Variational Inference for Gaussian Process Models
with Linear Complexity

Ching-An Cheng Byron Boots
Institute for Robotics and Intelligent Machines Institute for Robotics and Intelligent Machines
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, GA 30332 Atlanta, GA 30332
cacheng@gatech.edu bboots@cc.gatech.edu
Abstract

Large-scale Gaussian process inference has long faced practical challenges due
to time and space complexity that is superlinear in dataset size. While sparse
variational Gaussian process models are capable of learning from large-scale
data, standard strategies for sparsifying the model can prevent the approximation
of complex functions. In this work, we propose a novel variational Gaussian
process model that decouples the representation of mean and covariance functions
in reproducing kernel Hilbert space. We show that this new parametrization
generalizes previous models. Furthermore, it yields a variational inference problem
that can be solved by stochastic gradient ascent with time and space complexity that
is only linear in the number of mean function parameters, regardless of the choice of
kernels, likelihoods, and inducing points. This strategy makes the adoption of large-
scale expressive Gaussian process models possible. We run several experiments
on regression tasks and show that this decoupled approach greatly outperforms
previous sparse variational Gaussian process inference procedures.

1 Introduction

Gaussian process (GP) inference is a popular nonparametric framework for reasoning about functions
under uncertainty. However, the expressiveness of GPs comes at a price: solving (approximate)
inference for a GP with IV data instances has time and space complexities in ©(N?3) and ©O(N?),
respectively. Therefore, GPs have traditionally been viewed as a tool for problems with small- or
medium-sized datasets

Recently, the concept of inducing points has been used to scale GPs to larger datasets. The idea is to
summarize a full GP model with statistics on a sparse set of M < N fictitious observations [18, 24].
By representing a GP with these inducing points, the time and the space complexities are reduced to
O(NM? + M?) and O(N M + M?), respectively. To further process datasets that are too large to fit
into memory, stochastic approximations have been proposed for regression [10] and classification [11].
These methods have similar complexity bounds, but with N replaced by the size of a mini-batch INV,,.

Despite the success of sparse models, the scalability issues of GP inference are far from resolved.
The major obstruction is that the cubic complexity in M in the aforementioned upper-bound is also
a lower-bound, which results from the inversion of an M-by-M covariance matrix defined on the
inducing points. As a consequence, these models can only afford to use a small set of M basis
functions, limiting the expressiveness of GPs for prediction.

In this work, we show that superlinear complexity is not completely necessary. Inspired by the
reproducing kernel Hilbert space (RKHS) representation of GPs [2], we propose a generalized
variational GP model, called DGPs (Decoupled Gaussian Processes), which decouples the bases
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a,B a0 a=pf N#*M Time Space
SVDGP SGA  SGA SGA FALSE TRUE O(DNMea + NMj + M3)  O(NMq + Mp)

SVI SNGA SGA SGA TRUE  TRUE O(DNM + NM?* + M®  O(NM + M?)
iVSGPR SMA  SMA SGA TRUE  TRUE O(DNM + NM? + M?)  O(NM + M?)
VSGPR  CG CG CG TRUE TRUE O(DNM + NM? + M?*)  O(NM + M?)
GPR CG CG CG TRUE FALSE  O(DN? 4 N?®) O(N?)

Table 1: Comparison between SVDGP and variational GPR algorithms: svI [10], iVSGPR [2],
VSGPR [24], and GPR [19], where IV is the number of observations/the size of a mini-batch, M, M,
Mg are the number of basis functions, and D is the input dimension. Here it is assumed M, > Mg L

(@) M =10 (b) M, = 100, M5 = 10 (¢) M = 100

Figure 1: Comparison between models with shared and decoupled basis. (a)(c) denote the models
with shared basis of size M. (b) denotes the model of decoupled basis with size (M, Mg3). In each
figure, the red line denotes the ground truth; the blue circles denote the observations; the black line
and the gray area denote the mean and variance in prediction, respectively.

for the mean and the covariance functions. Specifically, let M, and Mg be the numbers of basis
functions used to model the mean and the covariance functions, respectively. Assume M, > Mg.
We show, when DGPs are used as a variational posterior [24], the associated variational inference
problem can be solved by stochastic gradient ascent with space complexity O(N,,, M, + M 5) and
time complexity O(DN,,, M,, + NmMg + Mg), where D is the input dimension. We name this
algorithm SVDGP. As aresult, we can choose M, > Mg, which allows us to keep the time and space
complexity similar to previous methods (by choosing Mgz = M) while greatly increasing accuracy.
To the best of our knowledge, this is the first variational GP algorithm that admits linear complexity
in M,,, without any assumption on the choice of kernel and likelihood.

While we design SVDGP for general likelihoods, in this paper we study its effectiveness in Gaussian
process regression (GPR) tasks. We consider this is without loss of generality, as most of the
sparse variational GPR algorithms in the literature can be modified to handle general likelihoods
by introducing additional approximations (e.g. in Hensman et al. [11] and Sheth et al. [22]). Our
experimental results show that SVDGP significantly outperforms the existing techniques, achieving
higher variational lower bounds and lower prediction errors when evaluated on held-out test sets.

1.1 Related Work

Our framework is based on the variational inference problem proposed by Titsias [24], which treats
the inducing points as variational parameters to allow direct approximation of the true posterior.
This is in contrast to Seeger et al. [21], Snelson and Ghahramani [23], Quifionero-Candela and
Rasmussen [18], and Lazaro-Gredilla et al. [15], which all use inducing points as hyper-parameters
of a degenerate prior. While both approaches have the same time and space complexity, the latter
additionally introduces a large set of unregularized hyper-parameters and, therefore, is more likely to
suffer from over-fitting [1].

In Table 1, we compare SVDGP with recent GPR algorithms in terms of the assumptions made and the
time and space complexity. Each algorithm can be viewed as a special way to solve the maximization
of the variational lower bound (5), presented in Section 3.2. Our algorithm SVDGP generalizes the
previous approaches to allow the basis functions for the mean and the covariance to be decoupled, so
an approximate solution can be found by stochastic gradient ascent in linear complexity.

!The first three columns show the algorithms to update the parameters: SGA/SNGA/SMA denotes stochastic
gradient/natural gradient/mirror ascent, and CG denotes batch nonlinear conjugate gradient ascent. The 4th and
the 5th columns indicate whether the bases for mean and covariance are strictly shared, and whether a variational
posterior can be used. The last two columns list the time and space complexity.



To illustrate the idea, we consider a toy GPR example in Figure 1. The dataset contains 500 noisy
observations of a sinc function. Given the same training data, we conduct experiments with three
different GP models. Figure 1 (a)(c) show the results of the traditional coupled basis, which can be
solved by any of the variational algorithms listed in Table 1, and Figure 1 (b) shows the result using the
decoupled approach SVDGP. The sizes of basis and observations are selected to emulate a large dataset
scenario. We can observe SVDGP achieves a nice trade-off between prediction performance and
complexity: it achieves almost the same accuracy in prediction as the full-scale model in Figure 1(c)
and preserves the overall shape of the predictive variance.

In addition to the sparse algorithms above, some recent attempts aim to revive the non-parametric
property of GPs by structured covariance functions. For example, Wilson and Nickisch [27] proposes
to space the inducing points on a multidimensional lattice, so the time and space complexities of
using a product kernel becomes O(N + DM/ and O(N 4+ DM*+2/P), respectively. However,
because M = cP, where c is the number of grid points per dimension, the overall complexity is
exponential in D and infeasible for high-dimensional data. Another interesting approach by Hensman
et al. [12] combines variational inference [24] and a sparse spectral approximation [15]. By equally
spacing inducing points on the spectrum, they show the covariance matrix on the inducing points have
diagonal plus low-rank structure. With MCMC, the algorithm can achieve complexity O(DN M).
However, the proposed structure in [12] does not help to reduce the complexity when an approximate
Gaussian posterior is favored or when the kernel hyper-parameters need to be updated.

Other kernel methods with linear complexity have been proposed using functional gradient descent
[14, 5]. However, because these methods use a model strictly the same size as the entire dataset, they
fail to estimate the predictive covariance, which requires Q(/N?) space complexity. Moreover, they
cannot learn hyper-parameters online. The latter drawback also applies to greedy algorithms based
on rank-one updates, e.g. the algorithm of Csaté and Opper [4].

In contrast to these previous methods, our algorithm applies to all choices of inducing points,
likelihoods, and kernels, and we allow both variational parameters and hyper-parameters to adapt
online as more data are encountered.

2 Preliminaries

In this section, we briefly review the inference for GPs and the variational framework proposed
by Titsias [24]. For now, we will focus on GPR for simplicity of exposition. We will discuss the case
of general likelihoods in the next section when we introduce our framework, DGPs.

2.1 Inference for GPs

Let f : X — R be a latent function defined on a compact domain X C RP. Here we assume a priori
that f is distributed according to a Gaussian process GP(m, k). Thatis, Vx, 2’ € X, E[f(z)] = m(z)
and C[f(z), f(z")] = k(x,2’). In short, we write f ~ GP(m, k).

A GP probabilistic model is composed of a likelihood p(y|f(x)) and a GP prior GP(m, k); in GPR,
the likelihood is assumed to be Gaussian i.e. p(y|f(z)) = N (y|f(x),c?) with variance 2. Usually,
the likelihood and the GP prior are parameterized by some hyper-parameters, which we summarize
as 6. This includes, for example, the variance o® and the parameters implicitly involved in defining
k(x,z"). For notational convenience, and without loss of generality, we assume m(x) = 0 in the
prior distribution and omit explicitly writing the dependence of distributions on 6.

Assume we are given a dataset D = {(z,,,yn)})_;, in which z,, € X and y,, ~ p(y|f(z,)). Let®
X ={z,}N_; andy = (y,))_;,. Inference for GPs involves solving for the posterior pg- (f(z)|y)
for any new input z € X, where 6* = argmaxgp log py(y). For example in GPR, because the
likelihood is Gaussian, the predictive posterior is also Gaussian with mean and covariance

m‘y(x) = ka:,X(KX +02I)_1Y7 k’b,(l‘,l'/) = kw,w’ - kx,X(KX +UZI)_1kX,x’7 (1)
and the hyper-parameter 8* can be found by nonlinear conjugate gradient ascent [19]

max log py(y) = maxlog N (v]0, Kx +o°T), 2)

%In notation, we use boldface to distinguish finite-dimensional vectors (lower-case) and matrices (upper-case)
that are used in computation from scalar and abstract mathematical objects.



where k. ., k.. and K. . denote the covariances between the sets in the subscript.> One can show that
these two functions, my () and k|y (z, '), define a valid GP. Therefore, given observations y, we

say f ~ GP(myy, kjy).

Although theoretically GPs are non-parametric and can model any function as N — oo, in practice
this is difficult. As the inference has time complexity (/N?) and space complexity 2(N?), applying
vanilla GPs to large datasets is infeasible.

2.2 Variational Inference with Sparse GPs

To scale GPs to large datasets, Titsias [24] introduced a scheme to compactly approximate the true
posterior with a sparse GP, GP (1, Ifc|y), defined by the statistics on M < N function values:
{L f(Zm)}M_,, where L,, is a bounded linear operator* and #,, € X. L,,f(-) is called an
inducing function and ., an inducing point. Common choices of L,, include the identity map (as
used originally by Titsias [24]) and integrals to achieve better approximation or to consider multi-
domain information [26, 7, 3]. Intuitively, we can think of {L,, f(Z.,)}M_, as a set of potentially
indirect observations that capture salient information about the unknown function f.

Titsias [24] solves for GP(11n)y, l%‘y) by variational inference. Let X = {Z,,}M_, and let fx € RN
and fg € RM be the (inducing) function values defined on X and X, respectively. Let p(f;) be
the prior given by GP(m, k) and define ¢(f5) = N (f5 |, S) to be its variational posterior, where
m € RM and S € RM*M are the mean and the covariance of the approximate posterior of f¢.

Titsias [24] proposes to use ¢(fx, ) = p(fx|f5)q(f) as the variational posterior to approximate
p(fx,f5|y) and to solve for ¢(f; ) together with the hyper-parameter # through

S - £ )p(Ex |2 )p(Es

max _Lo(X,10,8) = max_ /q(fx, ) log PYIEOPEXIEP(ES) je e 3)
0,X,m,S 0,X,m,S q(fx, f)Z)

where Ly is a variational lower bound of log py(y), p(fx |f3) = ./\/'(fX|KX7)~(K}(1fX, Kx — Kx)

is the conditional probability given in GP(m, k), and Kx = Ky x K;_glKX,x

At first glance, the specific choice of variational posterior ¢(fx,fy) seems heuristic. However,
although parameterized finitely, it resembles a full-fledged GP GP (1), ki ):

iy (@) = K, (K, (o) = ke +k, kK (S - Kg) Ki'kg, @)

This result is further studied in Matthews et al. [16] and Cheng and Boots [2], where it is shown that
(3) is indeed minimizing a proper KL-divergence between Gaussian processes/measures.

By comparing (2) and (3), one can show that the time and the space complexities now reduce
to O(DNM + M?N + M?3) and O(M? + M N), respectively, due to the low-rank structure of
K ; [24]. To further reduce complexity, stochastic optimization, such as stochastic natural ascent
[10] or stochastic mirror descent [2] can be applied. In this case, /N in the above asymptotic bounds
would be replaced by the size of a mini-batch N,,. The above results can be modified to consider
general likelihoods as in [22, 11].

3 Variational Inference with Decoupled Gaussian Processes

Despite the success of sparse GPs, the scalability issues of GPs persist. Although parameterizing a GP
with inducing points/functions enables learning from large datasets, it also restricts the expressiveness
of the model. As the time and the space complexities still scale in Q(M?3) and Q(M?), we cannot
learn or use a complex model with large M.

In this work, we show that these two complexity bounds, which have long accompanied GP models,
are not strictly necessary, but are due to the tangled representation canonically used in the GP

31f the two sets are the same, only one is listed.
“Here we use the notation L., f loosely for the compactness of writing. Rigorously, L, is a bounded linear
operator acting on m and k, not necessarily on all sample paths f.



literature. To elucidate this, we adopt the dual representation of Cheng and Boots [2], which treats
GPs as linear operators in RKHS. But, unlike Cheng and Boots [2], we show how to decouple the
basis representation of mean and covariance functions of a GP and derive a new variational problem,
which can be viewed as a generalization of (3). We show that this problem—with arbitrary likelihoods
and kernels—can be solved by stochastic gradient ascent with linear complexity in M, the number
of parameters used to specify the mean function for prediction.

In the following, we first review the results in [2]. We next introduce the decoupled representation,
DGPs, and its variational inference problem. Finally, we present SVDGP and discuss the case with
general likelihoods.

3.1 Gaussian Processes as Gaussian Measures

Let an RKHS H be a Hilbert space of functions with the reproducing property: Vz € X, 3¢, € H
such that Vf € H, f(z) = ¢Lf.> A Gaussian process GP(m, k) is equivalent to a Gaussian
measure v on Banach space B which possesses an RKHS 7 [2]:° there is a mean functional ;1 € H
and a bounded positive semi-definite linear operator ¥ : H — H, such that for any z,2’ € X,
Iz, P € H, we can write m(z) = ¢L pand k(x,2') = ¢pL X¢,s. The triple (B, v, H) is known
as an abstract Wiener space [9, 6], in which 7 is also called the Cameron-Martin space. Here the
restriction that i, > are RKHS objects is necessary, so the variational inference problem in the next
section can be well-defined.

We call this the dual representation of a GP in RKHS H (the mean function m and the covariance
function k are realized as linear operators 1 and X defined in ‘H). With abuse of notation, we write
N (f|p, 2) in short. This notation does not mean a GP has a Gaussian distribution in , nor does it
imply that the sample paths from GP(m, k) are necessarily in #. Precisely, 55 contains the sample
paths of GP(m, k) and H is dense in B. In most applications of GP models, B is the Banach space
of continuous function C'(X’; V) and H is the span of the covariance function. As a special case, if
‘H is finite-dimensional, B and H coincide and v becomes equivalent to a Gaussian distribution in a
Euclidean space.

In relation to our previous notation in Section 2.1: suppose k(z,2') = ¢L ¢, and ¢, : X — H
is a feature map to some Hilbert space 7. Then we have assumed a priori that GP(m, k) =
N(f|0,I) is a normal Gaussian measure; that is GP(m, k) samples functions f in the form f(z) =

?:If% #1(x)T e, where €, ~ N(0, 1) are independent. Note if dim H = oo, with probability one
f is not in H, but fortunately H is large enough for us to approximate the sampled functions. In
particular, it can be shown that the posterior GP(my, k|, ) in GPR has a dual RKHS representation
in the same RKHS as the prior GP [2].

3.2 Variational Inference in Gaussian Measures

Cheng and Boots [2] proposes a dual formulation of (3) in terms of Gaussian measures’:

po(ylf)p(f)
max Lg(q = max/q log ————=
o Folalf)) = g, | a(f) o q(f)
where ¢(f) = N'(f|f1,¥) is a variational Gaussian measure and p(f) = N'(f|0, I) is a normal prior.
Its connection to the inducing points/functions in (3) can be summarized as follows [2, 3]: Define
a linear operator Uy : RM — 7 as a — ZM 1 @mz, , where ¥z € H is defined such that

m=
T 1 =E[Lp f(Zn)]. Then (3) and (5) are equivalent, if ¢(f) has a subspace parametrization,

fi=VUgza, S=I+VUz ATL, (6)

df = max E,[logpe(y|f)] — KL[q||p], (5)
a(£).0

witha € RM and A € RM*M gatisfying m = K3a, and S = K; + K;AK 3. In other words,
the variational inference algorithms in the literature are all using a variational Gaussian measure in
which /i and . are parametrized by the same basis {¢z, |7, € X }M,.

>To simplify the notation, we write ¢ f for (f, )%, and f¥ Lg for (f, Lg)s, where f,g € H and
L : H — H, even if H is infinite-dimensional.

®Such H w.l.o.g. can be identified as the natural RKHS of the covariance function of a zero-mean prior GP.

7 We assume ¢( f) is absolutely continuous wrt p( f), which is true as p( f) is non-degenerate. The integral

denotes the expectation of log pe (y|f) + log 22 over (), and % denotes the Radon-Nikodym derivative.




Compared with (3), the formulation in (5) is neater: it follows the definition of the very basic
variational inference problem. This is not surprising, since GPs can be viewed as Bayesian linear
models in an infinite-dimensional space. Moreover, in (5) all hyper-parameters are isolated in the
likelihood py(y| f), because the prior is fixed as a normal Gaussian measure.

3.3 Disentangling the GP Representation with DGPs

While Cheng and Boots [2] treat (5) as an equivalent form of (3), here we show that it is a generaliza-
tion. By further inspecting (5), it is apparent that sharing the basis ¥ 3 between [ and % in (6) is not
strictly necessary, since (5) seeks to optimize two linear operators, i and . With this in mind, we
propose a new parametrization that decouples the bases for & and >

i=Tqa, = (I+UzBU})"! (7)

where U, : RMo — # and U5 : RM# — H denote linear operators defined similarly to ¥ ¢ and
B = 0 € RMsxMs Compared with (6), here we parametrize 3 through its inversion with B so the
condition that ¥ > 0 can be easily realized as B >~ 0. This form agrees with the posterior covariance
in GPR [2] and will give a posterior that is strictly less uncertain than the prior. Note the choice of
decoupled parametrization is not unique. In particular, the bases can be partially shared, or (a, B)
can be further parametrized (e.g. B can be parametrized using the canonical form in (4)) to improve
the numerical convergence rate. Please refer to Appendix A for a discussion.?

The decoupled subspace parametrization (7) corresponds to a DGP, Q’P(Th%, klﬂy ), with mean and

covariance functions as °

mg,(l’) = kryaa, l;ﬁ,(x, :Z:/) = k’x_’zl — kzﬁ (B71 + Kg)_l kg,z/. (8)

While the structure of (8) looks similar to (4), directly replacing the basis X in (4) with o and S is
not trivial. Because the equations in (4) are derived from the traditional viewpoint of GPs as statistics
on function values, the original optimization problem (3) is not defined if o # 3 and therefore, it is
not clear how to learn a decoupled representation traditionally. Conversely, by using the dual RKHS
representation, the objective function to learn (8) follows naturally from (5), as we will show next.

3.4 SVDGP: Algorithm and Analysis

Substituting the decoupled subspace parametrization (7) into the variational inference problem in (5)
results in a numerical optimization problem: max,s) g Eq[log pa(y|f)] — KL[g||p] with

1 1 -1
KLlg||p] = iaTKaa +t3 log [I+ K3B| + 5w (Ks(B™' +Kp) ) ©)
N
Eq[Inga(Zﬂf)} = Z ]Eq(f(ac,n))[lOgPG(y7z,|f($n))] (10)
n=1

where each expectation is over a scalar Gaussian ¢(f(z,)) given by (8) as functions of (a, &) and
(B, B). Our objective function contains [11] as a special case, which assumes a = 8 = X. In
addition, we note that Hensman et al. [11] indirectly parametrize the posterior by m and S=LLT,
whereas we parametrize directly by (6) with a for scalability and B = LL7 for better stability (which
always reduces the uncertainty in the posterior compared with the prior).

We notice that (a, «) and (B, 3) are completely decoupled in (9) and potentially combined again in
(10). In particular, if pg(y,|f(z,)) is Gaussian as in GPR, we have an additional decoupling, i.e.
Lo(a,B,a, 8) = Fy(a,a)+Gy(B, ) for some Fy(a, o) and Gy(B, (). Intuitively, the optimization

8 Appendix A is partially based on a discussion with Hugh Salimbeni at the NIPS conference. Here we adopt
the fully decoupled, directly parametrized form in (7) to demonstrate the idea. We leave the full comparison of
different decoupled parametrizations in future work.

°In practice, we can parametrize B = LL7T with Cholesky factor L € RM8*Ms o the problem is
unconstrained. The required terms in (8) and later in (9) can be stably computed as (Bf1 + Kﬁ) -

LH'L” and log |I + KsB| = log |H|, where H = I + LTKL.



Algorithm 1 Online Learning with DGPs

Parameters: M., Mg, Np, Na

Input: M(a,B,a,(,0),D
1: 6o < initializeHyperparameters( sampleMinibatch(D, N,,) )
2: fort=1...Tdo

3: D; <+ sampleMinibatch(D, N,,)

4:  M.addBasis(D;, Na, My, Mg)

5

6

M.updateModel(D;, t)
: end for

over (a, o) aims to minimize the fitting-error, and the optimization over (B, ) aims to memorize the
samples encountered so far; the mean and the covariance functions only interact indirectly through
the optimization of the hyper-parameter 6.

One salient feature of SVDGP is that it tends to overestimate, rather than underestimate, the variance,
when we select Mg < M,. This is inherited from the non-degeneracy property of the variational
framework [24] and can be seen in the toy example in Figure 1. In the extreme case when Mg = 0,
we can see the covariance in (8) becomes the same as the prior; moreover, the objective function
of SVDGP becomes similar to kernel methods (exactly the same as kernel ridge regression, when the
likelihood is Gaussian). The additional inclusion of expected log-likelihoods here allows SVDGP
to learn the hyper-parameters in a unified framework, as its objective function can be viewed as
minimizing a generalization upper-bound in PAC-Bayes learning [8].

SVDGP solves the above optimization problem by stochastic gradient ascent. Here we purposefully
ignore specific details of py(y|f) to emphasize that SVDGP can be applied to general likelihoods as it
only requires unbiased first-order information, which e.g. can be found in [22]. In addition to having
a more adaptive representation, the main benefit of SVDGP is that the computation of an unbiased
gradient requires only linear complexity in M, as shown below (see Appendix Bfor details).

KL-Divergence Assume |a| = O(DM,) and |8| = O(DMg). By (9), One can show
VaKL[q||p] = Kqaand VEKL[q||p] = 1 (I+K3B) 'KsBKg(I+BKg) . Therefore, the time
complexity to compute V,KL[q||p] can be reduced to O(N,,, M,,) if we sample over the columns
of K, with a mini-batch of size N,,. By contrast, the time complexity to compute VgKL[q||p]
will always be © (M g’) and cannot be further reduced, regardless of the parametrization of B.!° The

gradient with respect to « and 5 can be derived similarly and have time complexity O(DN,,, M,,)
and O(DM3 + M3), respectively.

Expected Log-Likelihood Letm(a,a) € RY and §(B, 3) € RY be the vectors of the mean and
covariance of scalar Gaussian ¢(f(z,,)) forn € {1,...,N}. As (10) is a sum over N terms, by
sampling with a mini-batch of size IV,,,, an unbiased gradient of (10) with respect to (¢, m, §) can
be computed in O(N,,). To compute the full gradient with respect to (a, B, a, §), we compute
the derivative of m and § with respect to (a, B, «, §) and then apply chain rule. These steps take
O(DN,,M) and O(DN,, Mg + N,, M5 + M3) for (a, a) and (B, 3), respectively.

The above analysis shows that the curse of dimensionality in GPs originates in the covariance function.
For space complexity, the decoupled parametrization (7) requires memory in O(N,, M, + M g),
for time complexity, an unbiased gradient with respect to (a, ) can be computed in O(DN,,, M,,),
but that with respect to (B, 3) has time complexity Q(DN,,, Mp + N,,, M5 + M3). This motivates
choosing Mz = O(M) and M, in O(Mg) or O(ME’) which maintains the same complexity as
previous variational techniques but greatly improves the prediction performance.

4 Experimental Results

We compare our new algorithm, SVDGP, with the state-of-the-art incremental algorithms for sparse
variational GPR, SvI [10] and iVSGPR [2], as well as the classical GPR and the batch algorithm VvS-
GPR [24]. As discussed in Section 1.1, these methods can be viewed as different ways to optimize (5).
Therefore, in addition to the normalized mean square error (nMSE) [19] in prediction, we report

"®Due to K g, the complexity would remain as O (M, g) even if B is constrained to be diagonal.



KUKA; - Variational Lower Bound (10°) KUKA; - Prediction Error (nMSE)

SVDGP SVI iVSGPR VSGPR GPR SVDGP SVI iVSGPR VSGPR GPR
mean 1.262 0.391 0.649 0.472 -5.335 mean 0.037 0.169 0.128 0.139 0.231
std 0.195 0.076 0.201 0.265 7.777 std 0.013 0.025 0.033 0.026 0.045
MUJOCO7 - Variational Lower Bound (10°) MUJOCO; - Prediction Error (nMSE)
SVDGP SVI iVSGPR VSGPR GPR SVDGP SVI iVSGPR VSGPR GPR
mean 6.007 2.178 4.543 2.822 -10312.727 mean 0.072 0.163 0.099 0.118 0.213
std 0.673 0.692 0.898 0.871 22679.778 std 0.013 0.053 0.026 0.016 0.061

Table 2: Experimental results of KUKA; and MUJOCO; after 2,000 iterations.

the performance in the variational lower bound (VLB) (5), which also captures the quality of the
predictive variance and hyper-parameter learning.!! These two metrics are evaluated on held-out test
sets in all of our experimental domains.

Algorithm 1 summarizes the online learning procedure used by all stochastic algorithms,!> where
each learner has to optimize all the parameters on-the-fly using i.i.d. data. The hyper-parameters are
first initialized heuristically by median trick using the first mini-batch. We incrementally build up the
variational posterior by including Nao < N,,, observations in each mini-batch as the initialization of
new variational basis functions. Then all the hyper-parameters and the variational parameters are
updated online. These steps are repeated for 1" iterations.

For all the algorithms, we assume the prior covariance is defined by the SE-ARD kernel [19] and
we use the generalized SE-ARD kernel [2] as the inducing functions in the variational posterior (see
Appendix C for details). We note that all algorithms in comparison use the same kernel and optimize
both the variational parameters (including inducing points) and the hyperparameters.

In particular, we implement SGA by ADAM [13] (with default parameters 5; = 0.9 and 55 = 0.999).
The step-size for each stochastic algorithms is scheduled according to 7; = 7o(1 4 0.1v/¢) ", where
70 € {1071,1072, 1073} is selected manually for each algorithm to maximize the improvement
in objective function after the first 100 iterations. We test each stochastic algorithm for 7" = 2000
iterations with mini-batches of size N,, = 1024 and the increment size No = 128. Finally, the
model sizes used in the experiments are listed as follows: M, = 1282 and My = 128 for SVDGP;
M = 1024 for svI; M = 256 for iVSGPR; M = 1024, N = 4096 for VSGPR; N = 1024 for GP.
These settings share similar order of time complexity in our current Matlab implementation.

4.1 Datasets

Inverse Dynamics of KUKA Robotic Arm This dataset records the inverse dynamics of a KUKA
arm performing rhythmic motions at various speeds [17]. The original dataset consists of two parts:
KUKA; and KUKAs, each of which have 17,560 offline data and 180,360 online data with 28 attributes
and 7 outputs. In the experiment, we mix the online and the offline data and then split 90% as training
data (178,128 instances) and 10% testing data (19,792 instances) to satisfy the i.i.d. assumption.

Walking MuJoCo MuJoCo (Multi-Joint dynamics with Contact) is a physics engine for research
in robotics, graphics, and animation, created by [25]. In this experiment, we gather 1,000 walking
trajectories by running TRPO [20]. In each time frame, the MuJoCo transition dynamics have a
23-dimensional input and a 17-dimensional output. We consider two regression problems to predict
9 of the 17 outputs from the input'*: MUJOCO; which maps the input of the current frame (23
dimensions) to the output, and MUJOCO, which maps the inputs of the current and the previous
frames (46 dimensions) to the output. In each problem, we randomly select 90% of the data as
training data (842,745 instances) and 10% as test data (93,608 instances).

4.2 Results

We summarize part of the experimental results in Table 2 in terms of nMSE in prediction and VLB.
While each output is treated independently during learning, Table 2 present the mean and the standard

"'The exact marginal likelihood is computationally infeasible to evaluate for our large model.
2The algorithms differs only in whether the bases are shared and how the model is updated (see Table 1).
¥ Because of the structure of MuJoCo dynamics, the rest 8 outputs can be trivially known from the input.
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Figure 2: An example of online learning results (the 9th output of MUJOCO; dataset). The blue, red,
and yellow lines denote SVDGP, SVI, and iVSGPR, respectively.

deviation over all the outputs as the selected metrics are normalized. For the complete experimental
results, please refer to Appendix D.

We observe that SVDGP consistently outperforms the other approaches with much higher VLBs and
much lower prediction errors; SVDGP also has smaller standard deviation. These results validate our
initial hypothesis that adopting a large set of basis functions for the mean can help when modeling
complicated functions. iVSGPR has the next best result after SVDGP, despite using a basis size of
256, much smaller than that of 1,024 in SVI, VSGPR, and GPR. Similar to SVDGP, iVSGPR also
generalizes better than the batch algorithms VSGPR and GPR, which only have access to a smaller set
of training data and are more prone to over-fitting. By contrast, the performance of SVI is surprisingly
worse than VSGPR. We conjecture this might be due to the fact that the hyper-parameters and the
inducing points/functions are only crudely initialized in online learning. We additionally find that the
stability of SVI is more sensitive to the choice of step size than other methods. This might explain
why in [10, 2] batch data was used to initialize the hyper-parameters and the learning rate to update
the hyper-parameters was selected to be much smaller than that for stochastic natural gradient ascent.

To further investigate the properties of different stochastic approximations, we show the change of
VLB and the prediction error over iterations and time in Figure 2. Overall, whereas iVSGPR and SVI
share similar convergence rate, the behavior of SVDGP is different. We see that iVSGPR converges the
fastest, both in time and sample complexity. Afterwards, SVDGP starts to descend faster and surpass
the other two methods. From Figure 2, we can also observe that although SVI has similar convergence
to iVSGPR, it slows down earlier and therefore achieves a worse result. These phenomenon are
observed in multiple experiments.

5 Conclusion

We propose a novel, fully-differentiable framework, Decoupled Gaussian Processes DGPs, for large-
scale GP problems. By decoupling the representation, we derive a variational inference problem
that can be solved with stochastic gradients with /inear time and space complexity. Compared with
existing algorithms, SVDGP can adopt a much larger set of basis functions to predict more accurately.
Empirically, SVDGP significantly outperforms state-of-the-arts variational sparse GPR algorithms in
multiple regression tasks. These encouraging experimental results motivate further application of
SVDGP to end-to-end learning with neural networks in large-scale, complex real world problems.
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