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ABSTRACT 

 

This paper proposes and develops an occupancy-based control and optimization framework for reducing 

energy consumption and cost within the context of Buildings-to-Grid (BtG) integration. A mathematical 

framework of large-scale integration, control, and optimization of solar powered buildings with battery 

energy storage systems and the grid is proposed and demonstrated. Building MPC formulations are 

designed based on appropriately linearized large commercial building conditioning and battery system 

models. A high-level linearized grid distribution network is also developed via IEEE standard grid systems 

with 9 and 14 buses. The final decentralized utility-scale BtG integrations with battery storages, 

photovoltaics generations, different grid systems, building occupancy simulators, and building HVAC 
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systems are conceptually designed and simulated. The results show that the integrated system can save 

up to 26% of total costs from buildings-to-grid operations.   

 

1. INTRODUCTION 

 

Globally, buildings ’ demand plays an important role in the challenge of growing energy consumption. 

Buildings account for more than one-third of the total primary energy supply (IEA 2013). With the 

significant increase of energy consumption in buildings, energy saving strategies have become priorities 

in building management and operations. The categories of building services and heating, ventilation, and 

air conditioning (HVAC) systems make up almost 50% of energy usages of buildings (Shaikh et al. 2014). 

Therefore, the development and implementation of effective control techniques for HVAC systems can be 

one solution to reduce building energy consumption. In particular, with the decreased costs of data 

processing, storage, and communication over recent years, smart controls that integrate HVACs, 

renewable generation resources, and distributed energy storages are becoming possible in a smart 

building environment. 

Model Predictive Control (MPC) as one of the advanced techniques is extremely popular in building 

research comparing to other controlling approaches (Afram and Janabi-Sharifi 2014). MPC incorporates 

optimization along with system dynamics to achieve parallel goals of comfort regulation and energy 

saving. It uses a system model to predict the future states of the system and generates a control vector 

that minimizes a certain cost function over the prediction horizon in the presence of disturbances and 

constraints. Most MPCs use ubiquitous simulations of certain modeling to solve a computationally 

complex optimization problem in finite prediction time steps, so that control stabilities and multiple 

optimization goals can be achieved. An MPC optimization problem can be formulated in numerous ways, 

but can be presented using a nonlinear form in general as follows: 

min 
 

  



k N 1

i t k t t k t t k t
k 0
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
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(1) 

where 
t k t

x  are the system states, 
t k t

u  are the system control inputs, 
t k t

w  are the system disturbances, 

t k t
y  are the system outputs, t  is the current control time step, k  is the future predictive time step, N  is 

the total time steps needing to be predicted and optimized in MPC, functions f  and g  are the system 

models, and system states, inputs, and outputs are constrained by X , U , and Y  respectively.  
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Along with smart buildings, new grid policies are heavily promoted in the U.S. The U.S. government ’s 

energy policies aim to create a secure supply of energy, keep energy costs low, and protect the 

environment by reducing consumption through increased energy efficiency, increased domestic 

production of conventional energy sources, and development of new sources of energy, particularly 

renewable energy and renewable fuels (Behrens 2013). There are many objectives which can be achieved 

in power grid control. One main objective, which is the interest of this study, is to manage power flow. 

Optimal power flow (OPF) management is an essential day-ahead operational planning tool widely used 

in research and industry. It aims to minimize a certain objective function (e.g., operation cost) while 

satisfying operational constraints on branch current and bus voltage. The conventional OPF problem can 

be stated in an abstract form, which is similar to building MPC, as follows: 

min  f(x,u)  

s.t. g(x,u,w) 0  

       h(x,u,w) H  

                                                                             x X  

                                                                             u U  

 

 

(2) 

where x  are the state variables (i.e., voltage magnitude and angle), u are the control inputs (i.e., generator 

active power and terminal voltage), w are the system disturbances (i.e., grid base power demand), g  is 

the power flow model, h  is the operational limit function (i.e., branch current and voltage magnitude), 

and system states and inputs are constrained by X  and U  respectively. 

Based on the aforementioned review, there is a demand for an innovative and holistic approach for 

control design and system operation which allows multiple-system controls in the context of a large scale 

buildings-to-grid integration for cost and energy reductions. Several research gaps are present in the 

current research field: 1) lack of a holistic simulation framework for the integration of occupancy, 

buildings, renewable resources, and grid, 2) lack of advanced control strategy designed on a large scale 

for buildings and grid, 3) lack of coupling of realistic nonlinear plants and linear controller for multiple-

component buildings-to-grid system, and 4) lack of coordination of control time step discrepancy 

between buildings and grid. This study aims to fill some of the research gaps in the current-state-of-the-

art by: 1) Developing a new online occupancy predictor for control purposes to predict the occupancy at 

the building level; 2) Developing nonlinear building load and conditioning models which are capable of 

large scale simulation and control; 3) Developing nonlinear distributed energy resources which are able to 

be integrated into building controls; 4) Designing and developing a hierarchical building controller using 

appropriate linearization techniques to incorporate building occupancy predictions, nonlinear system 

plants, and building comfort regulations; 5) Designing and developing a high level control and simulation 

framework between buildings and grid with system-level objectives and constraints to address the 

operation time-scale discrepancy and the large-scale computational cost. The remainder of this study is 
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structured as follows: Section 2 introduces the system models used in this study; Section 3 introduces the 

Model Predictive Control (MPC) of the buildings and grid; and Section 4 illustrates the simulation results.  

 

2. System Models 

 

2.1 Building Occupancy Model 

A Markov model is used as developed earlier in previous study (Li and Dong 2018). Given 
ijn  pairs of the 

transitional states, observed as { , }i js s , of all pairs of the transitional states { , }i ls s  that belong to the 

training data, the transitional probability is estimated as 

1

ˆ

( )

ij

ij k

ij

l

n
p

n










 

 

(3) 

where   is a smoothing factor and k  is the maximum number of occupancy states observed. A properly 

defined smoothing factor could enforce the likelihood of occupancy changes during the dramatic increase 

of occupancy presence at the morning ramp-up, and dramatic decrease of occupancy presence at the 

evening ramp-down. The Markov occupancy model is going to be integrated into a rolling window MPC. 

Assuming a building MPC is rolling at a 15-minute resolution, there will be a total of 96 sets of transition 

probabilities which need to be updated for a day-ahead MPC optimization. For each set of time 

inhomogeneous transitional probabilities, they are estimated within an optimal window before each of the 

predicted time steps. The period of the optimal window is decided by the changing point of the 

occupancy rate based on a daily profile of the historical occupancy. To overcome the uncertainties from 

the limited training window, a modified bootstrap sampling strategy is used as follows: 

1) Randomly sample nine days from the training data and apply Eq. (3) to get one bootstrap set of 

transitional probabilities; 

2) Resample ten times using the procedure above;  

3) Calculate the average values of the ten bootstrap sets. 

The selection of training data set for the model relies on the occupancy change-point analysis. Since the 

authors design the model for a rolling MPC, the daily profile is constantly updated. Thus a visual 

identification of change points is not adaptive. Let 
1 96{ ,..., }zD d d   represent all historical occupancy 

before prediction day. Here, historical information contains all the working days z  that are updated for 

MPC. A discrete profile of the occupancy rates in daily scale is generated by 

( 1) 96

1

( )

( )

z
z j

j i

j

d

P i
z

 

  





 

 

(4) 

where d  is the chain state which is a binary occupancy containing only 0 and 1, i  is the time step of the 

daily profile where 1 96i   if the occupancy data is in 15-min scale, and   is an exponential forgetting 
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factor, which is below 1. The forgetting factor reduces the influence from the too-old occupancy 

information. 

The change-point detection algorithm uses relative density-ratio estimation with the Pearson divergence 

scoring the possible change points of the daily profile ( )P i . For a data set m  sampled from the daily 

profile D , the divergence score is defined as follows: 
2 2

( )( )
( ) 1 ( ) ( ) 1 ( )

( ) ( )

P mP D
P m d m P D d D

P m P D







   
     

    
   

 

(5) 

where ( ) ( ) (1 ) ( )P m P D P m     , P  is the probability density function of the corresponding data set, 

and the factor   is a weight factor which is 0.5 to put equal weight on each of the distributions. For the 

example of Figure 2, the day file as the sample D  contains 96 occupancy rates in 15-minute resolution. 

The data set m  is sampled using a sliding window size of 12 (3 hour data). The sliding continues forward 

until end of the day and then resamples backward again.  A symmetric score is calculated by the 

summation of forward sliding and backward sliding scores using Eq. (5). The MATLAB toolbox developed 

by Liu is used in this study (Liu et al. 2013). 

 

2.2 Building Thermal Model 

The total electricity demands of commercial buildings are mainly comprised of two parts: base power 

demands and controllable power demands. Lighting, electrical equipment, and office appliances are 

associated with base demands, which can be modelled and predicted by operation schedules. In contrast, 

HVAC systems are controllable building components whose demands may be altered by adjusting 

building indoor temperature setpoints. The optimal HVAC demand can be estimated through the control 

of the building physics model, and specifically, the thermal resistance and capacitance (RC) network. A 

super zone model is proposed for the convenience of the large scale simulation, a 2R-1C thermal network 

model. It only has two temperature states, namely, building zonal temperature Tzone and building wall 

structure temperature Twall for each building. The thermodynamics of this thermal network model are 

expressed as: 

2 1

int

1

amb wall zone wall

wall sol

wall zone amb zone

zone zone hvac

win

T T T T
CT Q

R R

T T T T
C T Q Q

R R

 
  

 
   

 

 

 

(6) 

where 
1R , 

2R , and 
winR  are the aggregated thermal resistances of the exterior structure, interior structure, 

and window; 
zoneC  and C are the aggregated thermal capacitances of the zone and walls ’ structure; ambT , 

wallT , and zoneT  are the ambient exterior temperature, the walls ’ structure temperature, and the 

aggregated zone temperature; and solQ , intQ , and hvacQ  are the solar disturbance heat gain, the internal 

heat gain from the miscellaneous power consumption, and the HVAC load from the conditioning power 

consumption. 
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Larger commercial buildings have more systems for building conditioning, normally including cooling 

towers, Air Handling Units (AHUs), electricity chillers and more. The whole system has two loops: water 

loop and air loop. In the water-loop system, a centralized chilled water generation system produces the 

required cooling energy. It is assumed that chillers could be operated at various conditions to meet the 

partial cooling demands. In the air-loop system, subsystems known as AHUs transfer energy from 

distributed chilled water into localized air flows. These air flows are transported to building spaces, 

delivering cooling energy where required. The AHUs recirculate return air at temperature 
raT  from 

building spaces and mix it with fresh outside air at temperature 
oaT  to produce a mixed air temperature of 

maT . The ratio of return air flow to outside air flow is controlled by dampers located inside the AHUs. The 

mixed air is cooled by a cooling coil that transfers cooling energy from the chilled water that is generated 

or stored by the water-loop system. The air temperature of the downstream air flow passing by the 

cooling coil is monitored as supply air temperature to the building zones, 
saT . 

saT  is usually maintained 

within a certain range. The state space equation integrating AHUs and the thermal RC network of building 

l  is expressed as follows: 

   l l l l l l l l l l l

b g b u b w g b b gg A g B u B w B (g ,u ,w )  (7) 

where 

wall
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T
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 
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 
  

l

b
g  are building temperature states containing 

wallT  (the structure temperature),  
zoneT   (the 

zone temperature), and 
saT  (the AHU supply air temperature); 

air

water

f

f

 
  
 

l

b
u  are the building conditioning 

control inputs containing control variables 
airf  (the AHU air flow) and 

waterf  (the chiller water flow); 

int

amb

sol

T

Q

Q

 
 


 
  

l

b
w  are the building disturbances which are the same as in Eq. (6); 
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
   where the symbols are the same as in Eq. (6); 
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u
B  is the coefficient matrix of the 

control inputs containing parameters w w w

a a AHU

C T
b

C V






   where 

w  is the water density, 
a  is the air density, 

wC  is the water specific heat, 
aC  is the air specific heat, 

wT  is the temperature difference between the 

inlet and outlet chiller water, and 
AHUV  is the AHU volume; 

11 12

21 23
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symbols are the same as in Eq. (6); 21 22

31 32 33

0 0 0

0d d

d d d



 
 


 
  

l
B  is the coefficient matrix of the nonlinear part 

containing parameters 21

a a

zone

C
d

C


  , 22

a a

zone

C
d

C


 , 31

0.3

zone

d
C

 , 32

1

AHU

d
V

  , 33

0.7

zone

d
C

    where the symbols 

are the same as in Eq. (6); Note that the mixed air is designed to mix 70% of the outdoor air and 30% 

indoor return air; and 

air wall

air zone

air amb

f T

f T

f T



 
 


 
  

l l l

b b g
(g ,u ,w )  is the nonlinear part where variable definitions are the 

same as previously mentioned. 

For the water loop, the chillers consume electricity to extract energy from the coolant water flows. The 

power consumed by the coils is expressed as 

( , , , , )chiller ref AHU cond chwP f n Q Q T T  (8) 

where refQ  is the reference chiller consumption when the chiller is on at full conditioning, n  is the number 

of chillers operated, 
AHUQ  is the AHU power demand from the air-loop side, 

condT  is the condenser 

discharge temperature of the cooling tower, and 
chwT  is the chiller supply temperature. An equivalent 

regression fitting form is 

ref EIR PLR

chiller

CCF

nQ f f
P

COP f



 

 (9) 

where 2 2

1 2 3 4 5 6CCF cond cond chw chw cond chwf a a T a T a T a T a T T       is the Cooling Capacity Factor (CCF) function, 

2 2

1 2 3 4 5 6EIR cond cond chw chw cond chwf b b T b T b T b T b T T       is the Energy Input Ratio (EIR) function, 

2 2 3

1 2 3 4 5 6 7PLR cond cond PLR PLR cond PLR PLRf c c T c T c C c C c T C c C        is the Patrial Load Ration (PLR) function with 

AHU

PLR

ref

Q
C

Q
 , and COP  is a constant parameter defined as coefficient of performance. 

 

2.3 Distributed Energy Resources 

Electrochemical batteries are of great importance for future smart buildings because the chemical energy 

stored inside them can be converted into electrical energy and delivered to building systems whenever 

and wherever electricity energy is needed. A linearized battery model can be used in large scale 

simulation as: 

( ) ( )o

d
Q SOC t P t
dt

      (10) 

where SOC  is the state of battery charging and discharging,  
oQ  is the nominal battery capacity,   is the 

charging and discharging efficiency, and P  is the charging and discharging power.  

 

Another popular distributed energy resource for smart buildings is the Photovoltaic (PV) system.  Machine learning, 

ANN, is used to predict PV generation. Feed Forward Neural Network (FFNN) of ANN is used in this study. The 

authors explore both single hidden layer and double hidden layer FFNN. However, the structure of double hidden 
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layer is abandoned due to an overfitting problem. This observation matches conclusions regarding hidden layer 

selection by the authors’ previous studies (Dong et al. 2016), and deep learning may be one solution to the problem 

which is beyond the topics of this study. A single layer model to approximate the PV production in FFNN is 

expressed as 

1 1

[ ]
N M

j j ij i io jo

j i

y w w x w w
 

     (11) 

where w  is the weight for input layer, hidden layer, and output layer indexed by i , j , and o , x  is the 

training input, y  is the training output, N  represents the total number of hidden units, M  represents the 

total number of inputs, and   represents the learning function for each hidden unit. 

 

2.4 Grid Model 

Several models of grid systems exist, each with different accuracy and computational complexity 

(Zimmerman, et al. 2011; Low et al. 2014). Considering a standard IEEE case, the total electrical power 

injection 
kS  into bus k  can be expressed as 

k k kS P jQ   (12) 

where 
kP  is the active power injection and 

kQ  is the reactive power injection. It is also noticed that the 

power variable is a complex number. Physical considerations dictate the following complex parameter for 

the transmission line connecting bus k  and bus j  

kj kj kjY g b i   (13) 

where kjY  is the admittance of the transmission line connecting bus node k  and bus node j , kjg  is the 

conductance of the transmission line, kjb  is the susceptance of the transmission line, and i  is the 

imaginary unit. The real and reactive power injections into bus k become power flows on the transmission 

lines. Using Ohm ’s Law, the real and reactive power flows on the line connecting buses k and j are 

expressed as 
2

2

[ cos( ) sin( )]

[ sin( ) cos( )]

kj k kj k j kj k j kj k j

kj k kj k j kj k j kj k j

P V g V V g b

Q V b V V g b

   

   

    

    
 (14) 

where 
kV , jV ,

k , j  are the voltage magnitudes (kV) and voltage angles of buses k  and j  respectively. 

However, accurate power flow equations in Eq. (14) are computationally challenging in the scope of large-

scale BtG integration, especially given the nonlinear formulations. A simplified power flow model can be 

alternatively formulated under reasonable assumptions that tend to hold in practice (Giannakis et al. 

2013). These assumptions enable the linearization of Eq. (14) as 
2 ( )kj o kj k jP V b     (15) 

where oV  is the base voltage magnitude (kV). The parameter oV  can be further eliminated by scaling it to 

a dimensionless per unit (p.u.) quantity so that 1 . .oV p u . 

The generators connected to the grid are normally synchronous machines with rotors that spin at 

synchronous speed. The dynamics of the mechanical power transferring to electricity power by the 

generators are modeled by the rotational counterpart of Newton ’s law 
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m eJ T T    (16) 

where   is the rotor voltage angle which rotates at a certain frequency, J  is the moment of inertia, 
mT  is 

the mechanical torque input to the generator from the turbine, and 
eT  is the electrical torque on the 

generator rotor. The electrical torque corresponds to the electrical power that the generator provides. This 

electrical power serves any load attached to the generator bus or is converted to power flows on the lines 

leaving the generator bus. In Eq. (16), the first derivative   is the angular frequency  . The left-hand side 

of Eq. (16) is typically augmented by a damping torque that is proportional to  . The nominal value of the 

angular frequency corresponds to the electrical frequency of 60 Hz that is used in North America ’s grid. 

Supposing that the angular frequency remains close to its nominal value, the mechanical and electrical 

torques in Eq. (16) are converted to powers by multiplying with the nominal angular frequency, which 

results in the swing equation for bus k  

1

n
m e

k k k k k k kj

j

M D P P P 


     
(17) 

where n is the number of buses, 
k  is the bus voltage angle, 

kM  is the inertia coefficient, 
kD  is the 

damping coefficient, m

kP  is the mechanical power input to generator, e

kP  is the electricity load demand at 

bus k , kjP  is the power flow from bus k to bus j , 
1

n

kj

j

P


  is the cumulative power flow over  line (k,j), and 

n  is the number of buses in the network. The power flow kjP  of Eq. (17) is given by 

( )kj kj k jP b     (18) 

where 0kjP   if there is no line connecting buses k and j. The electricity load e

kP  at the k th bus of Eq. (17) 

can be decomposed into three components as 

{ , }

1

L
e i b

k k k k k l

l

P E P P


    
(19) 

where kE   is the frequency-sensitive uncontrollable load, 
i

kP  is the frequency-insensitive load, 
bP  is the 

individual building power load, and { , }

1

L
b

k l

l

P


  is the cumulative power demand from the buildings that are 

connected to the k th bus; the total number of connected buildings is L .  

The individual building power load in Eq. (19) is defined as 

b

hvac miscP P P   (20) 

where 
hvacP  is the HVAC load that can participate in frequency regulation, and 

miscP  represents the 

miscellaneous load with no potential to contribute to frequency regulation in this study.  

By combining Eq. (17)-(20), the authors obtain a governing equation by letting k k   for the grid system 

as 

1 1

( ) ( ) ( )
n L

m i l l

k k k k k k kj k j k hvac misc

j l

M D E P b P P P   
 

           (21) 

A linear state-space representation of the grid system can be derived based on Eq. (21) as 

   
e g g g ub b m m wg g
A x A x A u B u B w  (22) 
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3. System Controls 

 

3.1 Building Control 

By assuming building states (wall and zone temperatures) in Eq. (7) as the zone setpoint, state space 

equations of large commercial buildings can be linearized as 

  l l l l l l l

b g b u b w gg A g Φ u B w  (23) 

where  

 l

b
g , l

b
u , l

gw , l

gA , and l

w
B  are all the same as in Eq. (7); and 

 21 22

31 32 33

0 0

( ) 0

( )

t

t amb

d d S

d d S d T b

 
 

 
 
   

l

u
Φ  is the linearized coefficient matrix of the control inputs; Note 

that 
tS  and 

ambT  are the setpoint and ambient outdoor air temperature at the time step t  while 

other parameters definitions are the same as Eq. (7). 

Therefore, the large commercial building MPC can be formulated as 

min
bU

 ( )dt
t

T l

AHU b

0

c u  

s.t.    l l l l l l l

b g b u b w gg A g Φ u B w  

    ( )O  min l max

b b b ub
g g g ε  

 min l max

b b b
g g g  

 min l max

b b b
u u u  

 

 

 

 

(24) 

where 
AHU
c  refers to the cost of building AHU power consumption based on the grid price ($/kWh) while 

other states and parameters are defined similar to Eq. (7) and Eq. (23). The authors introduce an 

occupancy-based slack relaxation on the building states ’ constraints of Eq. (24). The occupancy 

information such as presence and absence are simulated and predicted based on the occupancy model in 

Section 2.1. The model is designed to focus on the occupancy status at the whole building level. For 

example, the occupancy model predicts the lunch break as absence during certain time periods if the 

aggregated training data show a majority of the people leaving the offices for lunch. Hence, the upper 

bounds on indoor temperature increases from 
max

b
x  to ( )Omax

b ub
x ε  during cooling condition. Function 

( )O
ub
ε   is the occupancy-based slack relaxation function, and O  is the binary occupancy state at 

optimized time step t. The relaxation function in Eq. (24) is defined as 

( ( )) min{ , ( 1) ( 1) ( ( 1))}

0

T

O t T t t O t




      



max

ub b b ub
x x ε   

0 ( ) 1

( ) 1

( ) 1

if O

if O

if O

  

 

 

 

 

(25) 

where T  is the constraint adjustment threshold for building states (1-2 °C) , conditional function   is 

defined as ( ) max{0, ( 1) ( 1) ( ( 1))}O O t t O t       max

b b ub
x x ε  with b

x  as building states vector and 
max

b
x  
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as the predefined upper bound of building states. This empirically derived relaxation formulation is 

designed to balance the feasibility of the numerical solver and the savings of the optimal solution. 

 

3.2 Grid Control 

The grid MPC optimizes the power generation costs as well as the cost of frequency deviations. It is 

assumed that each generator has variable and fixed costs of production while transmission loss is 

negligible. Simplified cost optimization is developed without considerations of the no-load operation, 

startup or shutdown costs, and ramping constraints. Letting 
m
u  in Eq. (22) be  

m m m
u u Δu  where 

m
Δu  is 

the additional adjustments on the mechanical power setpoints 
m
u , the total cost function of the 

generators takes the form of 

0

( )

t

c c dt   
T T T T T

m u m u m m Δu m Δu m g ω g
u A u B u Δu A Δu B Δu x F x  (26) 

where 
1

gn

u

u

 
 

  
 
 

m
u ,

1

gn

a

a

 
 

  
 
 

u
A  has units of $/MW2h, and 

1

gn

b

b

 
 

  
 
 

u
B  has units of  $/MWh, 

m
Δu , 

uΔA , 
uΔB  are all defined similar as 

m
u , u

A , and u
B , 

g
x  is the grid state in Eq. (22), c  is the penalty factor 

on generators ’ adjustments, and 

2 2

0

0

g

g n n

f

f


 
 
 
 
 
 
 
 

ω
F  is a diagonal matrix with the constant 

frequency deviation penalty gf  for frequency   of 
g
x .   

The canonical linear form of the grid-only MPC during the prediction horizon [0, ]t  combining Eq. (22) and 

Eq. (26) is written as 

min
bU

 
0

( )

t

c c dt   
T T T T T

m u m u m m Δu m Δu m g ω g
u A u B u Δu A Δu B Δu x F x  

s.t.     
e g g g ub b m m wg g
A x A x A u B u B w  

 min max

m m m
Δu Δu Δu  

 min max

m m m
u u u  

 min max

g g gx x x  


f g max
A x F  

 

 

 

(27) 

where b
u  are building HVAC loads and min

b
Δu , max

b
Δu , min

b
u , max

b
u , min

gx , max

gx  are the minimum and maximum 

constraints for the corresponding building control variable and grid system states. Other parameter 

notations are the same as in Eq. (26). 
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3.3 Buildings-to-Grid Control 

The integration of the building MPC and the grid MPC from Section 3.1 and Section 3.2 can formulate a 

decentralized framework that optimizes the cost of the buildings and the grid simultaneously. Given the 

case of large-scale BtG MPC, the authors first limit the forecasting window of MPC at 15-minute ahead 

prediction for each rolling step. The rolling step is 10 seconds to match the normal grid operation. During 

each period of 10 seconds, the BtG MPC control trajectories are calculated for both building and grid at 

15 minutes ahead. However, it is not necessary to optimize the building control at 10-second interval for 

each MPC due to the slow responses of the building thermal states. The authors propose a two-level MPC 

that addresses the issues of the operational time discrepancy between buildings and grid to reduce the 

computational complexity, where the control variables are described next and are depicted in Figure 1.  

The two level BtG MPC framework is described as follows: 

1) Level 1: The first level of BtG MPC is only used exactly every 5 mins. In other words, only the 

rolling steps that occur every 5 mins uses level-one MPC to optimize three control variables of Eq. (24) 

and Eq. (27) for the next 15 mins: the building HVAC power 
b
u , the mechanical power setpoints 

m
u for 

generators, and the adjustments of the mechanical power setpoints 
m

Δu . For the example in Figure 1, one 

generator ’s setpoint 
mu , one generator ’s adjustment 

mu , and one building HVAC power 
bu  are going 

to be optimized simultaneously every 5 mins.  

2) Level 2:  If the rolling MPC is continuing in-between every 5 mins, a level-two MPC is designed 

based on the optimized building HVAC power 
b
u  and the optimized mechanical power setpoints 

m
u  from 

the previous level-one MPC. Only the adjustments are updated and optimized every 10 secs. Using the 

example in Figure 1 again, the rolling steps from 10 secs to 4 mins and 50 secs have constant 
mu  and 

mu  

at all the times for each rolling MPC while 
mu   and 

bu  are optimized during each MPC. The values of and 

are optimized values from the first level-one MPC. 

4. Simulation Results 

 

A prototype commercial building from previous study (McFadden et al. 2015) is used here to randomly 

generate the building clusters. Random factors drawn from a uniform distribution are used to randomize 

the building parameters for a large-scale simulation of 1000 buildings. The internal load is determined by 

the ASHRAE standard definitions on the lighting power density and equipment power density per meter 

square. For the building HVAC system, one week of summer weather data collected during the year of 

2014 by a local weather station at San Antonio are used. A night setback strategy for non-office hours is 

used for the HVAC baseline simulation. Office hours are defined from 7:30 am to 8:00 pm, while early 

start-up of the system is set from 7:00 am to 7:30 am. The setpoint for office hours is 74°F (23.33°C) with 

1°F deadband (23.33°C 0.55). After all parameters of the buildings are randomized, the physics models 

are obtained as detailed in Section 3.1. The chillers used in the section are a reference model developed in 
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(Monfet et al. 2011). The system has 900 tons of cooling capacity and 28 days of calibration data with 

estimated coefficient of performance of 5.29. The detailed operation characteristics are described in 

(Monfet et al. 2011). The distributed energy resources are randomized based on estimated building power 

peak demand that can participate in grid regulation. An empirical rule of randomized 10%-20% peak 

demand is used to determine the PV peak sizing while battery size is randomized as 200%-250% of PV 

sizing. To demonstrate the improvements of the control designed in this study, PIDs are used to be 

compared as baselines. The complete occupancy-based building-battery-PV MPC (OBBPMPC) is used to 

integrate all system models including air conditioning, batteries, occupancy, and PVs. The performances of 

controls of supply air temperature of AHU, zone air temperature of building, and power consumption of 

the building for cooling are presented in Figure 2. Blue lines represent the mean value of one example 

building cluster (500 buildings). Pink areas represent deviations of the simulated values of the same 

example building cluster. Grid control based on MPC, or GMPC, is used for integrated buildings-to-grid 

control. Simulation of grid is performed on IEEE Case 14 system. The operation costs and reductions 

comparing the baseline to using integrated buildings-to-grid (BtG) control are presented in Table 1.  
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(a) Supply air temperature of one simulated day (C) 
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(b) Zone air temperature of one simulated day (C) 
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(c) Power consumption of one simulated day (kW) 

Figure 1: MPCs with time discrepancy in a decentralized framework. 
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Table 1: Operation costs comparison 

 

BtG 

Controls 

Frequency 

Penalty 

(1000$) 

Reduction 

Generation 

Cost 

(1000$) 

Reduction 

Total BtG 

Cost 

(1000$) 

Reduction 

Baseline + 

GMPC 
3.12 - 663.39 - 1117.77 - 

OBBPMPC+

GMPC 
2.84 8.97% 508.96 23.27% 818.80 26.74% 

 

5. CONCLUSIONS 

 

This study develops and demonstrates an innovative control framework that facilitates the interaction of 

building load controls with power grid generations, leading to a holistic Buildings-to-Grid integration. The 

simulation framework explicitly includes all detailed physics models of the occupancy, the building 

nonlinear conditionings, the distributed energy resources, and the grid systems at community scale for 

high-level optimization. Occupancy-based model predictive control for building clusters is developed for 

reducing total energy costs and maintaining thermal comfort. Distributed energy resources are integrated 

in the building control to reduce the peak demand and baseline energy usage. Optimal power flow 

problems for frequency control are explored for standard power systems. The simulations are performed 

using real data collected from local weather stations, ground truth prices, and onsite occupancy 

information to mimic practical cases. Simulations show significant reduction for electricity generation cost 

up to 23%, and total buildings-to-grid cost up to 26%. Future research should focus on a centralized or 

distributed control platform. It should co-optimize more complex systems of buildings and grids, high-

order thermal networks such as EnergyPlus, and nonlinear grid models such as AC grid system, to achieve 

multi-objective optimization in the BtG integration.  
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