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Abstract

We consider the problem of how best to use prior

experience to bootstrap lifelong learning, where

an agent faces a series of task instances drawn

from some task distribution. First, we identify the

initial policy that optimizes expected performance

over the distribution of tasks for increasingly com-

plex classes of policy and task distributions. We

empirically demonstrate the relative performance

of each policy class’ optimal element in a vari-

ety of simple task distributions. We then con-

sider value-function initialization methods that

preserve PAC guarantees while simultaneously

minimizing the learning required in two learn-

ing algorithms, yielding MAXQINIT, a practical

new method for value-function-based transfer. We

show that MAXQINIT performs well in simple

lifelong RL experiments.

1. Introduction

The lifelong reinforcement learning (RL) setting formalizes

the problem of building agents that must solve a series of

related tasks drawn from a task distribution, rather than a

single, isolated task. The key question in lifelong RL is the

question of transfer: how can algorithms exploit knowledge

gained by solving previous tasks to improve performance in

the next task?

The space of methods for transfer in RL is vast. Prior work

has investigated methods for accelerating learning in new en-

vironments given partial solutions to related environments,

including approaches that incorporate action priors to in-

centivize guided exploration (Sherstov & Stone, 2005; Ros-

man & Ramamoorthy, 2012; Abel et al., 2015) and make

use of succinct representations that enable efficient infer-

ence (Walsh et al., 2006), while others reuse elements of
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computed policies from related tasks (Fernández & Veloso,

2006; Taylor & Stone, 2007a; Singh, 1992). While a great

deal of research has been conducted on understanding effec-

tive transfer, the field still lacks a fundamental understanding

of what the optimal in-principle approach is in this setting.

We consider the question of how best to initialize an agent’s

policy or value function for task n, given the optimal poli-

cies and value functions obtained by solving tasks 1 through

n− 1. We restrict our attention to two kinds of knowledge:

policies and values. We begin with policies, progressing

from the simplest setting of constructing the deterministic

policy that performs best in expectation for task n, to the

stochastic and belief-space policy cases, the latter of which

models learning. In the first two cases, we derive the optimal

way to initialize the policy for two classes of task distribu-

tions. We then turn to value-function initialization, focusing

on methods that preserve PAC-MDP guarantees but mini-

mize required learning in R-Max (Brafman & Tennenholtz,

2002) and Delayed Q-Learning (Strehl et al., 2006), both of

which preserve PAC bounds via optimistic value-function

initialization.

We evaluate each algorithm empirically in a collection

of simple lifelong RL tasks. Our empirical and theoreti-

cal results show that a practical and simple new method,

MAXQINIT, can lower the sample complexity of lifelong

learning via value-function-based transfer.

2. Background

Reinforcement learning models an agent interacting with an

environment to maximize long term expected reward (Sutton

& Barto, 1998). The environment is typically modeled as

a Markov Decision Process (MDP) (Puterman, 2014). An

MDP is a five tuple: 〈S,A,R, T , γ〉, where S is a finite

set of states; A is a finite set of actions; R : S × A 7→
[0, RMAX] is a reward function, with a lower and upper

bound 0 and RMAX; T : S × A 7→ Pr(S) is a transition

function, denoting the probability of arriving in state s ∈ S
after executing action a ∈ A in state S; and γ ∈ [0, 1)
is a discount factor, expressing the agent’s preference for

immediate over delayed rewards.

The agent’s action selection strategy is modeled by a policy,

π : S× 7→ Pr(A), mapping states to rewards. Its goal is to
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Π R ∼ D G ∼ D

Πd : S 7→ A Avg. MDP (Ramachandran & Amir, 2007) (Singh et al., 1994)

Πs : S 7→ Pr(A) Avg. MDP (Singh et al., 1994)

Πb : S × Pr(M) 7→ A Belief MDP (Åström, 1965) Belief MDP

Figure 1: A summary of optimality across learning settings and policy classes.

select actions that maximize long term expected reward. A

policy is evaluated using Bellman Equation, giving the long

term expected reward received by executing that policy:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)V π(s′). (1)

The above measure is known as a value function. Also

of interest is the action–value function, which denotes the

value of taking action a and thereafter following policy π:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V π(s′). (2)

We denote π∗ = argmaxπ V
π , V ∗ = maxπ V

π , and Q∗ =
maxπ Q

π as the optimal policy, value function, and action-

value function respectively. Lastly, we suppose RMAX is

a known upper bound on the range of the reward function,

and let VMAX = RMAX

1−γ
denote a theoretical upper bound

on the maximum possible value achievable in any MDP.

2.1. Lifelong Reinforcement Learning

The goal of our work is to clarify what exactly should be

transferred—either as an initial policy, or an initial value

function—to maximize performance in lifelong RL. In life-

long RL, an agent solves a series of tasks, rather than a

single MDP, and should use its prior experience solving

earlier tasks to improve performance in later tasks. We here

adopt the lifelong learning framework used by Brunskill &

Li (2015; 2014); Isele et al. (2016) and Wilson et al. (2007),

inspired by the early work by Thrun & Schwartz (1993):

Definition 1 (Lifelong RL): Let M̃ = S,A be two

fixed sets representing a state and action space, respec-

tively. Let D denote a fixed but unknown distribution

over (R, T , H, ρ0) quadruples, where R is a reward

function, T is a transition function, H is a horizon,

and ρ0 is an initial state probability distribution.

The lifelong reinforcement learning problem consists

of the repetition of the following two steps:

1. The agent samples a task (R, T , H, ρ0) ∼ D.

2. The agent interacts with the MDP defined by M̃ ∪
(R, T , H, ρ0) for H steps.

The key question in lifelong RL is what knowledge the agent

should capture from the tasks it has already solved to import

into the task it must solve next. Naturally, lifelong RL is

intimately connected to several other problem settings, such

as multitask RL and transfer in RL. For further exposition

of these settings, see Taylor et al. (2009) and Brunskill &

Li (2015). We restrict our attention to subclasses of MDP

distributions by making structural assumptions about which

MDP constituents may change throughout elements of the

support of the task distribution. These subclasses aim to

capture distinct types of environments typically studied in

the RL literature. Naturally, understanding the setting in its

full generality is a direction for future work.

1. R ∼ D. In the simplest case, we suppose that only the

reward function changes over the distribution: T and

ρ0 do not vary. This variant captures worlds in which

tasks or preferences change, but the environment’s

dynamics remain fixed.

2. G ∼ D. Perhaps the most common RL tasks are

those in which the reward function is goal based. That

is, every reward in the support of the environmental

distribution can be represented as:

Rp(s, a) =

{
1 p(s, a)

0 ¬p(s, a),
(3)

for some predicate on state-action pairs, p. Further,

states that satisfy goal predicate p(s, a) are terminal:

the agent transitions to an absorbing state wherein all

actions lead to self-loops forever after.

Note that due to the terminal nature of goals, a change

in goal across tasks in the distribution actually changes

the transition dynamics across tasks; the assignment of a

particular predicate p dictates which states have transitions

to an absorbing state. Since the absorbing states change, the

G ∼ D setting is not a subclass of theR ∼ D setting.

These two settings are simplifications of the full lifelong

RL problem, but they offer a general vantage from which to

study the nature of optimal transfer in lifelong RL.

Lastly, we define the jumpstart as “The initial performance

of an agent in a target task [as] improved by transfer from a

source task” (Taylor et al., 2007).
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2.2. Related Work

The space of prior work on transfer for RL is broad, en-

compassing methods for exporting representations, skills

or partial policies, and forms of knowledge that bias action

selection. We here provide a brief survey of this literature

focused on literature dealing with transferring policies, ac-

tions priors, and shaping. We do not cover the full details

of representation transfer (Walsh et al., 2006; Abel et al.,

2017; Taylor & Stone, 2007b) and skill transfer (Konidaris

& Barto, 2007; Topin et al., 2015; Pickett & Barto, 2002),

but note that these are active and relevant areas of research.

2.2.1. POLICY TRANSFER

Most directly relevant to our agenda are those methods that

extract pieces of policies to be used in future tasks. Many

of these papers study an agent in a lifelong transfer setting

closely aligned with our own. For instance, Fernández &

Veloso (2006) developed Policy Reuse, a method for saving

chunks of policies for transfer to other related tasks. They

inject the effects of prior policies through several strategies,

including an ε-greedy-like action selection that uses a prior

policy ε of the time. Similarly, Singh (1992) introduces one

of the earliest forms of algorithms designed for solving a

sequence of related RL tasks. We build on this work by

focusing on simple theory that addresses the open question:

what should we be transferring in lifelong RL?

2.2.2. ACTION PRIORS AND SHAPING

A key part of the transfer learning literature focuses on meth-

ods for biasing an agent’s initial action selection strategy,

either through a shaping function or action prior.

Sherstov & Stone (2005) introduced one of the earliest in-

stances of action priors in the form of action pruning. They

employ action pruning at the task level, focusing on large

action-space environments where the reduction in the di-

mensionality of the action space is dramatic. Along the

same lines, Rosman & Ramamoorthy (2012) introduced a

method for action-prior transfer in RL that can be incorpo-

rated into learning to bias exploration. Abel et al. (2015)

propose goal-based action priors–computed given access to

a training task distribution–which dynamically prune away

actions on a complex target task, thereby narrowing the

search for a good policy conditioned on a descriptor of the

goal and the current state.

Shaping in various forms has long been studied as a mech-

anism for providing agents with heuristics to accelerate

learning, such as the optimal-policy-preserving potential-

based shaping (Ng et al., 1999). Mann & Choe (2013)

perform transfer between tasks using the assumption that

state-action values (in a source and target task) are corre-

lated. They prove that their introduced method of transfer-

ring value, based on a task-to-task mapping, cannot hurt the

sample complexity of learning, and show that often sam-

ple complexity is reduced using the transferred knowledge.

The main difference between our work is that they focus

on positive transfer to a single test task in contrast to our

lifelong setting, and suppose access to a inter-task map-

ping. Konidaris & Barto (2006) consider an agent facing

a sequence of goal-based tasks guaranteed to share some

inherent structure, such as containing the same objects or

offering the same transition dynamics. In this sense, the

problems they consider parallel ourR ∼ D and G ∼ D set-

tings. They propose learning a shaping function to expedite

learning on future tasks. There is a natural parallel to the

shaping methods we introduce in Section 3; however, their

approach assumes the existence of a separate, agent-centric

space in which the shaping function is learned, while we

make no such assumption.

Brys et al. (2015) further investigated potential shaping,

demonstrating that an arbitrary policy can be transferred

by injecting the policy into a reward-shaping function. Our

method parallels theirs in the sense that our dynamic shap-

ing method injects the jumpstart policies summarized by

Table 1 into initializations. By the main result (Wiewiora,

2003), under restricted conditions, potential shaping and

Q-function initialization are equivalent. Other extensions in-

clude potential-based shaping for model-based RL (Asmuth

et al., 2008), arbitrary translation of reward-function-to-

potential (Harutyunyan et al., 2015) and dynamic potential

shaping (Devlin & Kudenko, 2012).

3. Theoretical Results

We now aim to partially explain the nature of effective trans-

fer in the two introduced restricted lifelong RL settings.

Toward this goal, we first study jumpstart policies for life-

long RL through the following question: which single policy

maximizes expected value with respect to the distribution

of tasks? That is, if a learner had to start off in a new task

drawn from the distribution—and wasn’t allowed to change

after seeing the task—which policy should it choose? All

proofs are deferred to the appendix.

Formally, we’d like to solve the jumpstart objective:

argmax
π∈Π

EM∼D [V π
M (s0)] , (4)

for MDP distribution D and choice of policy class Π. In

each of the next two sections we provide two kinds of results

for both task distributions:

1. Jumpstart Policy: The optimal policy from Πd and

Πs for the given task distribution.

2. Value Loss: A lower bound on the value achieved
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by running the jumpstart policy identified by the first

result.

3.1.R ∼ D

The optimal policy for the jumpstart objective from Πd is

given by Ramachandran & Amir (2007):

Theorem 3.1 (Ramachandran & Amir (2007)). Given

a distribution Pr(R) of reward functions for an MDP

(S,A, T ,R, γ), let an average MDP be an MDP Mavg =
(S,A, T ,Ravg, γ) where Ravg(s, a) = ER∼D[R(s, a)].
The optimal fixed policy for an average MDP maximizes

EM∼D [V π
M (s0)].

We refer to the optimal policy for the average MDP as

the average MDP policy, denoted π∗
avg. Since there exists

a deterministic optimal policy for any MDP (Ross, 1983),

there exists a deterministic policy that is optimal among a set

of stochastic policies: π = argmaxπ∈Πs
EM∼D [V π

M (s0)].
Thus the average MDP policy is the optimal jumpstart policy

according to Equation 4 for both Πd and Πs.

Our next result establishes a tight lower bound on the value

that π∗
avg achieves.

Theorem 3.2. For a distribution of MDPs with R ∼ D,

EM∈M[V
π∗

avg

M (s)] ≥ max
M∈M

Pr(M)V ∗
M (s). (5)

Intuitively, running π∗
avg is at least as effective as just using

the optimal policy of the single MDP with maximal expected

value in the distribution. In the Appendix we prove that the

above bound is in fact tight. We now discuss the same pair

of results for the goal-based-task distribution.

3.2. G ∼ D

As withR ∼ D, we first prove which policy from each class

maximizes the jumpstart objective. With a slight modifica-

tion to notation, we can leverage a classic result from Singh

et al. (1994):

Theorem 3.3 (Singh et al. (1994)). Given a distribution of

reward and transition functions for an MDP (S,A, T ,R, γ),
the policy that maximizes the expected total reward is a

policy that maximizes:

∑

s∈S

Pr(s | π)
∑

M∈M

Pr(M | s, π)V π
M (s). (6)

Intuitively, the policy which maximizes the average value

function, given updates over the policy’s state visitation,

maximizes performance in the G ∼ D setting. We next pro-

vide a lower bound on the value of this policy that parallels

Theorem 3.2.

Corollary 3.4. Given a distribution of reward and

transition functions for an MDP (S,A, T ,R, γ),
let Mgavg be an MDP (S,A, Tavg,Ravg, γ) where

Ravg(s, a) = EM∈M[RM (s, a)] and Tavg(s, a, s
′) =

EM∈M[TM (s, a, s′)]. An optimal policy π∗
gavg for Mgavg

is a policy with a lower bound in G ∼ D setting:

EM∈M[V
π∗

gavg

M (s)] ≥

min
M∈M

Pr(M) max
M ′∈M

Pr(M ′)V ∗
M ′(s). (7)

Note that this bound is actually quite easy to achieve: we

can simply solve an arbitrary MDP in the distribution to

yield a policy with at least this much value. We suspect that

the bound is quite loose and plan to tighten it in future work.

We close this section by noting that in both classes of

task distribution, the belief-space policy class, Πb : S ×
Pr(M) 7→ A captures optimal behavior that includes the

additional value of in-task learning (Åström, 1965). Of

course, solving the belief space problem is computationally

intractable, but it does offer an informative upper bound on

performance. To this end, we illustrate the performance of

the optimal belief-space policy in our experiments.

3.3. Learning

So far, our results have focused on fixed policies that opti-

mize the jumpstart objective. However, the more general

question is alluring: Given the choice, what knowledge

should be reused across MDPs drawn from the same distri-

bution, supposing that an arbitrary learning agent is given

this prior knowledge? The results from the previous sec-

tion suggest that the structure of optimal behavior indeed

changes as the constraints placed on the environment or

policy class change.

When agents learn, however, reusing the jumpstart policies

exactly is untenable. Contrary to fixed policies, learning

agents must explore their environment to ensure the data

they collect is informative, while maximizing current perfor-

mance. The requirement to explore fundamentally changes

the measure of a good jumpstart policy. Using the surveyed

jumpstart policies exactly will lead to poor performance as

they do not necessarily cooperate with exploration strategies.

Hence, instead of just evaluating according to the jumpstart

objective in Equation 4, we now take into account an agent’s

propensity to explore.

Specifically, we study classes of value- and reward-function

initialization methods for model-free and model-based learn-

ing that preserve desirable exploration. Intuitively, these

methods parallel potential shaping techniques, and under

restricted assumptions are identical (Wiewiora, 2003). We

show that a particular type of policy prior, implemented

through value-function initialization (of value or reward
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estimates, depending on the algorithm used), can lead to

a reduction in the sample complexity of learning. More

formally, we study which types of initialization functions

have two critical properties: (1) preserve the PAC-MDP

guarantee of an algorithm, and (2) accelerate learning. At

first glance, none of the jumpstart policies satisfy property

(1), as they all fail to satisfy the optimism property that is

critical to many PAC-MDP algorithms.

We first recall the classic result, first introduced by Brafman

& Tennenholtz (2002) and later generalized into the PAC-

MDP framework (Strehl et al., 2009), based on the sample-

complexity of exploration (Kakade, 2003):

Theorem 3.5 (Brafman & Tennenholtz (2002)). The algo-

rithm R-Max is PAC-MDP in parameters (ε, δ). That is,

given an ε ∈ [0, VMAX] and a δ ∈ (0, 1.0], the algorithm

will make at most

Õ

(
C · S

ε3(1− γ)3
VMAX

3

)
(8)

mistakes ignoring logarithmic terms, where

C = |{(s, a) ∈ S ×A : U(s, a) ≥ V ∗(s)− ε}|, (9)

and U(s, a) is an upper bound of Q∗(s, a).

That is, R-Max will only make a polynomial number of mis-

takes with high probability. Critically, the number of mis-

takes depends on the initialization of U . Likewise, Delayed-

Q-Learning (henceforth Delayed-Q) is a model-free algo-

rithm with the same property (Strehl et al., 2006).

Theorem 3.6 (Strehl et al. (2006)). Delayed-Q is PAC-

MDP in parameters (ε, δ). That is, given an ε ∈ [0, VMAX]
and a δ ∈ (0, 1.0], the algorithm will make at most:

Õ

(
D · VMAX(1 + γVMAX)2

ε4(1− γ)4

)
(10)

mistakes ignoring logarithmic terms, where

D =
∑

(s,a)∈S×A

[U(s, a)− V ∗(s)]+, (11)

[x] is defined as max(0, x), and U(s, a) is an upper bound

of Q∗(s, a).

These two algorithms will serve as exemplar PAC-MDP

model-based and model-free algorithms respectively. The

polynomial bounds indicate that these algorithms explore

their environments efficiently. Our original transfer objec-

tive now becomes: initialize U(s, a) so as to reduce the size

of C or D but still preserve the PAC-MDP property.

Our next result summarizes a new method, MAXQINIT, that

balances this tradeoff. In particular, we inject prior knowl-

edge, such as the knowledge captured by a jumpstart policy,

as an initial value function U(s, a) for both algorithms. A

setting of this function can bias or accelerate learning, prune

actions, and enforce partial policies on a state-action basis,

while simultaneously lowering sample complexity, insofar

as C and D are reduced in size. A stronger result might be

obtained by combining these updates with a computationally

efficient incremental planner, as in Strehl et al. (2012).

We first consider an optimal but highly unrealistic form of

initializing U . Let Qmax be a function on state-action pairs

that takes the maximum value of Q∗ across MDPs in the

distribution:

Qmax(s, a) = max
M∈M

Q∗
M (s, a). (12)

By definition, Qmax is the tightest upper bound of Q∗
M over

MDPs the distribution. Thus, U = Qmax minimizes both C
and D, and so would serve as an appropriate value.

Qmax is unattainable as it requires prior knowledge about

every MDP in the distribution. We propose a more realistic

approach called MAXQINIT, a Q-function transfer algo-

rithm that estimates Qmax empirically:

Q̂max(s, a) = max
M∈M̂

QM (s, a), (13)

where M̂ is the set of MDPs the agent has sampled so far,

and QM is a Q-function the agent learned from interacting

with each MDP. Algorithm 1 provides pseudocode for the

updating optimism procedure.

Algorithm 1 MAXQINIT

INPUT: s0, t,H,D,A , p̂min, Q̂max

OUTPUT: U(s, a)

if t > ln(δ)
ln(1−p̂min)

then

∀s,a : Qt(s, a)← Q̂max

else

∀s,a : Qt(s, a)← VMAX

end if

M ← sample(D)
QA ,M ← A (M, s0, H)
∀s,a : Qt(s, a)← QA ,M (s, a)

∀s,a : Qmax ← max
{
Q̂max(s, a), Qt(s, a)

}

return Q̂max

We next offer a lower sample bound on MDPs required for

preserving the optimism property with high probability.

Theorem 3.7. Suppose A (M, s0, H) produces ε-accurate

Q functions for a subset of the state action space given an

MDP M , an initial state s0, and a horizon H . For a given

δ ∈ (0, 1]. Then, after t ≥ ln(δ)
ln(1−pmin)

sampled MDPs, for

pmin = minM∈M Pr(M), the MAXQINIT initialization
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will return Q̂max such that for all state action pairs (s, a):

Q̂max(s, a) ≥ max
M

Q∗
M (s, a), (14)

with probability 1− δ.

Consequently, with high probability, updating U(s, a) using

the above strategy preserves the optimism property required

by the PAC-MDP algorithms. Further, the size of C and

D is reduced, as those state–action pairs (s, a) for which

Q̂max(s, a) are below the mistake bound are removed from

the algorithm’s sample complexity. Our sample bound re-

quires p̂min, a parameter indicating the lowest probability

MDP in the distribution (or an approximation thereof).

In summary, our results serve two purposes. First, we il-

lustrate which individual policies maximize the jumpstart

objective to address the simplest version of the question:

how should agents begin their learning for task n + 1, if

they’ve solved some number of tasks 1, . . . , n? We accom-

pany these results with lower bounds on the performance of

these policies to illustrate their utility. Second, we use the

intuition developed by our jumpstart policies to identify a

practical transfer method well suited to lifelong learning.

4. Experiments

Our experiments evaluate both the jumpstart policies and

initialization methods. Our code is freely available for re-

producibility and extension.1

4.1. Jumpstart Policies

First, we evaluate jumpstart policies. The goal of these

experiments is to showcase the relative performance of dif-

ferent jumpstarts in different lifelong learning settings. In

each environment, we compare four policies:

• πavg (•): The optimal policy in the average MDP.

• πprior (�): The action-prior policy, which

stochastically chooses actions according to the

probability distribution over action optimality:

πprior(a | s) = PrM∼D

(
a = argmaxa Q

∗
M (s, a)

∣∣∣ s
)

• πu (�): The uniform random policy.

• π∗
b (N): The optimal belief-space policy—the policy

that maximizes value over the Belief MDP (Åström,

1965) defined by the MDP distribution.

For each policy, in each experiment, we sample a reward

function, run the policy in the resulting MDP for 100 steps

1https://github.com/david-abel/transfer_

rl_icml_2018.

and repeat. All plots show average performance over the

task distribution, an empirical estimate of our jumpstart

objective. We provide 95% confidence intervals over the

joint distribution-sampling and policy-execution process

(which leads to relatively large intervals in many cases due

to the inherent entropy of the task distribution). We set

γ = 0.95 for all experiments.

For R ∼ D, we use a use-typical 11×11 grid world task

distribution with each reward function specifying four to

eight lava states placed throughout the grid. Entering a state

with lava provides a reward of 0, with all other rewards set to

0.001, apart from states that satisfy the goal predicate, which

yields 1.0. The goal location is terminal and fixed across

tasks to the top right cell, while the start state is fixed to the

bottom left cell. Lastly, there is a 0.1 slip probability, in

which the agent moves in one of the two directions (chosen

uniformly) perpendicular to its chosen action.

For G ∼ D, we experiment with two grid-world distribu-

tions. In the first, “Octogrid”, the agent starts in the center

of a 13×13 grid world (see Figure 2 of the Appendix for an

image of the problem). The agent is surrounded by twelve

hallways, three in each cardinal direction. A single goal

appears at the end of one hallway in each G sampled from

the distribution, chosen uniformly at random over hallways.

All rewards are set to 0 apart from the transition into the goal

state, which yields 1.0. The second task is Four Rooms, the

classic 11× 11 grid-world variant from Sutton et al. (1999).

The goal distribution is uniform over each of the furthest

corners and the center of the non-starting rooms (for a total

of six goals), with the agent starting in the bottom left room.

For both of these tasks, there is no slip probability.

Results for the jumpstart experiments are presented in Fig-

ure 2. Across all plots, the belief-space policy and the

uniform random policy serve as upper and lower bounds on

performance. In Lava World, the optimal policy in the aver-

age MDP performs better than the uniform random policy,

as expected. The average MDP policy performs better than

the action-prior policy in Lava World. In both experiments,

the average MDP policy has almost no increase after the

first 20 steps, but it still performs better than the action-prior

policy.

In Octogrid, both the average MDP and the action-prior

MDP are worse than the uniform random policy after 60

steps. In the task, the goals are spread out (see Appendix).

The average MDP policy is deterministic, so the policy will

go to one of the goals, yielding an expected (undiscounted)

value of 1/N , where N is the number of goals/arms. The

action prior policy yields even worse behavior: when the

agent is down one of the arms on route to the goal, the action

prior policy moves away from the goal (toward all other

the goals) with probability (N − 1)/N . Therefore, for a

sufficiently long arm, and a high enough N , the action prior
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