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Abstract

Unlike compressive sensing where the measurement outputs are assumed to be
real-valued and have infinite precision, in one-bit compressive sensing, measurements
are quantized to one bit, their signs. In this work, we show how to recover the support
of sparse high-dimensional vectors in the one-bit compressive sensing framework
with an asymptotically near-optimal number of measurements. We also improve the
bounds on the number of measurements for approximately recovering vectors from
one-bit compressive sensing measurements. Our results are universal, namely the
same measurement scheme works simultaneously for all sparse vectors.

Our proof of optimality for support recovery is obtained by showing an equiv-
alence between the task of support recovery using 1-bit compressive sensing and a
well-studied combinatorial object known as Union Free Families.

1 Introduction

The problem of recovering a sparse signal from a small number of measurements is a
fundamental one in machine learning, statistics, and signal processing. When the mea-
surements are linear, the process is called compressive sensing. Remarkable results from the
last decade [Don06, CRT06] have shown that it is possible to efficiently reconstruct sparse
signals using only Θ(k log(n/k)) linear measurements. Here, n is the ambient dimension
of the input signal and k is its sparsity. A particularly striking result in compressive sens-
ing is that with high probability, a Gaussian matrix with Θ(k log(n/k)) rows can be used
as the sensing matrix for all sparse inputs simultaneously and is in that sense universal.

A criticism of compressive sensing is that it assumes infinite-precision real-valued
measurements. Quantization of measurement outputs to very low bit-rates cannot be
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modeled simply as additive noise with bounded norm. To address this issue, Boufounos
and Baraniuk [BB08] introduced the notion of 1-bit compressive sensing where each mea-
surement is quantized to a single bit, namely its sign. This quantization can be cheaply
implemented in hardware and is robust to certain non-linear distortions [Bou10]. One-bit
compressive sensing is an active area of research (e.g., [GNR10, YYO12, PV13, JLBB13,
GNJN13, ZYJ14, KSW16, DSXZ16, LGX16, SS16]).

Formally, in 1-bit compressive sensing, given a sensing matrix A, measurements of a
k-sparse1 signal x ∈ R

n are obtained by:

y = sign(Ax)

so that y is the vector of signs2 of the coordinates of Ax. We consider noiseless measure-
ments. Note that all information about the magnitude of x is lost by the sign operator,
and we can only hope to reconstruct the normalized vector x/

∥∥x
∥∥

2
from y.

In this work, we primarily consider the problem of support recovery of sparse vectors
using 1-bit compressive sensing measurements. We focus on universal sensing matri-
ces. This is commonly referred to as for all, or as uniform bounds. Universal sensing
matrices have guarantees of the form, “with high probability, for all signals, the algo-
rithm succeeds”, which is in contrast to the general randomized setting where guar-
antees are slightly weaker, “for each signal, with high probability, the algorithm suc-
ceeds” [GSTV07]. Our objective is to minimize the total number of measurements needed
(i.e., the number of rows in the sensing matrix) and the running time of the recovery
algorithm. Formally:

Definition 1 (Support Recovery with 1-bit Compressed Sensing). A matrix A ∈ R
m×n

is a 1-bit compressive sensing matrix for support recovery of k-sparse vectors if there exists a
recovery algorithm such that, for all x ∈ R

n satisfying
∥∥x

∥∥
0
≤ k, the algorithm on input Ax

returns supp(x).

We will also consider the problem of approximate vector recovery using 1-bit com-
pressive sensing, again focusing on the universality. Formally:

Definition 2 (Approximate Vector Recovery with 1-bit Compressed Sensing). A matrix
A ∈ R

m×n is a 1-bit compressive sensing matrix for ε-approximate vector recovery of k-sparse
vectors if there exists a recovery algorithm such that, for all x ∈ R

n satisfying
∥∥x

∥∥
0
≤ k, the

algorithm on input Ax returns x̂ such that

∣∣∣∣
x∥∥∥x
∥∥∥

2

− x̂∥∥∥x̂
∥∥∥

2

∣∣∣∣ < ε.

1A vector is k-sparse if it has at most k nonzero components.
2To be precise, let sign(x) = x/|x| for nonzero x and sign(0) = 0. Note that this seems to be returning

more than 1 bit. But observe that if we instead define sign(x) =

{
1 x > 0
−1 x ≤ 0

, then a measurement of

sign(〈a, x〉), can be simulated with two sign measurements, namely using sign(〈a, x〉) and sign(〈−a, x〉).
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Problem Upper Bound Lower Bound Citation

Support Recovery for

k sparse vectors in R
n

O(k3 log n) – [GNJN13]

– Ω(k log n
k ) folklore

O(k2 log n) Ω(k2 log n/ log k) This work

Approximate Recovery for

k sparse vectors in R
n

Õ
(

k
ε log n

k

)
– [JLBB13, GNJN13]

Õ
(

k3 log n
k +

k
ε

)
– [GNJN13]

– Ω
(

k log n
k +

k
ε − k1.5

)
[JLBB13]

Õ
(

k2 log n
k +

k
ε

)
Ω

(
k log n

k +
k
ε

)
This work

Table 1: Summary of results on universal 1-bit compressive sensing

1.1 Our Results

Our main contribution is to show nearly tight upper and lower bounds on the number
of measurements needed for support recovery of k-sparse signals using 1-bit compres-
sive sensing. We also provide some improvements on the bounds in approximate vector
recovery. See Table 1 for a summary of our results.3

1.1.1 Support Recovery

Previously, Gopi et al [GNJN13] have shown a universal support recovery algorithm us-
ing O(k3 log n) 1-bit measurements with O(nk log n) running time. If universality is not a
constraint, then [HB11, GNR10] show that O(k log n) measurements suffice.

Our main contribution is showing that Θ(k2 log n) is a nearly tight bound for the num-
ber of 1-bit measurements needed for universal support recovery. Like in [GNJN13], our
arguments exploit the structure of Union Free Set Families [EFF82]. While [GNJN13] uses
Union Free Families to recover non-negative sparse vectors, we observe that a strength-
ened version of these set families can in fact be used to recover all sparse vectors. More-
over, we prove that any 1-bit compressive sensing matrix for support recovery can be
converted into a Union Free Family, thus deepening the connection between the two no-
tions. Formally, we obtain the following upper and lower bounds:

Theorem 3. (Upper bound for Support Recovery) There exists a 1-bit compressive sensing
matrix A ∈ R

m×n for support recovery of k-sparse signals that uses m = O(k2 log n) measure-
ments. Moreover, the recovery algorithm runs in time O(nk log n).

Theorem 4. (Lower bound for Support Recovery) Let A ∈ R
m×n be such that the map

ψA : R
n → {0, 1}m, given by ψA(x)

def
= sign(Ax) satisfies ψA(x1) 6= ψA(x2) whenever∥∥x1

∥∥
0

,
∥∥x2

∥∥
0
≤ k and supp(x1) 6= supp(x2). Then, m = Ω(k2 log n/ log k).

3the notation Õ( f (n)) stands for O( f (n) · poly log( f (n))) for any poly log( f (n)).
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Comparison to Group Testing. We remark that quantitatively similar results were known
previously in the context of Group Testing [Dor43], which in the language of 1-bit com-
pressive sensing, corresponds to the setting where the k-sparse signals have entries in
{0, 1}, and the measurements are restricted to be non-negative. Indeed, these results are
obtained by showing a tight connection between Group Testing and Union-Free Families
(also known as k-disjunct families). Group Testing has been an active research topic with
a vast literature (See for eg, [BBTK96, DH00, ND00, AS12, CJBJ13, CJSA14, Maz16] and
references therein).

Our contributions are as follows: (i) In Theorem 3, we use a strengthened notion of
Union-Free Families, to obtain a better upper bound for support recovery of arbitrary k-
sparse signals in R

n; while surprisingly still using measurements vectors with entries in
{0, 1}. (ii) In Theorem 4, the lower bound we obtain is incomparable to the lower bound
in the Group Testing problem. Our lower bound is stronger in the sense that it applies
even when the measurements are arbitrary real vectors (instead of just non-negative),
whereas it is weaker in the sense that the lower bound applies to measurements that can
recovery the support for all k-sparse signals in R

n (instead of only 0-1 signals).

1.1.2 Approximate Vector Recovery

A number of papers have obtained bounds for approximate vector recovery [PV13, JLBB13,
GNJN13]. The current universal 1-bit compressive sensing algorithms require

min

{
Õ

(
k

ε
log

n

k

)
, Õ

(
k3 log

n

k
+

k

ε

)}

measurements. [JLBB13] also proved a lower bound of Ω(k log n
k + k

ε − k3/2) measure-

ments.4 As a function of ε, the second half of the bound is helpful only when ε < 1/
√

k.

As a corollary to Theorem 3, we can improve the upper bound term of Õ(k3 log n
k +

k
ε )

to Õ(k2 log n+ k
ε ). Moreover, in Section 4 we also improve the lower bound to Ω(k log n

k +
k
ε ), which holds for all ε > 0.

Corollary 5. (Improved Upper Bound for Approximate Recovery) There exists a 1-bit com-
pressive sensing matrix A ∈ R

m×n for ε-approximate recovery of k-sparse signals that uses

m = Õ
(

k2 log n + k
ε

)
measurements.

Theorem 6. (Improved Lower Bound for Approximate Recovery) The number of measure-

ments for ε-approximate recovery using 1-bit compressive sensing is at least Ω
(

k log n
k +

k
ε

)
.

2 Upper Bound for Support Recovery

In this section we prove Theorem 3. Gopi et al [GNJN13] present two techniques to ob-
tain 1-bit compressive sensing matrices for support recovery of k-sparse signals. The first

4Strictly speaking, the lower bound of Ω(k log n
k ) is folklore (we provide a proof in Section 4 for com-

pleteness), and [JLBB13] showed a lower bound of Ω( k
ε − k1.5).
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technique is based on Union-Free-Families (UFF) to solve support recovery using only
O(k2 log n) measurements. However, this technique works only when the signals are
non-negative. In order to handle all real-valued signals, they propose a technique based
on expanders that uses O(k3 log n) measurements. This expander based technique can
be interpreted as implicitly constructing a generalization of UFFs called Robust-UFF (Def-
inition 8). This construction is able to handle all real signals, albeit with an additional
multiplicative factor of k in the number of measurements. Our upper bound uses Robust-
UFFs constructed directly using the probabilistic method instead of going via expanders,
thereby leading to a 1-bit compressive sensing matrix for support recovery using only
O(k2 log n) measurements.

Definition 7 (Union Free Family). A family of sets F = {B1, B2, . . . , Bn}, where each Bi ⊆
[m]5 is an (n, m, k)-UFF if the following holds: for all distinct j0, j1, . . . , jk ∈ [n], it is the case
that Bj0 6⊆ (Bj1 ∪ Bj2 ∪ · · · ∪ Bjk).

Definition 8 (Robust Union Free Family). A family of sets F = {B1, B2, . . . , Bn}, where each
Bi ⊆ [m] is an (n, m, d, k, α)-Robust-UFF if the following holds: for all distinct j0, j1, . . . , jk ∈
[n], it is the case that |Bj0 ∩ (Bj1 ∪ Bj2 ∪ · · · ∪ Bjk)| < α|Bj0 | and |Bj| = d for every j ∈ [n].

An easy application of the probabilistic method shows the existence of Robust-UFFs
with certain desirable parameters, as done in [dW12].

Lemma 9 (Existence of Robust-UFF [dW12]). There exists an (n, m, d, k, α)-Robust-UFF F
with parameters satisfying m = O

(
k2 log n

α2

)
and d = O

(
k log n

α

)
.

Remark 10. Union Free Families (UFF) are a special case of Robust-UFF when α = 1, namely
|Bj0 ∩ (Bj1 ∪ Bj2 ∪ · · · ∪ Bjk)| < |Bj0 |.

Support recovery from Robust-UFFs

We are now ready to prove Theorem 3 (restated below for convenience) by constructing a
suitable 1-bit compressive sensing matrix.

Theorem 3. (Upper bound for Support Recovery) There exists a 1-bit compressive sensing
matrix A ∈ R

m×n for support recovery of k-sparse signals that uses m = O(k2 log n) measure-
ments. Moreover, the recovery algorithm runs in time O(nk log n).

Proof. Starting from any (n, m, d, k, 1/2)-Robust-UFF F = {B1, . . . , Bn}, we construct a

compressive sensing matrix A ∈ {0, 1}m×n as follows: Ai,j = 1(i∈Bj)
. From Lemma 9,

we have that such a Robust-UFF exists with m = O(k2 log n) and d = O(k log n). On
receiving input b = Ax∗, the support recovery algorithm proceeds as follows: Include

j into set Ŝ if and only if at least half of the measurements corresponding to set Bj are
non-zero. See Algorithm 1 for a more detailed pseudo-code.

Correctness. Suppose the k-sparse vector is supported on coordinates x1, . . . , xk (the
proof works similarly for other supports). Firstly for any j /∈ [k], we have that |Bj ∩ (B1 ∪

5[m] := {1, . . . , m}
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Algorithm 1: 1-bit Compressed Sensing for Support Recovery from Robust UFFs

Input: b = sign(Ax∗)
1 Ŝ ← ∅

2 for j ∈ [n] do

3 if
∣∣Bj ∩ supp(b)

∣∣ > d/2 then

4 Ŝ ← Ŝ ∪ {j}
5 end

6 end

Output: Ŝ

· · · ∪ Bk)| < |Bj|/2 = d/2 from the definition of Robust-UFF. Thus, irrespective of the
values of x1, . . . , xk, the measurement outcomes corresponding to Bj \ (B1 ∪ · · · ∪ Bk) will
always be zero. Since more than d/2 of the measurements in Bj are zero, j will not be

included in the set Ŝ. Next, consider any j ∈ [k]. Again, from the definition of Robust-

UFF, we have that
∣∣∣Bj ∩

(⋃
i∈[k],i 6=j Bi

)∣∣∣ < |Bj|/2 = d/2. Thus, irrespective of the values

of x1, . . . , xk, the measurement outcomes corresponding to Bj \
(⋃

i∈[k],i 6=j Bi

)
will be non-

zero. Since more than d/2 of the measurements in Bj are non-zero, j will be included in

the set Ŝ.
Efficiency. It easy to see that each iteration of the algorithm takes O(k log n) time,

and hence overall the algorithm runs in O(nk log n) time. Note that, here we are not
accounting for the time needed to construct the matrix A which is part of pre-processing.

3 Lower Bound for Support Recovery

In this section we prove Theorem 4. We prove this lower bound in two steps,

1. we show that 1-bit compressive sensing implies the existence of a Union Free Family
with similar parameters, and

2. we use known upper bounds on the size of Union Free Families to prove our lower
bound.

We start with the second point, for which we simply use the upper bound on the size
of UFFs due to Füredi [Für96].

Lemma 11 (Upper bound on Union-Free Families [Für96]). Let F = {B1, . . . , Bn} be a
family of subsets of [m], and k ≥ 2, such that for any j0, j1, . . . , jk, it holds that Bj0 6⊆ Bj1 ∪ Bj2 ∪
· · · ∪ Bjk . Then,

n ≤ k +

(
m

t

)
where, t =

⌈
m − k

(k+1
2 )

⌉
.

This implies m ≥ Ω(k2 log n/ log k).
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For ease of presentation, we first prove a lower bound on the number of measurements
for exact support recovery using only non-negative measurements, namely in the follow-
ing theorem the entries of A are non-negative (note that the compressive sensing matrix
obtained in the proof of Theorem 3 in fact had only 0-1 entries). More strongly, our lower
bound works even when the matrix has to recover the support for only 0-1 vectors. We
remark that this lower bound was already known in the context of Combinatorial Group
Testing [DR82, DRR89, Für96]. We still present this proof first as it serves as a natural
segue into our main lower bound.

Theorem 12 (Lower bound for non-negative measurements). Let A ∈ R
m×n
≥0 be such that

the map ψA : {0, 1}n → {0, 1}m, given by ψA(x)
def
= sign(Ax) satisfies ψA(x1) 6= ψA(x2)

whenever
∥∥x1

∥∥
0

,
∥∥x2

∥∥
0
≤ k and supp(x1) 6= supp(x2). Then, m = Ω(k2 log n/ log k).

Proof. Any algorithm for exact support recovery of non-negative k-sparse signals, which
uses only positive measurements, can be converted into an (n, m, k − 1)-UFF. Suppose A
is a matrix achieving support recovery for non-negative k-sparse signals with m measure-
ments. Let B1, B2, . . . , Bn ⊆ [m] be such that Bj =

{
i : Aij > 0

}
. Suppose for contradiction

that B = {B1, . . . , Bn} is not an (n, m, k− 1)-UFF. Then there exists j0, j1, . . . , jk−1 such that
Bj0 ⊆ Bj1 ∪ . . . ∪ Bjk−1

. Let x1 = 1({j1, . . . , jk−1}) and x2 = 1({j0, j1, . . . , jk−1}). It is easy
to see that ψA(x1) = ψA(x2), which is a contradiction. Thus, we conclude that B is a
(n, m, k − 1)-UFF and hence from Lemma 11, we get that m ≥ Ω(k2 log n/ log k).

Remarkably, we use the same technique to prove our main lower bound, i.e. Theo-
rem 4 (restated below for convenience), on the number of measurements needed for exact
support recovery using arbitrary linear threshold measurements. However, here we need
to use that the algorithm returns the exact support for all (≤ k)-sparse vectors in R

n and
not just those in {0, 1}n.

Theorem 4. (Lower bound for Support Recovery) Let A ∈ R
m×n be such that the map

ψA : R
n → {0, 1}m, given by ψA(x)

def
= sign(Ax) satisfies ψA(x1) 6= ψA(x2) whenever∥∥x1

∥∥
0

,
∥∥x2

∥∥
0
≤ k and supp(x1) 6= supp(x2). Then, m = Ω(k2 log n/ log k).

Proof. Let A be a matrix for support recovery of non-negative k-sparse signals. Without
loss of generality, assume that −1 ≤ Aij ≤ 1 for all i, j (since scaling A by constants
doesn’t change the outcome of sign measurements). Similar to the proof of Theorem 12,
let B1, B2, . . . , Bn ⊆ [m] be such that Bj =

{
i ∈ [m] : Aij 6= 0

}
. Suppose for contradiction

that B = {B1, . . . , Bn} is not a (n, m, k − 1)-UFF. Hence, there exists j0, j1, . . . , jk−1 such
that Bj0 ⊆ Bj1 ∪ · · · ∪ Bjk−1

. We now construct two (≤ k)-sparse vectors x1, x2 ∈ R
n with

different supports such that ψA(x1) = ψA(x2).
Let x1 be a vector supported on j1, . . . , jk−1 such that all indices of Ax1 in Bj1 ∪ · · · ∪

Bjk−1
are ε-away from 0 for some choice of ε6. Let x2 = x1 + ε · ej0 . Since we assumed

that −1 ≤ Aij ≤ 1 for all i, j, we have that Ax2 − Ax1 = A · (εej0) has all entries with

6We can first choose a random x′1 supported on j1, . . . , jk−1, which will be such that all indices of Ax′1 in
Bj1 ∪ · · · ∪ Bjk−1

are non-zero. Now we can get x1 by simply scaling up this random x′1 by a suitably large
constant.
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magnitude at most ε. Since all entries of Ax1 in Bj1 ∪ · · · ∪ Bjk−1
are ε-away from 0, and

Bj0 ⊆ Bj1 ∪ · · · ∪ Bjk−1
, we get that ψA(x1) = ψA(x2) even though supp(x1) 6= supp(x2).

Note that both x1 and x2 are (≤ k)-sparse, and hence we get a contradiction.
Thus, we conclude that B is a (n, m, k− 1)-UFF and hence from Lemma 11, we get that

m ≥ Ω(k2 log n/ log k).

Thus, with Theorem 4, we get a nearly tight lower bound of Ω(k2 log n/ log k) on the
number of measurements needed for support recovery, even if we assume that the sig-
nals are non-negative and the measurements are allowed to be arbitrary. This is nearly
matching the upper bound obtained in Theorem 3, where we have a measurement ma-
trix with O(k2 log n) rows and only 0-1 entries, which can recover support exactly for all
signals in R

n.
We note that our lower bound proof requires that the compressive sensing matrix

correctly recovers the support for signals with arbitrarily large condition number. The con-
dition number (or dynamic range) of a signal x = (x1, . . . , xn) is defined as

Kx =
maxi:xi 6=0 |xi|
mini:xi 6=0 |xi|

,

which is the highest ratio of absolute values of non-zero components of the signal.
Signals with bounded condition numbers are easier to handle and are also robust

to noise. For example, [GNR10] considered the case of signals with bounded condition
number (in addition to presence of noise), although their measurements work in the non-
universal setting. Obtaining bounds on the number of measurements required in the
universal setting, as a function of the condition number, is open, even in the absence of
noise. Even the case when the condition number is 1 is open (see the discussion in Section
5).

4 Approximate vector recovery

4.1 Upper Bound

For the problem of approximate vector recovery, note as in Table 1, that the two known

upper bounds are Õ( k
ε log n

k ), and Õ(k3 log n
k + k

ε ). We improve the second bound of

Õ(k3 log n
k +

k
ε ) by [GNJN13] to Õ(k2 log n + k

ε ) in Corollary 5 (restated for convenience).

Corollary 5. (Improved Upper Bound for Approximate Recovery) There exists a 1-bit com-
pressive sensing matrix A ∈ R

m×n for ε-approximate recovery of k-sparse signals that uses

m = Õ
(

k2 log n + k
ε

)
measurements.

Proof. The upper bound of Õ(k3 log n
k +

k
ε ) in [GNJN13] is shown by recovering the sup-

port of the vector using O(k3 log n
k ) measurements and subsequently using Õ(k/ε) mea-

surements to approximately recover the vector in k dimensions (this is still non-adaptive
because standard Gaussian measurements suffice to approximately recover the vector).

Instead, using our improved algorithm of Theorem 3, we need only O(k2 log n) mea-
surements for support recovery, thereby obtaining the overall bound.

8



4.2 Lower Bound

A lower bound of Ω(k log n
k +

k
ε − k3/2) measurements for ε < 1√

k
was shown in [JLBB13].

We prove the same bound for all values of ε up to a constant in Theorem 6 (restated below
for convenience). We essentially follow the approach of [JLBB13], but unlike their lower
bound, focus on only one set of k coordinates, instead of all possible sparsity patterns.
Surprisingly, this gives us a simpler proof that improves the lower bound by getting rid
of the k3/2 term.

Theorem 6. (Improved Lower Bound for Approximate Recovery) The number of measure-

ments for ε-approximate recovery using 1-bit compressive sensing is at least Ω
(

k log n
k +

k
ε

)
.

Proof. The first term of k log n
k is folklore. Nevertheless, we present the proof here for

completeness. Consider the set of all k-sparse vectors of unit norm that have each non-

zero entry equal to 1/
√

k. Using the Gilbert-Varshamov bound [Gil52, Var57], within this
set there is a subset of at least M = (n

k)/(
n
εk) elements such that for u, and v in the set, their

supports have intersection at most (1 − ε)k. This implies that ‖u − v‖2 ≥ Ω(ε). Since m
sign measurements can give us only m bits of information, this gives us that 2m ≥ M. By
Stirling’s approximation, for any ε < 0.5, we have

m ≥ log M ≥ Ω
(

k log
n

k

)
.

This shows the first term. For the second term, we use the following lemma.

Lemma 13 (cf. Lemma 1 in [JLBB13]). Let m ≥ 2k. Then m-hyperplanes in k-dimensions
divides the region into at most 2k(m

k ) regions.

We now use the following well known lower bound on an ε-cover for Sk−1 (this follows
from a straight forward volume argument).

Lemma 14 (ε-cover for Sk−1). There exists a subset C ⊆ Sk−1, and a constant c > 0 such that,

|C| ≥
(

c
ε

)k
, and for all x, y ∈ C, it holds that

∥∥x − y
∥∥

2
≥ ε.

Now consider any 1-bit compressive sensing matrix with m rows. They will corre-
spond to m hyperplanes. To reconstruct all the vectors in C, each entry of the C must
lie in a different region that the m hyperplanes slice Sk−1 into. This in turn requires

2k(m
k ) ≥

(
c
ε

)k
. Since (m

k ) < (me/k)k , we get 2em/k > c/ε, thereby proving the bound.
We remark that our analysis is very similar to that of [JLBB13]. The main difference is

that instead of considering sparse signals as lying in n dimensions simultaneously, which
is a union of subspaces, we just consider the set of all signals lying in k dimensions.

Thus, combining our results with prior literature, the upper and lower bounds for ε-vector
recovery stand as follows:

• Upper bound: min
{

Õ
(

k
ε log n

k

)
, Õ

(
k2 log n

k +
k
ε

)}
.

• Lower bound: Ω
(

k log n
k +

k
ε

)
.
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5 Open Problems

We point out three intriguing open problems that so far have resisted easy answers. The
first problem is the support recovery problem for vectors with condition number 1.

Open Problem 1. How many measurements are necessary and sufficient for a universal algo-
rithm that recovers the support of all 0-1 vectors that are k-sparse using 1-bit compressive sens-
ing?

It can be shown that O(k3/2 log n) random gaussian measurements suffice to recover
all 0-1 vectors. This requires a simple computation that also follows from Theorem 2
of [JLBB13]. On the other hand, the best known lower bound is the trivial Ω(k log(n/k))
measurements.

Our second open problem is about the approximate vector recovery problem.

Open Problem 2. What is the correct complexity of ε-approximate vector recovery using 1-bit
compressive sensing?

We know from Section 4 and [JLBB13, GNJN13], that min
{

Õ( k
ε log n

k ), Õ(k2 log n
k +

k
ε )
}

is an upper bound and Ω
(

k log n
k +

k
ε

)
is a lower bound. The bounds are within a con-

stant factor of each other in the regime where ε < 1/(k log n
k ) and also in the regime where

ε = Θ(1). However, there is still a gap in the regime where 1 ≫ ε ≫ 1/(k log n
k ).

Our final open problem is to obtain “explicit” constructions for Robust-UFFs with the
parameters that we want.

Open Problem 3. Obtain an efficient algorithm to construct (n, m, d, k, α)-Robust-UFF with

parameter m = O
(

k2 log n

α2

)
, that is, in time that is polynomial in n and k.

See Appendix A for some approaches to obtain explicit constructions of Robust-UFFs
using explicit error correcting codes. Unfortunately, such approaches using known con-
structions of error correcting codes, seem to fall shy of achieving the parameters we want.
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A Towards Explicit Constructions of Robust-UFFs

In this section, we describe some attempts to get explicit constructions of Robust-UFFs
using explicit constructions of error correcting codes.

Proposition 15. If F is a (n, m, d, 1, α/k)-Robust-UFF, then F is also a (n, m, d, k, α)-Robust-
UFF.

Proof. Let F = {B1, . . . , Bn}, where Bi ⊆ [m] with |Bi| = d for all i ∈ [n]. From the
definition of (n, m, d, 1, α/k)-Robust-UFF, we have that for any i 6= j, it holds that |Bi ∩
Bj| < αd/k. Thus, we also get that for any i0, i1, · · · , ik, it holds that,

|Bi0 ∩ (Bi1 ∪ · · · ∪ Bik
)| ≤

k

∑
j=1

|Bi0 ∩ Bij
| < αd .

Thus, F is also a (n, m, d, k, α)-Robust-UFF.
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We note that Lemma 9 implies the existence of (n, m, d, 1, α/k)-Robust-UFF with roughly
the same parameters as that for (n, m, d, k, α)-Robust-UFF. So in terms of probabilistic con-
structions at least, we aren’t making our task too difficult by focusing on the k = 1 case.

Thus, it suffices to construct Robust-UFFs with parameter k = 1, which are well stud-
ied under the name of Nisan-Wigderson designs [NW94]. In particular, it is known that

(n, m, d, 1, α/k)-Robust-UFF can be constructed in time nO(k2) with the parameters of our
interest, namely m = O

(
(k2 log n)/α2

)
and d = O ((k log n)/α) (cf. [Tre01]). We now

describe how explicit constructions of error correcting codes, immediately give rise to
explicit constructions of Nisan-Wigderson designs.

Definition 16. C ⊆ [q]d is an error correcting code with (relative) distance (1 − δ) and rate r if

• for any c1 6= c2 ∈ C, the distance ∆(c1, c2) ≥ (1 − δ)d,

where ∆(c1, c2)
def
= # {i ∈ [d] : c1(i) 6= c2(i)}.

• r =
log |C|
d log q , or equivalently, |C| = qrd.

Proposition 17 (Robust-UFFs from error correcting codes). Given an error correcting code
C ⊆ [q]d with distance (1 − δ) and rate r, it is possible to construct a (n, m, d, 1, δ)-Robust-UFF,

with parameters, n = |C| = qrd and m = q · d =
q log n
r log q .

Proof. We construct a (n, m, d, 1, δ)-Robust-UFF F from such an error correcting code C as
follows. Consider a universe [d] × [q]. For every codeword c ∈ C, we include the subset
Sc = {(i, c(i)) : i ∈ [d]}. It is easy to see that n = |C| = qrd and m = q · d. The only
thing to verify is that for c1 6= c2 ∈ C, it holds that |Sc1

∩ Sc2 | ≤ δd. This holds because
|Sc1

∩ Sc2 | = # {(i, σ) : i ∈ d, c1(i) = c2(i) = σ} = d − ∆(c1, c2) ≤ δd.

Unfortunately, this approach of using error correcting codes falls shy of achieving the
parameters we want. For example, it is known that Algebraic-Geometry codes of distance
(1 − Θ(1/

√
q)) with rate Θ(1/q) exist. Setting q = O(k/α), we get a (n, m, d, 1, α/k)-

Robust-UFF with parameter m =
q log n
r log q = Õ

(
k3 log n

α3

)
. On the other hand, Reed-Solomon

codes with distance (1 − δ) and rate δ exist (by setting d = q ≥ 1/δ). Setting δ = α/k

and q s.t. n = qδq, we get a (n, m, d, 1, α/k)-Robust-UFF with parameter m =
q log n
r log q =

Õ
(

k2 log2 n
α2

)
.

In order to obtain m = O
(

k2 log n
α2

)
, we would require an error correcting code with

distance (1 − δ) and rate r ≥ (δ2q/ log q) (where δ = α/k). We are not aware of even
probabilistic constructions of error correcting codes which satisfy these constraints on the
parameters.
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