
This paper is included in the Proceedings of the

14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).

March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the

14th USENIX Symposium on Networked

 Systems Design and Implementation

is sponsored by USENIX.

I Can’t Believe It’s Not Causal! Scalable Causal
Consistency with No Slowdown Cascades

Syed Akbar Mehdi, Cody Littley, and Natacha Crooks, The University of Texas at Austin;

Lorenzo Alvisi, The University of Texas at Austin and Cornell University;

Nathan Bronson, Facebook; Wyatt Lloyd, University of Southern California

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi

I Can’t Believe It’s Not Causal!

Scalable Causal Consistency with No Slowdown Cascades

Syed Akbar Mehdi1, Cody Littley1, Natacha Crooks1, Lorenzo Alvisi1,4, Nathan Bronson2, and Wyatt Lloyd3

1UT Austin, 2Facebook, 3USC, 4Cornell University

Abstract
We describe the design, implementation, and evaluation

of Occult (Observable Causal Consistency Using Lossy

Timestamps), the first scalable, geo-replicated data store that

provides causal consistency to its clients without exposing

the system to the possibility of slowdown cascades, a key

obstacle to the deployment of causal consistency at scale.

Occult supports read/write transactions under PC-PSI, a

variant of Parallel Snapshot Isolation that contributes to

Occult’s immunity to slowdown cascades by weakening how

PSI replicates transactions committed at the same replica.

While PSI insists that they all be totally ordered, PC-PSI

simply requires total order Per Client session. Nonetheless,

Occult guarantees that all transactions read from a causally

consistent snapshot of the datastore without requiring any co-

ordination in how transactions are asynchronously replicated.

1 Introduction

Causal consistency [7] appears to be ideally positioned to

respond to the needs of the sharded and geographically

replicated data stores that support today’s large-scale web

applications. Without imposing the high latency of stronger

consistency guarantees [30, 38], it can address many issues

that eventual consistency leaves unresolved. This brings clear

benefits to users and developers: causal consistency is all

that is needed to preserve operation ordering and give Alice

assurance that Bob, whom she had defriended before posting

her Spring-break photos, will not be able to access her

pictures, even though Alice and Bob access the photo-sharing

application using different replicas [13, 20, 39]. Yet, causal

consistency has not seen widespread industry adoption.

This is not for lack of interest from the research commu-

nity. In the last few years, we have learned that no guarantee

stronger than real-time causal consistency can be provided

in a replicated data store that combines high availability with

convergence [43], and that, conversely, it is possible to build

convergent causally-consistent data stores that can efficiently

handle a large number of shards [10, 14, 27, 28, 39, 40].

We submit that industry’s reluctance to deploy causal

consistency is in part explained by the inability of its current

implementations to comply with a basic commandment

for scalability: do not let your performance be determined

by your slowest component. In particular, current causal

systems often prevent a shard in replica R from applying

a write w until all shards in R have applied all the writes

that causally precede w. Hence, a slow or failed shard (a

common occurrence in any large-enough deployment) can

negatively impact the entire system, delaying the visibility of

updates across many shards and leading to growing queues

of delayed updates. As we show in Section 2, these effects

can easily snowball to produce the “slowdown cascades”

that Facebook engineers recently indicated [8] as one of the

key challenges in moving beyond eventual consistency.

This paper presents Occult (Observable Causal

Consistency Using Lossy Timestamps), the first geo-

replicated and sharded data store that provides causal

consistency to its clients without exposing the system to

slowdown cascades. To make this possible, Occult shifts the

responsibility for the enforcement of causal consistency from

the data store to its clients. The data store makes its updates

available as soon as it receives them, and causal consistency

is enforced on reads only for those updates that clients are

actually interested in observing. In essence, Occult decouples

the rate at which updates are applied from the performance

of slow shards by optimistically rethinking the sync [48]:

instead of enforcing causal consistency as an invariant of the

data store, through its read-centric approach Occult appears

to applications as indistinguishable from a system that does.

Because it never delays writes to enforce consistency,

Occult is immune from the dangers of slowdown cascades.

It may, however, delay read operations from shards that are

lagging behind to ensure they appear consistent with what

a user has already seen. We expect such delays to be rare

in practice because a recent study of Facebook’s eventually-

consistent production system found that fewer than six out

of every million reads were not causally consistent [42].

Our evaluation confirms this. We find that our prototype of

Occult, when compared with the eventually-consistent sys-

tem (Redis Cluster) it is derived from, increases the median

latency by only 50µs, the 99th percentile latency by only

400µs for a read-heavy workload (4ms for a write-heavy

workload), and reduces throughput by only 8.7% for a

read-heavy workload (6.9% for a write-heavy workload).

Occult’s read-centric approach, however, raises a thorny

technical issue. Occult requires clients to determine how their

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 453

a transaction’s writes causally depend on each other. This

guarantees that clients that seek to read multiple writes from a

transaction will independently determine that they must either

observe all of the transactions’s writes, or none. In contrast,

transactions that seek to read a single of the transaction’s

writes will not be unnecessarily delayed until other replicas

have applied writes that they are not interested in. Once

again, this is a small step that yields big dividends: trans-

actional writes need no longer be replicated synchronously

for safety, obviating the possibility of slowdown cascades.

4 Occult: The Basic Framework

We first outline the system model and an idealized imple-

mentation of Occult’s basic functionality: clients that read

individual objects perceive the data store as causally consis-

tent. We discuss how to make the protocol practical in §5 and

sketch Occult’s more advanced features (transactions) in §6.

4.1 System Model
Our system is a sharded and replicated key-value store

where each replica is located in a separate datacenter with

a full copy of the data. The keyspace is divided into a large

number of shards, i.e., disjoint key ranges. There can be tens

or hundreds of thousands of shards, of which multiple can

be colocated on the same physical host.

We assume an asynchronous master-slave replication

model, with a publicly designated master for every shard.

This master shard accepts writes, and asynchronously, but in

order, replicates writes to the slave shards. This design is com-

mon to several large-scale real-world systems [19, 20, 49, 51]

that serve read-heavy workloads with online queries. Master-

slave replication has higher write latency than multi-master

schemes, but avoids the complexity of dealing with concur-

rent conflicting writes that can lead to lost updates [39] or

require more complex programming models [24].

Clients in our system are co-located with a replica in the

same datacenter. Each client reads from its local replica

and writes to the master shard (possibly located in a remote

replica); a client library enforces causal consistency for reads

and attaches metadata to writes. While clients normally read

from the shards in their replica, there is no requirement for

them to be “sticky” (§3).

4.2 Causal Timestamps
Occult tracks and enforces causal consistency using

shardstamps and causal timestamps. A shard’s shardstamp

counts the writes that the shard (master or slave) has

accepted. A causal timestamp is a vector of shardstamps that

identifies a global state across all shards: each entry stores

the number of known writes from the corresponding shard.

Keeping an entry per shard rather than per object trades-off

accuracy against metadata overhead: in exchange for smaller

timestamps, it potentially creates false dependencies among

all updates to objects mapped to the same shard.

Occult uses causal timestamps for (i) encoding the most

recent state of the data store observed by a client and (ii)

capturing the set of causal dependencies for write operations.

An object version o created by write w is associated with

a causal timestamp that encodes all writes in w’s causal

history (i.e., w and all writes that causally preceded it).

Upon reading o, a client updates its causal timestamp to the

element-wise maximum of its current value and that of o’s

causal timestamp: the resulting vector defines the earliest

state of the datastore that the client is now allowed to read

from to respect causal consistency.

4.3 Basic Protocol
Causal consistency in Occult results from the cooperation

between servers and client libraries enabled by causal

timestamps. Client libraries use them to validate reads,

update them after successful operations, and attach them

to writes (Figure 3). Servers store them along with each

object, and return one during reads. In addition, servers track

the state of each shard using a dedicated shardstamp; when

returned in response to a read request, it helps client libraries

determine whether completing the read could potentially

violate causal consistency (Figure 4).

Write Protocol Occult associates with any value written

v a causal timestamp summarizing all of v’s causal dependen-

cies. The client library attaches its causal timestamp to every

write and sends it to the master of the corresponding shard.

The master increments the relevant shardstamp, updates the

received causal timestamp accordingly, and stores it with

the newly written value. It then asynchronously replicates

the write to its slaves, before returning the shardstamp to the

client library. Slaves receive writes from the master in order,

along with the associated causal timestamps and shardstamps,

and update their state accordingly. On receiving the shard-

stamp, the client library in turn updates its causal timestamp

to reflect its current knowledge of the shard’s state.

Read Protocol A client reads from its local server,

which replies with the desired object’s most recent value,

that value’s dependencies (i.e., its causal timestamp), and

the current shardstamp of the appropriate shard. The

returned shardstamp s makes checking for consistency

straightforward. The client simply compares s with the entry

of its own causal timestamp for the shard in question (call

it sc) . If s is at least sc, then the shard already reflects all

the local writes that the client has already observed.

When reading from the master shard, the consistency

check is guaranteed to succeed. When reading from a slave,

however, the check may fail: replication delays from the

master shard in another datacenter may prevent a client from

observing its own writes at the slave; or the client may have

already observed a write in a different shard that depends

on an update that has not yet reached the slave; .

If the check fails (i.e., the read is stale), the client has

two choices. It can retry reading from the local replica

456 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

c l i t s i s t h e c l i e n t ’ s c a u s a l t i m e s t a m p

def w r i t e (key , v a l u e) :

s h r d i d = s h a r d (key)

m a s t e r s e r v e r = m a s t e r (s h r d i d)

s h a r d s t a m p = m a s t e r s e r v e r . w r i t e (key , va lue , c l i t s)

c l i t s [s h r d i d] = max (c l i t s [s h r d i d] , s h a r d s t a m p)

def r e a d (key) :

s h r d i d = s h a r d (key)

l o c a l s e r v e r = l o c a l (s h r d i d)

va lue , deps , s h a r d s t a m p = l o c a l s e r v e r . r e a d (key)

c l i s s = c l i t s [s h r d i d]

i f i s S l a v e (l o c a l s e r v e r) and s h a r d s t a m p < c l i s s :

return f i n i s h S t a l e R e a d (key)

e l s e : c l i t s = e n t r y w i s e m a x (c l i t s , deps)

return v a l u e

Figure 3: Client Library Pseudocode

1 def w r i t e (key , va lue , deps) : # (on m a s t e r s)

2 s h r d i d = s h a r d (key)

3 s h a r d s t a m p s [s h r d i d] += 1

4 s h a r d s t a m p = s h a r d s t a m p s [s h r d i d]

5 deps [s h a r d i d] = s h a r d s t a m p

6 s t o r e (key , va lue , deps)

7 f or s in mySlaves (s h a r d i d) :

8 async (s . r e p l i c a t e (key , va lue , deps , s h a r d s t a m p))

9 return s h a r d s t a m p

10

11 def r e p l i c a t e (key , va lue , deps , s h a r d s t a m p) : # (on s l a v e s)

12 s h a r d s t a m p s [s h a r d (key)] = s h a r d s t a m p

13 s t o r e V a l u e (key , va lue , deps)

14

15 def r e a d (key) :

16 s h a r d s t a m p = s h a r d s t a m p s [s h a r d (key)]

17 return (g e t V a l u e (key) , ge tDeps (key) , s h a r d s t a m p)

Figure 4: Server Pseudocode

until the shardstamp advances enough to clear the check.

Alternatively, it can send the read to the master shard, which

always reflects the most recent state of the shard, at the cost

of increased latency and additional load on the master. Occult

adopts a hybrid strategy: it retries locally for a maximum

of r times (with an exponentially increasing delay between

retries) and only then reads from the master replica. This ap-

proach resolves most stales quickly, while preventing clients

from overloading their local slaves with excessive retries.

Finally, the client updates its causal timestamp to reflect

the dependencies included in the causal timestamp returned

by the server, ensuring that future successful reads will never

be inconsistent with the last read value.

5 Causal Timestamp Compression

The above protocol relies on causal timestamps with an

entry per shard, a prohibitive proposition when the number

of shards N can be in the hundreds of thousands. Occult

compresses their size to n entries (with n � N) without

introducing many spurious dependencies.

A first attempt: structural compression Our most

straightforward attempt—structural compression—maps all

shards whose ids are congruent modulo n to the same entry,

reducing a causal timestamps’ size from N to n at the cost of

generating spurious dependencies [58]. The impact of these

dependencies on performance (in the form of delayed reads)

worsens when shards have widely different shardstamps.

Suppose shards i and j map to the same entry sc and their

shardstamps read, respectively, 100 and 1000. A client that

writes to j will fail the consistency check when reading from

a slave of i until i has received at least 1000 writes. In fact,

if i never receives 1000 writes, the client will always failover

to reading from i’s master shard.

These concerns could be mitigated by requiring master

shards to periodically advance their shardstamp and then

replicate this advancement to their slaves, independent of the

write rate from clients. However, fine-tuning the frequency

and magnitude of this synchronization is difficult without

explicit coordination between i and j. A better solution is

instead to rely on loosely synchronized shardstamps based

on real, rather than logical, clocks [6]. This guarantees

that shardstamps differ by no more than the relative offset

between their clocks, independent of the write rate on

different master shards.

Finally, to reduce the impact of clock skew on creating

false dependencies, the master for shard i can use the causal

timestamp ts received from a client on a write operation to

more tightly synchronize its shardstamp with those of other

shards that the client has recently accessed. Rather than

blindly using the current value cl of the physical clock of the

server on which it is hosted, i can simply set its shardstamp

to be larger than the maximum among (i) its current

shardstamp; (ii) cl; and (iii) the highest of the values in ts.

Temporal compression Though using real clocks reduces

the chances of generating spurious dependencies, it does not

fully address the fundamental limitation of using modulo

arithmetic to compress causal timestamps: it is still quite

likely that shards with relatively far-apart shardstamps will

be mapped to the same entry in the causal timestamp vector.

The next step in our refinement is guided by a simple intu-

ition: recent shardstamps are more likely to generate spurious

dependencies than older ones. Thus, rather than mapping a

roughly equal number of shards to each of its n entries, tempo-

ral compression focuses a disproportionate fraction of its abil-

ity to accurately resolve dependencies on the shards with the

most recent shardstamps. Adapting to our purposes a scheme

first devised by Adya and Liskov [6], clients assign an in-

dividual entry in their causal timestamp to the n−1 shards

with the most recent shardstamps they have observed. Each

entry also explicitly stores the corresponding shard id. All

other shards are mapped to the vector’s “catch-all” last entry.

One may reasonably fear that conflating all but n−1 shards

in the same entry will lead, when a client tries to read from

one of the conflated shards, to a large number of failed con-

sistency checks—but it need not be so. For a large-enough

n, the catch-all entry will naturally reflect updates that were

accepted a while ago. Thus, when a client tries to read from a

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 457

conflated shard i, it is quite likely that the shardstamp of i will

have already exceeded the value stored in the catch-all entry.

To allow causal timestamps to maintain the invariant of

explicitly tracking the shards with the n−1 highest observed

shardstamps, we must slightly revise the client’s read and

write protocols in Figure 3. The first change involves write

operations on a shard currently mapped to the catch-all entry.

When the client receives back that shard’s current shardstamp,

it compares it to those of the n−1 shards that its causal times-

tamp is currently tracking explicitly. The shard with the

smallest shardstamp joins the ranks of the conflated and its

shardstamp, if it exceeds the current value, becomes the new

value of the catch-all entry for the conflated shards. The

second change occurs on reads and concerns how the client’s

causal timestamp is merged with the one returned with the

object being read. The shardstamps in either of the two causal

timestamps are sorted, and only the shards corresponding to

the highest n−1 shardstamps are explicitly tracked going

forward; the others are conflated, and the new catch-all entry

updated to reflect the new dependencies it now includes.

Isolating datacenters With either structural or temporal

compression, the effectiveness of loosely synchronized

timestamps in curbing spurious dependencies can be signif-

icantly affected by another factor: the interplay between the

time it takes for updates to replicate across datacenters and

the relative skew between the datacenters’ clocks. Consider

two datacenters, A and B, and assume for simplicity a causal

timestamp consisting of a single shardstamp. Clocks within

each datacenter are closely synchronized and we can ignore

their skew. Say, however, that A’s clocks run s ms ahead of

those in B, that the average replication delay between datacen-

ters is r ms, and that the average interval between consecutive

writes at masters is i ms. Assume now that a client c in A

writes to a local master node and updates its causal timestamp

with the shardstamp it receives. If c then immediately tries

to read from a local slave node, c’s shardstamp will be ahead

of the slave’s by about (s+r+i) ms: until the latter catches

up, no value read from it will be deemed safe. For clients in

B, meanwhile, the window of inconsistency under the same

circumstances would be much shorter: just (−s+r+i) ms,

potentially leading to substantially fewer stale reads.

This effect can be significant (§8.2.1). The master write

interval i, even with a read-heavy Zipfian workload, is less

than 1 ms in our experiments. However, the replication

delay r can range from a few tens to over 100 ms and cross

datacenter clock skew s can be tens of milliseconds even

when using NTP [3] (clock skew between nodes in the same

datacenter is often within 0.5-2ms). Thus, if masters are

distributed across datacenters, the percentage of stale reads

experienced by clients of different datacenters can differ by

orders of magnitude.

We solve this problem using distinct causal timestamps

for each datacenter. On writes, clients use the returned

shardstamp to update the causal timestamp of the datacenter

hosting the relevant master shard. On reads, clients update

each of their datacenter-specific causal timestamps using the

corresponding causal timestamps returned by the server.

Two factors mitigate the additional overhead caused by

datacenter-specific causal timestamps. First, the number

of causal timestamps does not grow with the number of

datacenters, but rather with the number of datacenters

with master shards, which can be significantly lower [19].

Second, because clocks within each datacenter are closely

synchronized, these causal timestamps need fewer entries

to achieve a given target in the percentage of stale reads.

6 Transactions

Many applications can benefit from the ability to read

and write multiple objects atomically. To this end, Occult

builds on the system described for single-key operations

to provide general-purpose read-write transactions. To the

best of our knowledge, Occult is the first causal system to

support general-purpose transactions while being scalable

and resilient to slowdown cascades.

Transactions in Occult run under a new isolation property

called Per-Client Snapshot Isolation (PC-PSI), a variant of

Parallel Snapshot Isolation (PSI) [55]. PSI is an attractive

starting point because it aims to strike a careful balance

between the competing concerns of strong guarantees (im-

portant for developing applications) and scalable low-latency

operations. On the one hand, PSI requires that transactions

read from a causally consistent snapshot and precludes

concurrent conflicting writes. On the other hand, PSI takes

a substantial step towards improving scalability by letting

transactions first commit at their local datacenter and sub-

sequently replicate their effects asynchronously to other sites

(while preserving causal ordering). In doing so, PSI sidesteps

the requirement of a total order on all transactions, which is

the primary scalability bottleneck of Snapshot Isolation [15]

(a popular guarantee in non-distributed systems).

PSI’s scalability, however, is ultimately undermined by the

constraints its implementation imposes on the order in which

transactions are to be replicated, leaving it unnecessarily

vulnerable to slowdown cascades. Specifically, PSI totally

orders all transactions that commit at a replica, and it requires

this order to be respected when the transactions are replicated

at other sites [55]. For instance, suppose the transactions

in Figure 5 are executed by four different clients on the

same replica. Under PSI, they would be totally ordered as

T1→T2→T3→T4. If, when these transactions are applied

at a different replica, any of the shards in charge of applying

T2 is slow, the replication of T3 and T4 will be delayed, even

though neither has a read/write dependency on T2.

PC-PSI removes these unnecessary constraints. Rather

than totally ordering all transactions that were coincidentally

located on the same replica, PC-PSI only requires transac-

tions to be replicated in a way that respects both read/write

458 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To ensure that T is not missing any of these updates, in

the final step of validation c checks that Σrs is at least as

recent as Σow. If the check fails, T aborts.

Commit phase c computes T ’s commit timestamp tsT by

first initializing it to the causal timestamp of the snapshot Σrs

from which T read, and by then updating it to account for

the shardstamps, saved in T ’s overwrite set, assigned to T ’s

writes. The value of tsT [i] is thus set to the largest between

(i) the highest value of the i-th entry of any of the causal

timestamps in T ’s read set, and (ii) the highest shardstamp

assigned to any of the writes in T ’s write set that update an

object stored on a shard mapped to entry i. c then writes back

the objects in T ’s write set to the appropriate master server,

with tsT as their causal timestamp. Finally, to ensure that any

future transaction executed by this client will be (causally)

ordered after T , c sets its own causal timestamp to tsT .

The commit phase enforces a property that is crucial for

Occult’s scalability: it guarantees that transactions are atomic

even though Occult replicates their writes asynchronously.

Because the commit timestamp tsT both reflects all writes

that T performs and is used as the causal timestamp of

every object that T updates, tsT makes all of these updates,

in effect, causally dependent on one another. As a result,

any transaction whose read set includes any object o in T ’s

write set will necessarily either become dependent on all the

updates that T performed, or none of them.

6.3 Correctness
To implement PC-PSI, the protocol must prevent Aborted

Reads, Intermediate Reads, Circular Information Flow, and

Missed Effects. The optimistic nature of the protocol trivially

yields the first two conditions, as writes are buffered locally

and only written back when transactions commit. Occult

also precludes Circular Information Flow. Since clients

acquire write locks on all objects before modifying them,

transactions that modify the same objects cannot commit

concurrently and interleave their writes (no ww cycles).

Cycles consisting only of ww, wr, and sd edges are instead

prevented by the structure of OCC, whose read phase strictly

precedes all writes: if a sequence of ww/wr/sd edges leads

from T1 to T2, then T1 must have committed before T2, and

could not have observed the effects of T2 or created a write

with a lower causal timestamp than T2’s.

Finally, Occult’s validation phase prevents Missed Effects.

By contradiction, suppose that all transactions involved

in a DSG cycle with a single anti-dependency (rw) edge

have passed the validation phase. Let T be the transaction

from which that edge originates, ending in T∗. Let T−1

immediately precede T in the cycle. Let o be the object

written by T∗ whose update T missed. Either T−1 and T∗ are

one, or T−1 wr/ww/sd depends on T∗: either way, Occult’s

protocol ensures that the commit timestamp of T−1 is at

least as large as that of T∗. By assumption, T missed some

update to o: hence, the shardstamp for o’s shard so in T ’s

readset must be smaller that the corresponding entry in the

commit timestamps of T∗ and T−1. There are three cases:

(i) T−1
sd
−→T . The client that issued both T−1 and T must have

decreased its causal timestamp after committing T−1, but the

protocol ensures causal timestamps increase monotonically.

(ii) T−1
ww
−−→T . Since T overwrites an object updated by T−1,

T ’s overwrite set must include T−1’s commit timestamp.

But then T would fail in validating its read set against its

overwrite set, since the latter has a larger entry corresponding

to so than the former.

(iii) T−1
wr
−→T . Since T reads an object updated by T−1, its

read set contains T−1’s commit timestamp. But then T would

fail in validating its read set, since the object updated by T−1

and the version of o read by T would be pairwise inconsistent.

Each case leads to a contradiction: hence no such cycle

can occur and no effects are missed.

7 Fault Tolerance

Server failures Slave failures in Occult only increase read

latency as slaves never accept writes and read requests to

failed slaves eventually time-out and redirect to the master.

Master failures are more critical. First, as in all single-master

systems [56], no writes can be processed on a shard with

a failed master. Second, in common with all asynchronously

replicated systems [11, 14, 39, 40, 56], Occult exhibits a

vulnerability window during which writes executed at the

master may not yet have been replicated to slaves and may

be lost if the master crashes. These missing writes may

cause subsequent client requests to fail: if a client c’s write

to object o is lost, c cannot read o without violating causality.

This scenario is common to all causal systems for which

clients do not share fate with the servers to which they

write. Occult’s client-centric approach to causal consistency,

however, creates another dangerous scenario: as datacenters

are not themselves causally consistent, writes can be

replicated out of order. A write y that is dependent on a write

x can be replicated to another datacenter despite the loss of x,

preventing any subsequent client from reading both x and y.

Master failures can be handled using well-known

techniques: individual machine failures within a datacenter

can be handled by replicating the master locally using

chain-replication [59] or Paxos [36], before replicating

asynchronously to other replicas.

Client failures A client failure for single-key operations

impacts only the failed client as neither reads nor writes cre-

ate temporary server state. In transactional mode, however,

clients modify server state during the commit phase: they ac-

quire locks on objects in the transaction’s write-set and write

back new values. A client failure during the transaction com-

mit process may thus cause locks to be held indefinitely by

failed clients, preventing other transactions from committing.

Such failures can be handled by augmenting Occult with

Bernstein’s cooperative termination protocol [16] for coor-

460 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dinator recovery [32, 64]. Upon detecting a suspected client

failure, individual shards can attempt to elect themselves as

backup coordinator (using an instance of Paxos to ensure that

a single coordinator is elected). The backup coordinator can

then appropriately terminate the transaction (by committing

it if a replica shard successfully received an unlock request

with the appropriate transaction timestamp using the buffered

writes at every replica, or aborting it otherwise).

8 Evaluation

Our evaluation answers three questions:

1. How well does Occult perform in terms of throughput,

latency, and transaction abort rate?

2. What is its overhead when compared to an eventually-

consistent system?

3. What is the effect of server slowdowns on Occult?

We have implemented Occult by modifying Redis Clus-

ter [4], the distributed implementation of the widely-used

Redis key-value store. Redis Cluster divides the entire

key-space into N logical shards (default N = 16K), which

are then evenly distributed across the available physical

servers. Our causal timestamps track shardstamps at the

granularity of logical shards to avoid dependencies on the

physical location of the data.

For a fair comparison with Occult, we modify our Redis

Cluster baseline to allow reads from slaves (Redis Cluster

by default uses primary-backup [53] replication for fault

tolerance). We further modify the Redis client [2] to, like

Occult, allow for client locality: the client prioritizes reading

from shards in its local datacenter and executes write

operations at the master shard.

8.1 Experimental Setup
Unless otherwise stated, we run our experiments on

CloudLab [1, 52] with 20 server and 20 client machines

evenly divided across two datacenters in Wisconsin (WI)

and South Carolina (SC); the cross-datacenter ping latency

is 39ms. Each machine has dual Intel E5-2660 10-core

CPUs and dual-port Intel 10Gbe NICs, with respectively

160GB memory (WI) and 256GB (SC). Our experiments

use public IP addresses, routable between CloudLab sites,

which are limited to 1Gbps. Each server machine runs four

instances of the server process, with each server process

being responsible for N/40 logical shards. Half of all shards

have a master in WI and a slave in SC; the other half have

the opposite configuration.

Client machines run the Yahoo! Cloud Serving Bench-

mark (YCSB) [21]. We run experiments with both of

YCSB’s Zipfian and Uniform workloads but, for brevity,

show results only for the Zipfian distribution, more repre-

sentative of real workloads. Prior to the experiments, we

load the cluster with 10 million records following YCSB’s

default, i.e., keys varying in size up to 23B and 1KB values.

We report results at peak goodput, running for at least 100

seconds and then excluding 10-second ramp-up and ramp-

down periods. Goodput measures successful operations

per second, e.g., a read that needs to be retried four times

will only be counted once towards goodput. The bottleneck

resource for all experiments is out bound network bandwidth

on the hottest master. The CPU on the hottest master is

nearly saturated (> 90% utilization) and would almost

immediately bottleneck each system at a similar throughput

if we were able to increase the network bandwidth.

8.2 Performance and Overhead

8.2.1 Single Key Operations

We first quantify the overhead of enforcing causal consistency

in Occult. We show results for a read-heavy (95% reads, 5%

writes) workload, which is more interesting and challenging

for our system. Write-heavy workloads performed better in

general: we include them in Appendix B.1 for completeness.

We compare system throughput as a function of causal

timestamp size, for each of the previously described schemes

(structural, temporal, and temporal with datacenter isolation),

with Redis cluster as the baseline. Temporal compression

requires a minimum of two entries per causal timestamp;

adding datacenter isolation (DC-Isolate), doubles this

number, so that the smallest number of shardstamps used

by DC-Isolate is four.

In the best case (DC-Isolate scheme with four-entry

timestamps), Occult’s performance is competitive with

Redis, despite providing much stronger guarantees: its

goodput is only 8.7% lower than Redis (Figure 6a) and its

mean and tail latency are, respectively, only 50 μs and 400

μs higher than in Redis (Figure 6b). Other schemes perform

either systematically worse (Structural), or require twice the

number of shardstamps to achieve comparable performance

(Temporal). The low performance of the structural and

temporal schemes are due to their high stale read rate

(Figures 6c and 6d). In contrast, DC-Isolate has very a low

percentage of stale reads even with small causal timestamps.

Its slight drop in goodput is primarily due to Occult’s other

source of overhead: the CPU, network, and storage cost

of attaching and storing timestamps to requests and objects.

These results highlight the tension between overhead and

precision: larger causal timestamps reduce the amount of

stale reads (as evidenced by the improved performance of

the temporal scheme when vector size grows), but worsen

overhead (the goodput of the DC-Isolate scheme actually

drops slightly as the number of shardstamps increases).

Achieving a low stale read rate with few shardstamps, as

DC-Isolate does, is thus crucial to achieving good perfor-

mance. Key to its success is its ability to track timestamps

from different datacenters independently. Consider Figures

6c and 6d: in these experiments we simply count the

percentage of stale reads but do not retry locally or read from

the remote master. Observe that the temporal and structural

schemes suffer from a significantly higher stale read rate in

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 461

[5] ADYA, A. Weak Consistency: A Generalized Theory and Optimistic

Implementations for Distributed Transactions. PhD thesis, MIT, 1999.

[6] ADYA, A., AND LISKOV, B. Lazy Consistency Using Loosely

Synchronized Clocks. In Proceedings of the 16th ACM Symposium

on Principles of Distributed Computing (Santa Barbara, California,

USA, 1997), PODC ’97, ACM, pp. 73–82.

[7] AHAMAD, M., NEIGER, G., BURNS, J., KOHLI, P., AND HUTTO,

P. Causal Memory: Definitions, Implementation, and Programming.

Distributed Computing 9, 1 (1995), 37–49.

[8] AJOUX, P., BRONSON, N., KUMAR, S., LLOYD, W., AND

VEERARAGHAVAN, K. Challenges to Adopting Stronger Consistency

at Scale. In Proceedings of the 15th USENIX Conference on Hot

Topics in Operating Systems (Switzerland, 2015), HOTOS’15,

USENIX Association.

[9] AKKOORATH, D. D., TOMSIC, A. Z., BRAVO, M., LI, Z., CRAIN,

T., BIENIUSA, A., PREGUIA, N., AND SHAPIRO, M. Cure: Strong

Semantics Meets High Availability and Low Latency. In 2016 IEEE

36th International Conference on Distributed Computing Systems

(ICDCS) (June 2016), pp. 405–414.

[10] ALMEIDA, S., LEITÃO, J. A., AND RODRIGUES, L. Chainreaction:

A Causal+ Consistent Datastore Based on Chain Replication. In Pro-

ceedings of the 8th ACM European Conference on Computer Systems

(Prague, Czech Republic, 2013), EuroSys ’13, ACM, pp. 85–98.

[11] ARDEKANI, M. S., AND TERRY, D. B. A Self-Configurable Geo-

Replicated Cloud Storage System. In Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

14) (2014), OSDI ’14, USENIX Association, pp. 367–381.

[12] BABAOĞLU, O., AND MARZULLO, K. Consistent Global

States of Distributed Systems: Fundamental Concepts and Mech-

anisms. In Distributed Systems (2nd Ed.), S. Mullender, Ed. ACM

Press/Addison-Wesley Publishing Co., 1993, pp. 55–96.

[13] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND

STOICA, I. The Potential Dangers of Causal Consistency and an

Explicit Solution. In Proceedings of the 3rd ACM Symposium on

Cloud Computing (San Jose, California, 2012), SoCC ’12, ACM,

pp. 22:1–22:7.

[14] BAILIS, P., GHODSI, A., HELLERSTEIN, J. M., AND STOICA,

I. Bolt-On Causal Consistency. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data (New

York, NY, 2013), SIGMOD ’13, ACM, pp. 761–772.

[15] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J., O’NEIL,

E., AND O’NEIL, P. A Critique of ANSI SQL Isolation Levels. In

Proceedings of the 1995 ACM SIGMOD International Conference on

Management of Data (San Jose, California, USA, 1995), SIGMOD

’95, ACM, pp. 1–10.

[16] BERNSTEIN, P., AND NEWCOMER, E. Principles of Transaction

Processing: For the Systems Professional. Morgan Kaufmann

Publishers Inc., 1997.

[17] BIRMAN, K., CHOCKLER, G., AND VAN RENESSE, R. Toward

a Cloud Computing Research Agenda. SIGACT News 40, 2 (June

2009), 68–80.

[18] BRAVO, M., RODRIGUES, L., AND VAN ROY, P. Saturn: a

distributed metadata service for causal consistency. In Proceedings

of the 12th ACM European Conference on Computer Systems (2017),

EuroSys ’17, ACM.

[19] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DIMOV,

P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI, S., LI,

H., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG, Y. J., AND

VENKATARAMANI, V. TAO: Facebook’s Distributed Data Store

for the Social Graph. In Proceedings of the 2013 USENIX Annual

Technical Conference (San Jose, CA, 2013), USENIX ATC’13,

USENIX Association, pp. 49–60.

[20] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SILBER-

STEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N., WEAVER,

D., AND YERNENI, R. PNUTS: Yahoo!’s Hosted Data Serving

Platform. Proceedings of the VLDB Endowment 1, 2 (Aug. 2008),

1277–1288.

[21] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,

AND SEARS, R. Benchmarking Cloud Serving Systems with YCSB.

In Proceedings of the 1st ACM Symposium on Cloud Computing

(Indianapolis, Indiana, 2010), SoCC ’10, ACM, pp. 143–154.

[22] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,

C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,

HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,

LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,

S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR,

C., WANG, R., AND WOODFORD, D. Spanner: Google’s Globally-

Distributed Database. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation (Hollywood, CA,

2012), OSDI’12, USENIX Association, pp. 251–264.

[23] CROOKS, N., PU, Y., ALVISI, L., AND CLEMENT, A. Seeing is

Believing: A Unified Model for Consistency and Isolation via States.

CoRR abs/1609.06670 (2016).

[24] CROOKS, N., PU, Y., ESTRADA, N., GUPTA, T., ALVISI, L., AND

CLEMENT, A. TARDiS: A Branch-and-Merge Approach to Weak

Consistency. In Proceedings of the 2016 ACM SIGMOD International

Conference on Management of Data (San Francisco, California,

2016), SIGMOD ’16, ACM, pp. 1615–1628.

[25] DEAN, J., AND BARROSO, L. A. The Tail at Scale. Communications

of the ACM 56, 2 (Feb. 2013), 74–80.

[26] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data

Processing on Large Clusters. In Proceedings of the 6th Symposium

on Operating Systems Design and Implementation (San Francisco,

CA, 2004), OSDI’04, USENIX Association, pp. 137–149.

[27] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W. Orbe: Scal-

able Causal Consistency Using Dependency Matrices and Physical

Clocks. In Proceedings of the 4th ACM Symposium on Cloud Comput-

ing (Santa Clara, California, 2013), SOCC ’13, ACM, pp. 11:1–11:14.

[28] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W.

GentleRain: Cheap and Scalable Causal Consistency with Physical

Clocks. In Proceedings of the 5th ACM Symposium on Cloud

Computing (2014), SOCC ’14, ACM.

[29] FIDGE, C. J. Timestamps in Message-Passing Systems That Preserve

the Partial Ordering. In Proceedings of the 11th Australian Computer

Science Conference (ACSC’88) (February 1988), pp. 56–66.

[30] GILBERT, S., AND LYNCH, N. Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-Tolerant Web Services.

SIGACT News 33, 2 (June 2002), 51–59.

[31] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND

WONG, E. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM

Transactions on Computer Systems 27, 4 (Jan. 2010), 7:1–7:39.

[32] KRASKA, T., PANG, G., FRANKLIN, M. J., MADDEN, S., AND

FEKETE, A. MDCC: Multi-Data Center Consistency. In Proceedings

of the 8th ACM European Conference on Computer Systems (Prague,

Czech Republic, 2013), EuroSys ’13, ACM, pp. 113–126.

[33] KRIKORIAN, R. Twitter Timelines at Scale (video link. consistency

discussion at 26m). http://www.infoq.com/presentations/

Twitter-Timeline-Scalability, 2013.

[34] LAMPORT, L. Time, Clocks, and the Ordering of Events in a

Distributed System. Communications of the ACM 21, 7 (July 1978),

558–565.

[35] LAMPORT, L. The Part-Time Parliament. ACM Transactions on

Computer Systems 16, 2 (May 1998), 133–169.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 465

[36] LAMPORT, L. Generalized Consensus and Paxos. Tech. Rep.

MSR-TR-2005-33, Microsoft Research, 2004.

[37] LEE, C., PARK, S. J., KEJRIWAL, A., MATSUSHITA, S., AND

OUSTERHOUT, J. Implementing Linearizability at Large Scale and

Low Latency. In Proceedings of the 25th Symposium on Operating

Systems Principles (Monterey, California, 2015), SOSP ’15, ACM,

pp. 71–86.

[38] LIPTON, R. J., AND SANDBERG, J. PRAM: A Scalable Shared

Memory. Tech. Rep. TR-180-88, Princeton University, Department

of Computer Science, August 1988.

[39] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN,

D. G. Don’t Settle for Eventual: Scalable Causal Consistency for

Wide-Area Storage with COPS. In Proceedings of the 23rd ACM

Symposium on Operating Systems Principles (Cascais, Portugal,

2011), SOSP ’11, ACM, pp. 401–416.

[40] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDERSEN,

D. G. Stronger Semantics for Low-Latency Geo-Replicated Storage.

In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation (Lombard, IL, 2013), NSDI ’13,

USENIX Association, pp. 313–328.

[41] LU, H., HODSDON, C., NGO, K., MU, S., AND LLOYD, W. The

SNOW Theorem and Latency-Optimal Read-Only Transactions. In

Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (2016), OSDI’16, USENIX Association,

pp. 135–150.

[42] LU, H., VEERARAGHAVAN, K., AJOUX, P., HUNT, J., SONG, Y. J.,

TOBAGUS, W., KUMAR, S., AND LLOYD, W. Existential Consis-

tency: Measuring and Understanding Consistency at Facebook. In

Proceedings of the 25th Symposium on Operating Systems Principles

(Monterey, California, 2015), SOSP ’15, ACM, pp. 295–310.

[43] MAHAJAN, P., ALVISI, L., AND DAHLIN, M. Consistency, Avail-

ability, and Convergence. Tech. Rep. UTCS TR-11-22, Department

of Computer Science, The University of Texas at Austin, 2011.

[44] MATTERN, F. Virtual Time and Global States of Distributed

Systems. In Proceedings of the Workshop on Parallel and Distributed

Algorithms (1989), North-Holland/Elsevier, pp. 215–226.

[45] MICKENS, J., NIGHTINGALE, E. B., ELSON, J., GEHRING, D.,

FAN, B., KADAV, A., CHIDAMBARAM, V., KHAN, O., AND

NAREDDY, K. Blizzard: Fast, Cloud-Scale Block Storage for

Cloud-Oblivious Applications. In 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 14) (2014),

USENIX Association, pp. 257–273.

[46] MU, S., CUI, Y., ZHANG, Y., LLOYD, W., AND LI, J. Extracting

More Concurrency from Distributed Transactions. In Proceedings

of the 11th USENIX Conference on Operating Systems Design

and Implementation (Broomfield, CO, 2014), OSDI’14, USENIX

Association, pp. 479–494.

[47] MU, S., NELSON, L., LLOYD, W., AND LI, J. Consolidating

Concurrency Control and Consensus for Commits under Conflicts. In

Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (2016), OSDI’16, USENIX Association.

[48] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND

FLINN, J. Rethink the Sync. ACM Transactions on Computer

Systems 26, 3 (Sept. 2008), 6:1–6:26.

[49] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,

LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,

SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V.

Scaling Memcache at Facebook. In Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation

(Lombard, IL, 2013), NSDI ’13, USENIX Association, pp. 385–398.

[50] PORTS, D. R., LI, J., LIU, V., SHARMA, N. K., AND KRISHNA-

MURTHY, A. Designing Distributed Systems Using Approximate

Synchrony in Data Center Networks. In 12th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 15) (2015),

USENIX Association, pp. 43–57.

[51] QIAO, L., SURLAKER, K., DAS, S., QUIGGLE, T., SCHULMAN, B.,

GHOSH, B., CURTIS, A., SEELIGER, O., ZHANG, Z., AURADAR,

A., BEAVER, C., BRANDT, G., GANDHI, M., GOPALAKRISHNA,

K., IP, W., JGADISH, S., LU, S., PACHEV, A., RAMESH, A.,

SEBASTIAN, A., SHANBHAG, R., SUBRAMANIAM, S., SUN,

Y., TOPIWALA, S., TRAN, C., WESTERMAN, J., AND ZHANG,

D. On Brewing Fresh Espresso: LinkedIn’s Distributed Data

Serving Platform. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data (New York, NY,

2013), SIGMOD ’13, ACM, pp. 1135–1146.

[52] RICCI, R., EIDE, E., AND THE CLOUDLAB TEAM. Introduc-

ing CloudLab: Scientific Infrastructure for Advancing Cloud

Architectures and Applications. USENIX ;login: 39, 6 (Dec. 2014).

[53] SCHNEIDER, F. B. Replication Management Using the State-Machine

Approach. In Distributed Systems (2nd Ed.), S. Mullender, Ed. ACM

Press/Addison-Wesley Publishing Co., 1993, pp. 169–197.

[54] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZAWIRSKI, M.

A Comprehensive Study of Convergent and Commutative Replicated

Data Types. Tech. Rep. HAL Id: inria-00555588, Inria–Centre

Paris-Rocquencourt; INRIA, 2011.

[55] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J.

Transactional Storage for Geo-Replicated Systems. In Proceedings of

the 23rd ACM Symposium on Operating Systems Principles (Cascais,

Portugal, 2011), SOSP ’11, ACM, pp. 385–400.

[56] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BALAKRISHNAN,

M., AGUILERA, M. K., AND ABU-LIBDEH, H. Consistency-based

Service Level Agreements for Cloud Storage. In Proceedings of the

24th ACM Symposium on Operating Systems Principles (Farmington,

Pennsylvania, 2013), SOSP ’13, ACM, pp. 309–324.

[57] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,

P., AND ABADI, D. J. Calvin: Fast Distributed Transactions for

Partitioned Database Systems. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data (2012),

ACM, pp. 1–12.

[58] TORRES-ROJAS, F. J., AND AHAMAD, M. Plausible clocks:

Constant size logical clocks for distributed systems. Distributed

Computing 12, 4 (Sept. 1999), 179–195.

[59] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain Replication for

Supporting High Throughput and Availability. In Proceedings of the

6th Symposium on Operating Systems Design and Implementation

(San Francisco, CA, 2004), OSDI’04, USENIX Association,

pp. 91–104.

[60] VOGELS, W. Eventually Consistent. Commun. ACM 52, 1 (Jan.

2009), 40–44.

[61] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast

In-Memory Transaction Processing Using RDMA and HTM. In

Proceedings of the 25th Symposium on Operating Systems Principles

(Monterey, California, 2015), SOSP ’15, ACM, pp. 87–104.

[62] XIE, C., SU, C., LITTLEY, C., ALVISI, L., KAPRITSOS, M., AND

WANG, Y. High-Performance ACID via Modular Concurrency Con-

trol. In Proceedings of the 25th Symposium on Operating Systems Prin-

ciples (Monterey, California, 2015), SOSP ’15, ACM, pp. 279–294.

[63] ZAWIRSKI, M., PREGUIÇA, N., DUARTE, S., BIENIUSA, A.,

BALEGAS, V., AND SHAPIRO, M. Write Fast, Read in the Past:

Causal Consistency for Client-Side Applications. In Proceedings of

the 16th Annual Middleware Conference (Vancouver, BC, Canada,

2015), Middleware ’15, ACM, pp. 75–87.

[64] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY,

A., AND PORTS, D. R. K. Building Consistent Transactions with

Inconsistent Replication. In Proceedings of the 25th Symposium on

Operating Systems Principles (Monterey, California, 2015), SOSP

’15, ACM, pp. 263–278.

466 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[65] ZHANG, Y., POWER, R., ZHOU, S., SOVRAN, Y., AGUILERA,

M. K., AND LI, J. Transaction Chains: Achieving Serializability with

Low Latency in Geo-Distributed Storage Systems. In Proceedings

of the 24th ACM Symposium on Operating Systems Principles

(Farmington, Pennsylvania, 2013), SOSP ’13, ACM, pp. 276–291.

A Pseudocode for Transactions

Listing 1: Interface of a Causal Timestamp

1 c l a s s Causa lTimestamp :

2 def i n i t (N) :

3 V = [0] ∗ N

4

5 # Get shards tamp f o r s h a r d i d

6 def getSS (s h a r d i d) :

7 return V[s h a r d i d]

8

9 # Re turn t h e shards tamp w i t h maximum v a l u e

10 def maxSS () :

11 return max (V)

12

13 # Update t h e shards tamp f o r s h a r d i d t o new ss

14 def updateSS (s h a r d i d , new ss) :

15 V[s h a r d i d] = max (V[s h a r d i d] , new ss)

16

17 # Merge a n o t h e r CausalTimes tamp i n t o t h i s o b j e c t

18 def mergeCTS (o t h e r c t s) :

19 for i in range (0 , l en (V)) :

20 V[i] = max (V[i] , o t h e r c t s [i])

Listing 2: Server-side pseudocode

1 # a l l o c a t e new shards tamp u s i n g l o o s e l y s y n c h r o n i z e d

2 # c l o c k s as d e s c r i b e d i n S e c t i o n 5

3 def newShardstamp (m a x c l i s s , s h a r d i d) :

4 new ss = max (c u r r e n t S y s T i m e () , m a x c l i s s)

5 i f new ss < s h a r d s t a m p s [s h a r d i d] :

6 return s h a r d s t a m p s [s h a r d i d] + 1

7 e l s e :

8 return new ss + 1

9

10 def r e a d (key) :

11 s h a r d s t a m p = s h a r d s t a m p s [s h a r d (key)]

12 return (g e t V a l u e (key) , ge tDeps (key) , s h a r d s t a m p)

13

14 def p r e p a r e (t i d , key , va lue , m a x c l i s s) :

15 i f not i s l o c k e d (s h a r d (key)) :

16 l o c k w r i t e s (s h a r d (key))

17 i f t i d not in prepKV : # prepared t x n s key v a l s

18 prepKV [t i d] = l i s t ()

19 prepKV [t i d] . append ((key , v a l u e))

20 s h a r d s t a m p = s h a r d s t a m p s [s h a r d (key)]

21 new ss = newShardstamp (m a x c l i s s , s h a r d (key))

22 return (new ss , ge tDeps (key))

23 e l s e :

24 throw LOCKED

25

26 def c o m m i t s e r v e r (t i d , deps) :

27 f or key , v a l u e in prepKV [t i d] :

28 s h a r d s t a m p s [s h a r d (key)] = deps . maxSS ()

29 s t o r e (key , va lue , deps)

30 s h a r d s t a m p = s h a r d s t a m p s [s h a r d (key)])

31 u n l o c k w r i t e s (s h a r d (key))

32 for s in mySlaves () :

33 async (s . r e p l i c a t e (key , va lue , deps , s h a r d s t a m p)

34

35 def a b o r t s e r v e r (t i d) :

36 f or key , v a l u e in prepKV [t i d] :

37 u n l o c k w r i t e s (key)

Note that if multiple transactions concurrently update

different objects in the same shard s, in the commit phase

each write w is applied at s (and at its slaves) in the (total)

order determined by the value of the shardstamp assigned

to w during the validation phase. The pseudocode achieves

this property by locking shards instead of objects during the

validation phase (§6.2).

Listing 3: Client-side pseudocode

1# c l i t s i s t h e c l i e n t ’ s c a u s a l t i m e s t a m p

2def s t a r t T r a n s a c t i o n () :

3TID = n ew T r an sa c t i on I D ()

4ReadSet = s e t ()

5OWSet = s e t () # O v e r w r i t e S e t

6W r i t e s = d i c t () # W r i t e s done by t h i s t r a n s a c t i o n

7c l i t s s a v e = copy (c l i t s)

8

9def w r i t e (key , v a l u e) :

10W r i t e s [key] = v a l u e

11

12def r e a d (key) :

13i f key in W r i t e s :

14return W r i t e s [key] # Re turn t h e v a l u e we wro te

15e l s e :

16s h a r d i d = s h a r d (key)

17l o c a l s e r v e r = l o c a l (s h a r d i d)

18c l i s s = c l i t s . ge tSS (s h a r d i d)

19va lue , deps , s h a r d s t a m p = l o c a l s e r v e r . r e a d (key)

20i f i s S l a v e (l o c a l s e r v e r) and s h a r d s t a m p < c l i s s :

21va lue , deps , s h a r d s t a m p = f i n i s h S t a l e R e a d (key)

22

23ReadSet . add (Elem (key , s h a r d i d , deps , s h a r d s t a m p))

24c l i t s . mergeCTS (deps)

25return v a l u e

26

27def v a l i d a t e (S1 , S2) :

28for x in S1 :

29f or y in S2 :

30i f x . s h a r d s t a m p < y . deps . ge tSS (x . s h a r d i d) :

31return F a l s e

32return True

33

34def a b o r t T r a n s a c t i o n (p r e p a r e d s e r v e r s , t i d) :

35c l i t s = c l i t s s a v e

36for s e r v e r in p r e p a r e d s e r v e r s :

37s e r v e r . a b o r t s e r v e r (t i d)

38return F a l s e

39

40def c o m m i t T r a n s a c t i o n () :

41p r e p a r e d s e r v e r s = s e t ()

42i f not v a l i d a t e (ReadSet , ReadSet) :

43return a b o r t T r a n s a c t i o n (p r e p a r e d s e r v e r s , TID)

44

45for key , v a l u e in W r i t e s :

46m a s t e r s e r v e r = m a s t e r (s h a r d (key))

47t ry :

48max ss = c l i t s . maxSS ()

49new ss , deps =

50m a s t e r s e r v e r . p r e p a r e (TID , key , va lue , max ss)

51c l i t s . upda teSS (s h a r d (key) , new ss)

52OWSet . add (Elem (key , s h a r d (key) , deps))

53p r e p a r e d s e r v e r s . add (m a s t e r s e r v e r)

54except LOCKED: # can r e t r y l o c k here b e f o r e a b o r t

55return a b o r t T r a n s a c t i o n (p r e p a r e d s e r v e r s , TID)

56

57i f not v a l i d a t e (ReadSet , OWSet) :

58return a b o r t T r a n s a c t i o n (p r e p a r e d s e r v e r s , TID)

59e l s e :

60f or s e r v e r in p r e p a r e d s e r v e r s :

61s e r v e r . c o m m i t s e r v e r (TID , c l i t s)

62return True

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 467

