The

relation between the sample size, error and the speedup

compared to running on the original graph (
Tor ig

Tsample
) is

shown in figs. 1b and 1c respectively.

These results show the fundamental limitations of the

approach. We see that there is no relation between the size

of the graph (sample) and the error or the speedup. Even

very small samples do not provide noticeable speedups,

and conversely, even very large samples end up with signif-

icant errors. We conclude that the existing approximation

approach of running the exact algorithm on one or more

samples of the input is incompatible with graph pattern
mining. Thus, in this paper, we propose a new approach.

2.3 Graph Pattern Mining Theory
Graph theory community has spent significant efforts in

studying various approximation techniques for specific
patterns. The key idea in these approaches is to model

the edges in the graph as a stream and sample instances
of a pattern from the edge stream. Then the probability
of sampling is used to bound the number of occurrences

of the pattern. There has been a large body of theoretical

work on various algorithms to sample specific patterns and

analysis to prove their bounds [8, 11, 21, 38, 47, 48, 56].

While the intuition of using such sampling to approx-

imate pattern counts is straightforward, the technical de-

tails and the analysis are quite subtle. Since sampling

once results in a large variance in the estimate, multiple

rounds are required to bound the variance. Consider tri-

angle counting as an example. Naively, one would design

an technique that uniformly samples three edges from

the graph without replacement. Since the probability of

sampling one edge is 1/m in a graph of m edges, the prob-

ability of sampling three edges is 1/m3. If the sampled

three edges form a triangle, we estimate the number of

triangles to be m3 (the expectation); otherwise, the esti-

mation is 0. While such a sampling technique is unbiased,

since m is large in practice, the probability that the sam-

pling would find a triangle is very low and the variance

of the result is very large. Obtaining an approximated

count with high accuracy, would require a large number

of trials, which not only consumes time but also memory.

Neighborhood sampling [48] is a recently proposed

approach that provides a solution to this problem in the

context of a specific graph pattern, triangle counting.

The basic idea is to sample one edge and then gradu-

ally add more edges until the edges form a triangle or

it becomes impossible to form the pattern. This can

be analyzed by Bayesian probability [48]. Let’s denote

E as the event that a pattern is formed, E1,E2, . . .,Ek

are the events that edges e1, e2, . . ., ek are sampled and

stored. Thus the probability of a pattern is actually sam-

pled can be calculated as Pr(E) = Pr(E1 ∩E2 · · · ∩Ek) =
Pr(E1)×Pr(E2 |E1) · · · ×Pr(Ek |E1, . . .,Ek−1). Intuitively,

compared to the naive sampling, neighborhood sampling
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Figure 2: Triangle count by neighborhood sampling

increases the probability that each trial would find an

instance of the given pattern, and thus requires fewer

estimations to achieve the same accuracy.

2.3.1 Example: Triangle Counting
To illustrate neighborhood sampling, we will revisit the

triangle counting example discussed earlier. To sample a

triangle from a graph with m edges, we need three edges:

• First edge l0. Uniformly sample one edge from the

graph as l0. The sampling probability Pr(l0) = 1/m.

• Second edge l1. Given that l0 is already sampled, we

uniformly sample one of l0’s adjacent edges (neighbors)

from the graph, which we call l1. Note that neighbor-

hood sampling depends on the ordering of edges in

the stream and l1 appears after l0 here. The sampling

probability Pr(l1 |l0) = 1/c, where c is the number l0’s
neighbors appearing after l0.

• Third edge l2. Find l2 to finish if edges l2, l1, l0 form

a triangle and l2 appears after l1 in the stream. If

such a triangle is sampled, the sampling probability is

Pr(l0∩ l1∩ l2)= Pr(l0)×Pr(l1 |l0)×Pr(l2 |l0, l1)= 1/mc.

The above technique describes the behaviors of one

sampling trial. For each trial, if it successfully samples a

triangle, converting probabilities to expectation, ei = mc
will be the estimate of the triangles in the graph. For a

total of r trials, 1
r

∑
r ei is output as the approximate result.

Figure 2 presents an example of a graph with five nodes.

2.4 Challenges
While the neighborhood sampling algorithm described

above has good theoretical properties, there are a number

of challenges in building a general system for large-scale

approximate graph mining. First, neighborhood sampling

was proposed in the context of a specific graph pattern (tri-

angle counting). Therefore, to be of practical use, ASAP

needs to generalize neighborhood sampling to other pat-

terns. Second, neighborhood sampling and its analysis

assume that the graph is stored in a single machine. ASAP

focuses on large-scale, distributed graph processing, and

for this it needs to extend neighborhood sampling to com-

puter clusters. Third, neighborhood sampling assumes

homogeneous vertices and edges. Real-world graphs are

property graphs, and in practice pattern mining queries

require predicate matching which needs the technique to

Apache Spark

graphA.patterns(“a->b->c”, “100s”)
graphB.fourClique(“5.0%”,“95.0%”)

Estimates:{error: <5%, time: 95s}
Estimates:{error: <5%, time: 60s}
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Figure 3: ASAP architecture

be aware of vertex and edge types and properties. Finally,

as in any approximate processing system, ASAP needs to

allow the end user to trade-off accuracy for latency and

hence needs to understand the relation between run-time

and error in a distributed setting.

3 ASAP Overview
In this work, we design ASAP, a system that facilitates

fast and scalable approximate pattern mining. Figure 3

shows the overall architecture of ASAP. We provide a

brief overview of the different components, and how users

leverage ASAP to do approximate pattern mining in this

section to aid the reader in following the rest of this paper.

User interface. ASAP allows the users to tradeoff accu-

racy for result latency. Specifically, a user can perform

pattern mining tasks using the following two modes 1 :

• Time budget T . The user specifies a time budget T , and

ASAP returns the most accurate answer within T with

a error rate guarantee e and a configurable confidence

level (default of 95%).

• Error budget ε . The user gives an error budget ε and

confidence level, and ASAP returns an answer within ε
in the shortest time possible.

Before running the algorithm, ASAP first returns to the

user its estimates on the time or error bounds it can achieve

6 . After user approves the estimates, the algorithm is

run and the result presented to the user consists of the

count, confidence level and the actual run time 7 . Users

can also optionally ask to output actual (potentially large

number of) embeddings of the pattern found.

Development framework. All pattern mining programs

in ASAP are versions of generalized approximate pattern

mining 2 we describe in detail in §4. ASAP provides a

standard library of implementations for several common

patterns such as triangles, cliques and chains. To allow

developers to write program to mine any pattern, ASAP

further provides a simple API that lets them utilize our

approximate mining technique (§ 4.1.2). Using the API,

developers simply need to write a program that finds a

single instance of the pattern they are interested in, which

we refer to as estimator in the rest of this paper. In a
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nutshell, our approximate mining approach depends on

running multiple such estimators in parallel.

Error-Latency Profile (ELP). In order to run a user

program, ASAP first must find out how many estimators

it needs to run for the given bounds 3 . To do this, ASAP

builds an ELP. If the ELP is available for a graph, it simply

queries the ELP to find the number of estimators 4 .

Otherwise, the system builds a new ELP 5 using a novel

technique that is extremely fast and can be done online.

We detail our ELP building technique in §5. Since this

phase is fast, ASAP can also accommodate graph updates;

on large changes, we simply rebuild the ELP.

System runtime. Once ASAP determines the number of

estimators necessary to achieve the required error or time

bounds, it executes the approximate mining program using

a distributed runtime built on Apache Spark [62, 63].

4 Approximate Pattern Mining in ASAP

We now present how ASAP enables large-scale graph pat-

tern mining using neighborhood sampling as a foundation.

We first describe our programming abstraction(§ 4.1) that

generalizes neighborhood sampling. Then, we describe

how ASAP handles errors that arise in distributed pro-

cessing(§ 4.2). Finally, we show how ASAP can handle

queries with predicates on edges or vertices(§ 4.3).

4.1 Extending to General Patterns
To extend the neighborhood sampling technique to general

patterns, we leverage one simple observation: at a high

level, neighborhood sampling can be viewed as consisting

of two phases, sampling phase and closing phase. In

the sampling phase, we select an edge in one of two

ways by treating the graph as an ordered stream of edges:

(a) sample an edge randomly; (b) sample an edge that

is adjacent to any previously sampled edges, from the

remainder of the stream. In the closing phase, we wait for

one or more specific edges to complete the pattern.

The probability of sampling a pattern can be computed

from these two phases. The closing phase always has a

probability of 1 or 0, depending on whether it finds the

edges it is waiting for. The probability of the sampling

phase depends on how the initial pattern is formed and

is a choice made by the developer. For a general graph

pattern with multiple nodes, there can be multiple ways

to form the pattern. For example, there are two ways to

sample a four-clique with different probabilities, as shown

in Figure 4. (i) In the first case, the sampling phase finds

three adjacent edges, and the closing phase waits for rest

three edges to come, in order to form the pattern. The

sampling probability is 1
mc1c2

, where c1 is the number of

the first edge’s neighbors and c2 represents the neighbor

count of the first and the second edges. (ii) In the second

case, the sampling phase finds two disjoint edges, and

Figure 4: Two ways to sample four cliques. (a) Sample two

adjacent edges (0,1) and (0,3), sample another adjacent edge

(1,2), and wait for the other three edges. (b) Sample two disjoint

edges (0,1) and (2,3), and wait for the other four edges.

the closing phase waits for other four edges to form the

pattern. The sampling probability in this case is 1
m2 .

4.1.1 Analysis of General Patterns
We now show how neighborhood sampling, when cap-

tured using the two phases, can extend to general patterns.

Definition 4.1 (General Pattern). We define a “general
pattern” as a set of k connected vertices that form a
subgraph in a given graph.

First, let’s consider how an estimator can (possibly) find

any general patterns. We show how to sample one general

pattern from the graph uniformly with a certain success

probability, taking 2 to 5-node patterns as examples. Then,

we turn to the problem of maintaining r ≤ 1 pattern(s)

sampled with replacement from the graph. We sample

r patterns and a reasonably large r will yield a count

estimate with good accuracy. For the convenience of the

analysis, we define the following notations: input graph

G = (V,E) has m edges and n vertices, and we denote the

occurrence of a given pattern in G as f (G). A pattern p =
{ei, ej, . . . } contains a set of ordered edges, i.e., ei arrives

before ej when i < j. When describing the operation of

an estimator, c(e) denotes the number of edges adjacent to

e and appearing after e, and ci is c(e1, . . ., ei) for any i ≥ 1.

For a given a pattern p∗ with k∗ vertices, the technique

of neighborhood sampling produces p∗ with probability

Pr[p = p∗, k = k∗]. The goal of one estimator is to fix

all the vertices that form the pattern, and complete the

pattern if possible.

Lemma 4.2. Let p∗ be a k-node pattern in the graph. The
probability of detecting the pattern p = p∗ depends on
k and the different ways to sample using neighborhood
sampling technique.
(1) When k = 2, the probability that p = p∗ after process-
ing all edges in the graph by all possible neighborhood
sampling ways is

Pr[p = p∗, k = 2] = 1

m

(2) When k = 3, the probability that p = p∗ is

Pr[p = p∗, k = 3] = 1

m · c1

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    749



(3) When k = 4, the probability that p = p∗ is

Pr[p = p∗, k = 4] =
1

m2 (Type-I) or
1

m · c1 · c2
(Type-II)

(4) When k = 5, the probability that p = p∗ is

Pr[p = p∗, k = 5] =
1

m2 · c1
(Type-I)

or =
1

m2 · c2
(Type-II.a)

or =
1

m · c1 · c2 · c3
(Type-II.b)

Proof. Since a pattern is connected, the operations in the
sampling phase are able to reach all nodes in a sampled
pattern. To fix such a pattern, the neighborhood sampling
needs to confirm all the vertices that form the pattern.
Once the vertices are found, the probability of completing
such a pattern is fixed.
When k = 2, let p∗ = {e1} be an edge in the graph.

Let E1 be the event that e1 is found by neighborhood
sampling. There is only one way to fix two vertices of the
pattern—uniformly sampling an edge from the graph. By
reservoir sampling, we claim that

Pr[p = p∗, k = 2] = Pr[E1] =
1
m

When k = 3, we need to fix one more vertex beyond
the case of k = 2. As shown in [48], we need to sample
an edge e2 from e1’s neighbors that occur in the stream
after e1. Let E2 be the event that e2 is found. Since
Pr[E2 |E1] =

1
c(e1)

,

Pr[p = p∗, k = 3] = Pr[E1] ·Pr[E2 |E1] =
1

m · c(e1)

When k = 4, we require one more step from the case of
k = 2 or the case of k = 3, from extending neighborhood
sampling. By extending from the case of k = 2 (denoted
as Type-I), two more vertices are needed to fix a 4-node
pattern. In Type-I, we independently find another edge e∗2
that is not adjacent to the sampled edge e1. Let E∗2 be the
event that e∗2 is found. Since Pr[E∗2 |E1] =

1
m ,

Pr[p = p∗, k = 4] = Pr[p = p∗, k = 2] ∗Pr[E∗2 |E1]

=
1

m2 (Type-I)

When extending from the case k = 2 (denoted as Type-
II), one more vertex is needed to fix a 4-node pattern.
In Type-II, we sample a “neighbor” e3 that comes after
e1ande2. Let E3 be the event that e3 is found. Since e3 is
sampled uniformly from the neighbors of e1 and e2 and
is appearing after e1, e2, Pr[E3 |E1,E2] =

1
c(e1,e2)

. Thus,

Pr[p = p∗, k = 4] = Pr[p = p∗, k = 3] ·Pr[E3 |E1,E2]

=
1

m · c(e1) · c(e1, e2)
(Type-II)

When k = 5, we again need one more step from the
case k = 3 or the case k = 4. By extending from k = 3
(denoted as Type-I), we require two separate vertices to
fix a 5-node pattern. In Type-I, we independently sample
another edge e∗3 that is not adjacent to e1, e2. Let E∗3 be
the event that e∗3 is found. Pr[E∗3 |E1,E2] =

1
m . Therefore,

Pr[p = p∗, k = 5] = Pr[p = p∗, k = 3] ∗Pr[E∗3 |E1,E2]

=
1

m2 · c(e1)
(Type-I)

When extending from the case k = 4, we need to consider
the two types separately. By extending Type-I of case
k = 4 (denoted as Type-II.a), we need one more vertex to
construct a 5-node pattern and thus we sample a neighbor-
ing edge e4. Let E4 be the event that e4 is found. Since
e4 is sampled from the neighbors of e1, e2,

Pr[p = p∗, k = 5] = Pr[p = p∗, k = 4] ∗Pr[E4 |E1,E
∗
2]

=
1

m2 · c(e1, e2)
(Type-II.a)

Similarly, by extending Type-II of case k = 4 (denoted as
Type-II.b),

Pr[p = p∗, k = 5] =
1

m · c(e1) · c(e1, e2) · c(e1, e2, e3)

�

Lemma 4.3. For pattern p∗ with k∗ nodes, let’s define

t̃ =
{ 1

Pr[p=p∗,k=k∗] if p , ∅
0 if p = ∅

Thus, E[t̃] = f (G).

Proof. By Lemma 4.2, we know that one estimator sam-
ples a particular pattern p∗ with probability Pr[p= p∗, k =
k∗]. Let p(G) be the set of a given pattern in the graph,

E[t̃]=
∑

p∗∈p(G)

t̃(p, ∅)·Pr[p= p∗, k = k∗]= |p(G)| = f (G)

�

The estimated count is the average of the input of all
estimators. Now, we consider how many estimators are
needed to maintain an ε error guarantee.

Theorem 4.4. Let r ≥ 1, 0 < ε ≤ 1, and 0 < δ ≤ 1. There
is an O(r)-space bounded algorithm that return an ε-
approximation to the count of a k-node pattern, with
probability at least 1− δ. For a certain ε , when k = 4,
we need r ≥ C1m

2

f (G) Type-I estimators, or r ≥ C2m∆
2

f (G) Type-
II estimators for some constants C1 and C2, to achieve
ε-approximation in the worst case; When k = 5, we need
r ≥ C3m

2∆
f (G) Type-I estimators, or r ≥ C4m

2∆
f (G) Type-II.a es-

timators, or r ≥ C5m∆
3

f (G) Type-II.b estimators, for some
constants C3,C4,C5 in the worst case.
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API Description
sampleVertex: ()→(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()→(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)→(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)→(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)→boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.
Table 1: ASAP’s Approximate Pattern Mining API.

Proof. Let’s first consider the case k = 4. Let Xi for
i = 1, . . .,r be the output value of i-th estimator. Let X̄ =
1
r

∑r
i=1 Xi be the average of r estimators. By Lemma 4.3,

we know that E[Xi] = f (G) and E[X̄] = f (G). From the
properties of graph G, we have c(e) ≤ ∆ for ∀e ∈ E , where
∆ is the maximum degree (note that in practice ∆ isn’t a
tight bound for the edge neighbor information). In Type-I,
Xi ≤ m2 and we construct random variables Yi =

Xi

m2 such
that Yi = [0,1]. Let Y =

∑r
i=1Yi and E[Y ] = f (G)r

m2 . Thus
the probability that the estimated number of patterns has
a more than ε relative error off its expectation f (G) is
Pr[X̄ > (1+ ε) f (G)] ≤ δ

2 , which is at most

Pr[
r∑
i=1

Yi > (1+ ε)E[Y ]] ≤ e−
ε2

2+ε E[Y] ≤ e−
ε2
3 E[Y] ≤

δ

2

by Chernoff bound. Thus r ≥ 3m2

ε2 f (G)
· ln 2

δ . Similarly, this
lower bound of r holds for Pr[X̄ < (1− ε) f (G)].
In Type-II, Xi ≤ 6m∆2. Let Yi =

Xi

6m∆2 such that
Yi = [0,1]. Let Y =

∑r
i=1Yi and E[Y ] = f (G)r

6m∆2 . By Cher-
noff bound, r ≥ 18m∆2

ε2 f (G)
· ln( 2

δ ). Similarly, when k = 5,

we (theoretically) need 6m2∆
ε2 f (G)

· ln( 2
δ ) Type-I estimators,

12m2∆
ε2 f (G)

· ln( 2
δ )Type-II.a estimators, and 24m∆3

ε2 f (G)
· ln( 2

δ )Type-
II.b estimators. Since each estimator stores O(1) edges,
the total memory is O(r). �

4.1.2 Programming API

ASAP automates the process of computing the probability
of finding a pattern, and derives an expectation from it by
providing a simple API that captures two phases. TheAPI,
shown in Table 1, consists of the following five functions:
• SampleVertex uniformly samples one vertex from the
graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices.

• SampleEdge uniformly samples one edge from the graph.
It also takes no input, and outputs e and p, where e is the
sampled edge, and p is the sampling probability, which
is the inverse of the number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
outputs yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have been
fixed (thereby fixing the edges needed to complete that
instance of the pattern) and the sampling process only
awaits the additional edges to form the pattern.

These five APIs capture the two phases in neighbor-
hood sampling and can be used to develop pattern mining
algorithms. To illustrate the use of these APIs, we de-
scribe how they can be used to write two representative
graph patterns, shown in Figure 5.
Chain. Using our API to write a sampling function for
counting three-node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second
edge of the three-node chain, where subgraph is set to be
the first sampled edge (line 2). Finally, if the algorithm
cannot find e2 to form a chain with e1 (line 3), it estimates
the number of three-node chains to be 0; otherwise, since
the probability to get e1 and e2 is p1 · p2, it estimates the
number of chains to be 1/(p1 · p2).
Four clique. Similarly, we can extend the algorithm of
sampling three node chains to sample four cliques. We
first sample a three-node chain (line 1-2). Then we sample
an adjacent edge of this chain to find the fourth node (line
4). Again, during the three steps, if any edges were not
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SampleThreeNodeChain
(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleFourCliqueType1
(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

Figure 5: Example approximate pattern mining programs written using ASAP API

graph

subgraph
0

subgraph
1

subgraph
2

Figure 6: Runtime with graph partition.

sampled, the function would return 0 as no cliques would

be found (line 3 and 5). Given e1, e2 and e3, all the

four nodes are fixed. Therefore, the function only needs

to wait for all edges to form a clique (line 8-9). If the

clique is formed, it estimates the number of cliques to be

1/(p1 ·p2 ·p3); otherwise, it returns 0 (line 10). Figure 4(a)

illustrates this sampling procedure (CliqueType1).

4.2 Applying to Distributed Settings
Capturing general graph pattern mining using the simple

two phase API allows ASAP to extend pattern mining

to distributed settings in a seamless fashion. Intuitively,

each execution of the user program can be viewed as

an instance of the sampling process. To scale this up,

ASAP needs to do two things. First, it needs to parallelize

the sampling processes, and second, it needs to combine

the outputs in a meaningful fashion that preserves the

approximation theory.

For parallelizing the pattern mining tasks, ASAP’s

runtime takes the pattern mining program and wraps it into

an estimator3 task. ASAPfirst partitions the vertices in the

graph across machines and executes many copies of the

estimator task using standard dataflow operations: map
and reduce. In the map phase, ASAP schedules several

copies of the estimator task on each of the machines. Each

estimator task operates on the local subgraph in each

machine and produces an output, which is a partial count.

ASAP’s runtime ensures that each estimator in a machine

sees the graph’s edges and vertices in the same order,
which is important for the sampling process to produce

correct results. Note that although every estimator in

3Since each program is providing an estimate of the final answer.

each partition sees the graph in the same order, there

is no restriction on what the order might be (e.g., there

is no sorting requirement), thus ASAP uses a random

ordering which is fast and requires no pre-processing of

the graph. Once this is completed, ASAP runs a reduce

task to combine the partial counts and obtain the final

answer. This is depicted in fig. 6. This massively parallel

execution is one of the reasons for huge latency reduction

in ASAP. Since the input to the reduce phase is simply

an array of numbers, ASAP’s shuffle is extremely light-

weight, compared to a system that produces exact answers

(and needs to exchange intermediate patterns).

Handling Underestimation. Only summing up the par-

tial counts in the reduce phase underestimates the total

number of instances, because when vertices are parti-

tioned to the workers, the instances that span across the

partitions are not counted. This results in our technique

underestimating the results, and makes the theoretical

bounds in neighborhood sampling invalid. Thus, ASAP

needs to estimate the error incurred due to distributed

execution and incorporate that in the total error analysis.

We use probability theory to do this estimation. We

enforce that the vertices in the graph are uniformly ran-

domly distributed across the machines. ASAP is not

affected by the normal shortcomings of random vertex

partitioning [35] as the amount of data communication

is independent of partitioning scheme used. In this case

random vertex partitioning is in fact simple to implement,

and allows us to theoretically analyze the underestimation.

The theoretical proof for handling the underestimation

is outside the scope of this paper. Intuitively, we can

think of the random vertex partitioning into w workers as

uniform vertex coloring from w available colors. Vertices

with the same color are at the sameworker and eachworker

estimates patterns locally on its monochromatic vertices.

By doing this coloring, the occurrence of a pattern has

been reduced by a factor of 1/ f (w), where f is a function

of the number of workers and the pattern. For instance, a

locally sampled triangle has three monochromatic vertices

and the probability that this happens among all triangles

is 1/w2. Thus by the linearity of expectation, each such

triangle is scaled by f (w) = w2. A rigorous proof on

the maximum possible w with small errors (in practice

752    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



w can be >> 100), can be shown using concentration
bounds and Hajnal-Szemerédi Theorem [47]. Similarly,
each monochromatic 4-clique is scaled by f (w) = w3 and
f (w) can be computed for any given pattern.

4.3 Advanced Mining Patterns
Predicate Matching. In property graphs, the edges and
vertices contain properties; and thus many real-world
mining queries require thatmatching patterns satisfy some
predicates. For example, a predicate query might ask for
the count of all four cliques on the graph where every
vertex in the clique is of a certain type. ASAP supports
two types of predicates on the pattern’s vertices and edges
all and atleast-one.
For “all” predicate, queries specify a predicate that is

applied to every vertex or edge. For example, such query
may ask for “four cliques where all vertices have a weight
of atleast 10”. To execute such queries, ASAP introduces
a filtering phase where the predicate condition is applied
before the execution of the pattern mining task. This
results in a new graph which consists only of vertices
and edges that satisfy the predicate. On this new graph,
ASAP runs the pattern mining algorithm. Thus, the “all”
predicate query does not require any changes to ASAP’s
pattern mining algorithm.
The “atleast-one” predicate allows specifying a condi-

tion that atleast one of the vertices or edges in the pattern
satisfies. An example of such a query is “four cliques
where atleast one edge has a weight of 10”. To execute
such predicate queries, we modify the execution to take
two passes on the edge list. In the first pass, edges that
match the predicate are copied from the original edge
list to a matched edge list. Every entry in the matched
list is a tuple, (edge, pos), where pos is the position
in the original list where the matched edge appears. In the
second pass, every estimator picks the first edge randomly
from the matched list. This ensures that the pattern
found by the estimator (if it finds one) satisfies the predi-
cate. For the second edge onwards, the estimator uses the
original list but starts the search from the position at
which the first matched edge was found. This ensures that
ASAP’s probability analysis to estimate the error holds.
Motif mining. Another query used in many real-world
workloads is to find all patterns with a certain number
of vertices. We define these as motif queries; for exam-
ple a 3-motif query will look for two patterns, triangles
and 3-chains. Similarly a 4-motif query looks for six
patterns [51]. For motif mining we notice that several
patterns have the same underlying building block. For
example, in 4-motifs, 3-chains are used in many of the
constituent patterns. To improve performance, ASAP
saves the sampling phase’s state for the building block
pattern. This state includes (i) the currently sampled
edges, (ii) the probability of sampling at that point, and

1

2

3

0.5M 1M 1.5M 2M

R
un

tim
e 

(m
in

)

No. of Estimators

Twitter Graph

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r 

R
a
te

 (
%

)

No. of Estimators

Twitter Graph

Figure 7: The actual relations between number of estimators
and run-time or error rate.
(iii) the position in the edge list up to which the estimator
has traversed. All the patterns that use this building block
are then executed starting from the saved state. This tech-
nique can significantly speedup the execution of motif
mining queries and we evaluate this in Section 6.2.
Refining accuracy. In many mining tasks, it is com-
mon for the user to first ask for a low accuracy answer,
followed by a higher accuracy. For example, users per-
forming exploratory analysis on graph data often would
like to iteratively refine the queries. In such settings,
ASAP caches the state of the estimator from previous
runs. For instance, if a query with an error bound of 10%
was executed using 1 million estimators, ASAP saves the
output from these estimators. Later, when the same pat-
tern is being queried, but with an error bound of 5% that
requires 3 million estimators, ASAP only needs to launch
2 million, and can reuse the first 1 million.

5 Building theError-LatencyProfile (ELP)
A key feature in any approximate processing system is
allowing users to trade-off accuracy for result latency.
To do this for graph mining, we need to understand the
relation between running time and error.
In ASAP’s general, distributed graph pattern mining

technique described earlier, the only configurable parame-
ter is the number of estimator processes used for a mining
task. By using r estimators and making r sufficient large,
ASAP is able to get results with bounded errors. Since
an estimator takes computation and memory resource to
sample a pattern, picking the number of estimators r pro-
vides a trade-off between result accuracy and resource
consumption. In other words, setting a specific number
of estimators, Ne, results in a fixed runtime and an error
within a certain bound. As an example, fig. 7 depicts the
relation between the number of estimators, runtime and
error for triangle counting run on the Twitter graph [39].
To enable the user to traverse this trade-off, ASAP needs
to determine the correct number of estimators given an
error or time budget.

5.1 Building Estimator vs. Time Profile
The time complexity of our approximation algorithm is
linearly related to the number of edges in the graph and
the number of estimators. Given a graph and a particular
pattern, we find the computation time is dominated by the
number of estimators when the number of estimators is
large enough. From fig. 7, we see that the estimator-time
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Algorithm 1 BuildTimeProfile(T∗)
1: P← ∅ // store points for the profile
2: T ← 0, t← 0, α← α∗ // α∗ can be a reasonable random start
3: while T + t <=T ∗ do
4: t← run approximation algorithm with α estimators
5: P.add((α, t))
6: α← 2α
7: T ←T + t

curve is close to linear when the number of estimators is
greater than 0.5M. Thus we propose using a linear model
to relate the running time to the number of estimators.
When the number of estimators is small, the computa-

tion time is also affected by other factorsand thus the curve
is not strictly linear. However, for these regions, it is not
computationally expensive to profile more exhaustively.
Therefore, to build the time profile, we exponentially
space our data collection, gathering more points when
the number of estimators is small and fewer points as the
number of estimators grows. We use a profiling budget
T∗ to bound the total time spent on profiling. Algorithm 1
shows the pseudo code. ASAP starts from using a small
number of estimators (α← α∗), and doubles α each time
until the total profiling time exceeds the profiling cost T∗.
In practice, we have found that setting T∗ in the minute
granularity gives us good results.

5.2 Building Estimator vs. Error Profile
Since error profile is non-linear (fig. 7), techniques like
extrapolating from a few data points is not directly ap-
plicable. Some recent work has leveraged sophisticated
techniques, such as experiment design [57] or Bayesian
optimization [12] for the purpose of building non-linear
models in the context of instance selection in the cloud.
However, these techniques also require the system to com-
pute the error for a given setting forwhichwe need to know
the ground-truth, say, by running the exact algorithm on
the graph. Not only is this infeasible in many cases, it also
undermines the usefulness of an approximation system.
In ASAP, we design a new approach to determine the

relationship between the number of estimators Ne and
error ε . Our approach is based on two main insights:
first, we observe that for every pattern based on the prob-
ability of sampling, a loose upper bound for the number
of estimators required can be computed using Chernoff
bounds. For instance for triangle counting, the sampling
probability is 1/mc where m is the number of edges and
c is the degree of first chosen edge( § 2.3.1). This prob-
ability bound can be translated to an estimator of form
Ne >

K∗m∗∆
ε2P

(Theorem 3.3 [48]) where K is a constant, m
is the number of edges, ∆ is the maximum degree and P
is the ground truth or the exact number of triangles. At a
high level, the bound is based on the fact that the maxi-
mum degree vertex leads to the worst case scenario where
we have the minimum probability of sampling. Similar
bounds exist for 4-cliques and other patterns [48]. These

theoretical bounds provide a relation between the number
of estimators (Ne), error bound (ε) and ground truth (P)
in terms of the graph properties such as m and ∆.

The second insight we use is that for smaller graphs we
can get a very close approximation to the ground truth by
using a very large number of estimators. This is useful in
practice as this avoids having to run the exact algorithm
to get a good estimate of the ground truth. Based on these
two insights, the steps we follow are:

(a) We first uniformly sample the graph by edges to reduce
it to a size where we can obtain a nearly 100% accurate
result. In our experiments, we find that 5−10% of the
graph is appropriate according to the size of the graph.

(b) On the sampled graph, we run our algorithm with a
large number of estimators (Ngt ) to find P̂s, a value
very close to the ground truth for the sampled graph.

(c) Using P̂s as the ground truth value and the theoretical
relationship described above, we compute the value of
other variables on the sampled graph. For example, in
the sampled graph, it is easy to compute ms and ∆s , and
then infer K by running varying number of estimators.

(d) Finally we scale the values ms, ∆s and P̂s to the larger
graph to compute Ne. We note that the scaled P̂ might
not be close to P for the larger graph. But as we use the
worst case bound to compute P̂s , the computed value of
Ne offers a good bound in practice for the larger graph.

5.3 Handling Evolving Graphs
The ELP building process in ASAP is designed to be
fast and scalable. Hence, it is possible to extend our
pattern mining technique to evolving graphs [37] by sim-
ply rebuilding the ELP every time the graph is updated.
However, in practice, we don’t need to rebuild the ELP
for every update. and that it is possible to reuse an ELP
for a limited number of graph changes. Thus we use a
simple heuristic where are a fixed number of changes, say
10% of edges, we rebuild the ELP. The general problem
of accurately estimating when a profile is incorrect for ap-
proximate processing systems is hard [5] and in the future
we plan to study if we can automatically determine when
to rebuild the ELP by studying changes to the smaller
sample graph we use in § 5.2.

6 Evaluation
We evaluate ASAP using a number of real-world graphs
and compare it to Arabesque, a state-of-the-art distributed
graph mining system. Overall, our evaluations show that:

• Compared to Arabesque, we find ASAP can improve
performance by up to 77× with just 5% loss of accu-
racy for counting 3-motifs and 4-motifs.

• We find that ASAP can also scale to much larger
graphs (up to 3.7B edges) whereas existing systems
fail to complete execution.

754    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Graph Nodes Edges Degrees
CiteSeer [30] 3,312 4732 2.8
MiCo [30] 100,000 1,080,298 22

Youtube [41] 1,134,890 2,987,624 8
LiveJournal [41] 3,997,962 34,681,189 17
Twitter [39] 41.7 million 1.47 billion 36

Friendster [61] 65.5 million 1.80 billion 28
UK [16, 17] 105.9 million 3.73 billion 35

Table 2: Graph datasets used in evaluating ASAP.

• Our techniques to build error profile and time profile
(ELP) are highly accurate across all the graphs while
finishing within a few minutes.

Implementation. We built ASAP on Apache Spark [63],
a general purpose dataflow engine. The implementation
uses GraphX [34], the graph processing library of Spark
to load and partition the graph. We do not use any other
functionality from GraphX, and our techniques only use
simple dataflow operators like map and reduce. As such,
ASAP can be implemented on any dataflow engine.
Datasets and Comparisons. Table 2 lists the graphs
we use in our experiments. We use 4 small and 3 large
graphs and compare ASAP against Arabesque [55] (using
its open-source release [2] built on Apache Giraph [14])
on four smaller graphs: CiteSeer [30], Mico [30],
Youtube [41], and LiveJournal [41]. For all other evalu-
ations, we use the large graphs. Our experiments were
done on a cluster of 16 Amazon EC2 r4.2xlarge in-
stances, each with 8 virtual CPUs and 61GiB of memory.
While all of these graphs fit in the main memory of a
single server, the intermediate state generated (§2) dur-
ing pattern mining makes it challenging to execute them.
Arabesque, despite being a highly optimized distributed
solution, fails to scale to the larger graphs in our cluster.
We note that Arabesque (or any exact mining system)
needs to enumerate the edges significantly more number
of times compared to ASAP which only needs to do it
once or twice, depending on the query.
Patterns and Metrics. For evaluating ASAP, we use
two types of patterns, motif s and cliques. For motifs, we
consider 3-motifs (consisting of 2 individual patterns),
and 4-motifs (consisting of 6 individual patterns) and for
cliques, we consider 4-cliques. For our experiments, we
run 10 trials for each point and report the median, and
error bar in the ELP evaluation. We do not include the
time to load the graph for any of the experiments for
ASAP and Arabesque. We use total runtime as the metric
when raw performance is evaluated. When evaluating
ASAP on its ability to provide errors within the requested
bound, we need to know the actual error so that it can be
compared with ASAP’s output. We compute actual error
as |t−treal |treal

, where treal is the ground truth number of a
specific pattern in a given graph. Since this requires us to
know the ground-truth, we use simpler, known patterns,
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Figure 8: ASAP is able to gain up to 77× improvement in
performance against Arabesque. The gains increase with larger
graphs and more complex patterns. Y-axis is in log-scale.

such as triangles and chains, where the ground-truth can
be obtained from verified sources for such experiments.
Note that the actual error is only used for evaluation
purposes. Unless otherwise stated, the ASAP evaluations
were done with an error target of 5% at 95% confidence.

6.1 Overall Performance
We first present the overall performance numbers. To do
so, we perform comparisons with Arabesque and evaluate
ASAP’s scalability on larger graphs. We do not include
ELP building time in these numbers since it is a one-time
effort for each graph/task and we measure this in § 6.3.
Comparison with Arabesque. In this experiment, we
compare Arabesque and ASAP on the 4 smaller graphs
(Table 2). In each of these systems, we load the graph first,
and then warm up the JVM by running a few test patterns.
Then we use each system to perform 3-motif and 4-motif
mining, and measure the time taken to complete the task.
In Arabesque, we do not consider the time to write the
output. Similarly, for ASAP we do not output the patterns
embeddings. The results are depicted in figs. 8a and 8b.

We see that ASAP significantly outperforms Arabesque
on all the graphs on both the patterns, with performance
improvements up to 77× with under 5% loss of accuracy.
The performance improvements will increase if the user is
able to afford a larger error (e.g., 10%). We also noticed
that the performance gap between Arabesque and ASAP
increases with larger graph and/or more complex patterns.
In this experiment, mining the more complex pattern
(4-motif) on the largest graph (LiveJournal) provides the
highest gains for ASAP. This validates our choice of using
approximation for large-scale pattern mining.
Scalability on Larger Graphs. We repeat the above ex-
periment on the larger graphs. Since Arabesque fails to
execute on these graphs on our cluster, we also provide per-
formance numbers that were reported by its authors [55]
as a rough comparison. The results are shown in Table 3.
When mining for 3-motif, ASAP performs vastly su-

perior on the Twitter, the Friendster, and the UK graphs.
Arabesque’s authors report a run time of approximately
11 hours on a graph with a similar number of edges. This
translates to a 258× improvement for ASAP. In the case

4These graph datasets in Arabesque are not publicly available.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    755



1

2

3

4

0 20K 40K 60K

R
u

n
ti
m

e
 (

m
in

)

No. of Estimators

UK
Friendster

Twitter

(a) Chain Counting

1
2
3
4
5
6
7
8
9

10
11
12

50k 1M 2M 3M 4M 5M

R
u

n
ti
m

e
 (

m
in

)

No. of Estimators

UK
Friendster

Twitter

(b) Triangle Counting

1
5

10
15
20

30

40

50

60

50k 1M 2M 4M 6M 8M 10M

R
u

n
ti
m

e
 (

m
in

)

No. of Estimators

UK
Friendster

Twitter

(c) Clique Counting

Figure 9: Runtime vs. number of estimators for Twitter, Friendster, and UK graphs. The black solid lines are ASAP’s fitted lines.

3-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 2.5m
16 x 8 Friendster 66M 1.8B 5.0m
16 x 8 UK 106M 3.7B 5.9m

Arabesque 20x32 Inst4 180M 0.9B 10h45m

4-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 22m
16 x 8 UK 106M 3.7B 47m
16 x 8 LiveJ 4M 34M 0.7m

Arabesque 16 x 8 LiveJ 4M 34M 53m
20x32 SN4 5M 199M 6h18m

Table 3: Comparing the performance of ASAP and Arabesque
on large graphs. The System column indicates the number of
machines used and the number of cores per machine.

of 4-motifs, ASAP is easily able to scale to the more com-
plex pattern on larger graphs. In comparison, Arabesque
is only able to handle a much smaller graph with less
than 200 million edges. Even then, it takes over 6 hours
to mine all the 4-motif patterns. These results indicate
that ASAP is able to not only outperform state-of-the-art
solutions significantly, but do so in a much smaller cluster.
ASAP is able to effortlessly scale to large graphs.

6.2 Advanced Pattern Mining
We next evaluate the advanced pattern mining capabilities
in ASAP described in § 4.3.
Motif mining. We first evaluate the impact of ASAP’s
optimization when handling motif queries for multiple
patterns. We use the Twitter graph and study a 4-motif
query that looks for 6 different patterns. In this case
ASAP caches the 3-node chain that is shared by multiple
patterns. As shown in Table 4, we see a 32% performance
improvement from this.
PredicateMatching. To study howwell predicate match-
ing queries work, we annotate every edge in the Twitter
graph with a randomly chosen property. We then con-
sider a 3-motif query which matches 10% of the edges.
With ASAP’s filtering based technique, the “all” query
completes in 27 seconds, compared to 2.5 minutes when
running without pre-filtering.
Accuracy Refinement. We study a scenario where the
user first launches a 3-motif query on the Twitter graph
with 10% error guarantee and then refines the results

Pattern Baseline ASAP Improv.
Motif Mining 32.2min 22min 32%

Predicate Matching 2.5min 27s 82%
Accuracy Refinement 2.5min 1.5min 40%

Table 4: Improvements from techniques in ASAP that handle
advanced pattern mining queries.

with another query that has a 5% error bound. We find
that the running time goes from 2.5min to 1.5min (40%
improvement) when our caching technique is enabled.

6.3 Effectiveness of ELP Techniques
Here, we evaluate the effectiveness of the ELP building
techniques in ASAP, described in §5.
Time Profile. To evaluate how well our time profiling
technique (§ 5.1) works, we run three patterns—3-chains,
triangles, and 4-cliques—on the three large graphs. In
each graph, we obtain the time vs. estimator curve by
exhaustively running themining taskwith varying number
of estimators and noting the time taken to complete the
task. We then use our time profiling technique which uses
a small number of points instead of exhaustive profiling
to obtain ASAP’s estimate. We plot both the curves in
fig. 9 for each of the three graphs. In these figures, the
colored lines represent the actual (exhaustively profiled)
curve, and the black line shows ASAP’s estimate. From
the figure we can see that the time profile estimated by
ASAP very closely tracks the actual time taken, thereby
showing the effectiveness of our technique.
Error Profile. We repeat the experiment for evaluating
ASAP’s error profile building technique. Here, we ex-
haustively build the error profile by running a different
number of estimators on each graph, and note the error.
Then we use ASAP’s technique of using a small portion of
the graph to build the profile. We show both in fig. 10. We
see that the actual errors are always within the estimated
profile. This means that ASAP is able to guarantee that
the answer it returns is within the requested error bound.
We also note that in real-world graphs, the worst-case
bounds are never really reached. In edge cases, where
the number of patterns in the graphs are high like the
chains in UK graph, the overestimation may be large, and
one concern might be that we run more estimators than
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Figure 10: Error vs. number of estimators for Twitter, Friendster, and UK graphs.

Graph Task Time Profile Error Profile

3-Chain 5.2m 2.1m
UK-2007-05 3-Motif 6.1m 2.7m

4-Clique 9.5m 4.8m
4-Motif 11.2m 5.9m

Table 5: ELP building time for different tasks on UK graph

required. We are working on techniques that can help us
determine a tighter bound for the number of estimators in
the future but as discussed in § 6.1, even with this over-
estimation we get significant speedups in practice. This
experiment confirms that ASAP’s heuristic of using a very
small portion of the graph and leveraging the Chernoff
bound analysis (§ 5.2) is a viable approach.
Error rate Confidence. In Figure 11, we evaluate the
cumulative distribution function (CDF) of 100 indepen-
dent runs on the UK graph with 3% error target and 99%
confidence. We can see that 100/100 actual results are
not worse than 3% error and 74/100 results are within
2% error. Thus the actual results are even better than the
theoretical analysis for 99% confidence.
ELP Building Time. Finally, we evaluate the time taken
for building the profiling curves. For this, we use the
UK graph and configure ASAP to use 1% of the graph to
build the error profile. The results are shown in table 5
for different patterns, which shows that the time to build
the profiles is relatively small, even for the largest graph.

6.4 Scaling ASAP on a Cluster
ASAP partitions the graph into different subgraphs based
on random vertex partition, and aggregates scaled results
in the final reduce phase. In this section we evaluate
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Figure 11: CDF of 100 runs with 3% error target.

how configurations with different numbers of machines
impact the accuracy. In Fig. 12, we consider two sce-
narios: strong-scaling, where we fix the total number
of estimators used for the entire graph, and increase the
number of machines used; and weak-scaling where we
fix the number of estimators used per-machine and thus
correspondingly scale the number of estimators as we
add more machines. We run the triangle counting task
with the Twitter graph on different cluster sizes of 4, 8,
12, and 16 machines. From the figure we see that in
the strong-scaling regime, adding more machines has no
impact on the accuracy of ASAP and that we are able to
correctly adjust the accuracy as more graph partitions are
created. In the weak-scaling case we see that the accuracy
improves as we increase more machines, which is the
expected behavior when we have more estimators.

6.5 More Complex Patterns
Finally, we evaluate the generality of ASAP’s techniques
by applying to mine 5-motifs, consisting of 21 individual
patterns. This choice was influenced by our conversations
with industry partners, who use similar patterns in their
production systems. Due to the complexity of the patterns,
we used a larger cluster for this experiment, consisting
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Figure 13: Two representative (from 21) patterns in 5-Motif.
of 16 machines, each with 16 cores and 128GB memory.
Due to space constraints, and also because of the absence
of a comparison, we only provide ASAP’s performance on
two representative patterns in table 6. As we see, ASAP
is able to handle complex patterns on large graphs easily.

7 Related Work
A large number of systems have been proposed in the
literature for graph processing [20, 23, 34, 35, 40, 42,
50, 53, 54, 58, 64]. Of these, some [40, 42, 54] are sin-
gle machine systems, while the rest supports distributed
processing. By using careful and optimized operations,
these systems can process huge graphs, in the order of a
trillion edges. However, these systems have focused their
attention mainly on graph analysis, and do not support
efficient graph pattern mining. Some systems implement
very specific versions of simple pattern mining (e.g., tri-
angle count). They do not support general pattern mining.
Similar to graph processing systems, a number of

graph mining systems have also been proposed. Here
too, the proposals contain a mix of centralized systems
and distributed systems. These proposals can be classi-
fied into two categories. The first category focuses on
mining patterns in an input consisting of multiple small
graphs. This problem is significantly easier, since the
system only finds one instance of the pattern in the graph,
and is trivially incorporated in ASAP. Since this approach
can be massively parallelized, several distributed systems
exist that focus specifically on this problem. The state-
of-the-art in distributed, general purpose pattern mining
systems is Arabesque [55]. While it supports efficient pat-
tern mining, the system still requires a significant amount
of time to process even moderately sized graphs. A few
distributed systems have focused on providing approxi-
mate pattern mining. However, these systems focus on a
specific algorithm, and hence are not general-purpose.

5-Chain System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 9.2m
16 x 16 UK 106M 3.7B 17.3m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 3.2m
16 x 16 UK 106M 3.7B 6.5m

5-House System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 12.3m
16 x 16 UK 106M 3.7B 22.1m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 5.6m
16 x 16 UK 106M 3.7B 14.2m

Table 6: Approximating 5-Motif patterns in ASAP.
In distributed data processing, approximate analysis

systems [6, 13, 32] have recently gained popularity due
to the time requirements in processing large datasets.
Following the approximate query processing theory in the
database community, these systems focus on reducing the
amount of data used in the analysis process in the hope that
the analysis time is also reduced. However, as we show
in this work, applying the exact algorithm on a sampled
graph does not yield desired results. In addition, doing so
complicates, or even makes it infeasible to provide good
time or error guarantees.
Theory community has invested a significant amount

of time in analyzing and proposing approximate graph
algorithms for several graph analysis tasks [9, 10, 15, 18,
28, 33]. None of these are aimed at distributed processing,
nor do they propose ways to understand the performance
profile of the algorithms when deployed in the real world.
We leverage this rich theoretical foundation in our work
by extending these algorithms to mine general patterns in
a distributed setting. We further devise a strategy to build
accurate profiles to make the approach practical.

8 Conclusion
We present ASAP, a distributed, sampling-based approxi-
mate computation engine for graph patternmining. ASAP
leverages graph approximation theory and extends it to
general patterns in a distributed setting. It further employs
a novel ELP building technique to allow users to trade-off
accuracy for result latency. Our evaluation shows that not
only does ASAP outperform state-of-the-art exact solu-
tions by more than a magnitude, but it also scales to large
graphs while being low on resource demands.
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